US3645856A - Process and apparatus for electrolytic treatment of transported wires - Google Patents

Process and apparatus for electrolytic treatment of transported wires Download PDF

Info

Publication number
US3645856A
US3645856A US20888A US3645856DA US3645856A US 3645856 A US3645856 A US 3645856A US 20888 A US20888 A US 20888A US 3645856D A US3645856D A US 3645856DA US 3645856 A US3645856 A US 3645856A
Authority
US
United States
Prior art keywords
wires
granular
electrolytic
transported
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US20888A
Other languages
English (en)
Inventor
Kurt-Jurgen Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glanzstoff AG
Original Assignee
Glanzstoff AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glanzstoff AG filed Critical Glanzstoff AG
Application granted granted Critical
Publication of US3645856A publication Critical patent/US3645856A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/005Contacting devices

Definitions

  • FIG/l I N VEN TORI PROCESS AND APPARATUS FOR ELECTROLYTIC TREATMENT OF TRANSPORTED WIRES A number of techniques are known for the purpose of providing an electrical contact of wires which are being conducted through an electrolytic bath, e.g., in apparatus for etching, galvanizing, plating, or otherwise electrolytically treating the wires.
  • movable metallic rolls can be used for supplying current to the transported wires, the current supply to the rolls occurring over a common fixed axis and the rolls being driven by winding or looping the wires around their circumference.
  • the supply of current to the wires can also be accomplished by using a metal drum or cylinder over which the wires are likewise carried with at least some degree of winding, an electrical contact with the metal drum taking place by means of conventional carbon brushes.
  • a metallic drum is likewise subject to a considerably large and rapid mechanical wear because it is generally impossible to draw many wires over this metallic drum at exactly the same speed.
  • the drum is rotatably driven by the wires, it necessarily assumes an average circumferential velocity so that individual wires running slightly slower or faster that this velocity cut into the circumferential surface over a period of time.
  • each individual wire being trans ported through the electrolytic bath is maintained in electrical contact by being slightly twisted around and in running contact with individual fixed, current-conducting wires so that current is supplied directly from the fixed wires to the running wires.
  • the cutting effect of the running wires causes a very rapid wear of the fixed contact wires so that continuous supervision and inspection is necessary for frequent replacement of the fixed wires.
  • this current-conducting technique requires a relatively large clearance between the individual wires when treating a large number of running wires, and this substantially reduces the capacity of the operation.
  • One object of the present invention is to provide an improved method or means for supplying current to a plurality of wires as they are conducted an electrolytic bath in any conventional electrolytic treatment.
  • a substantial improvement can be achieved in a process for the electrolytic treatment of a plurality of wires being transported through an electrolytic bath by guiding the wires to be treated inrunning contact with a granular conductor of the first class arranged in at least one layered zoneor bed externally of the bath.
  • the granular conductor of the first class is advantageously arranged as a layer in a nonconducting container so as to surround the transported path of the wires for electrical contact therewith, i.e., such that the granular conductor is located both above and below the path of the wires.
  • An electrode can be inserted at the bottom portion of the nonconducting container to supply current to the entire layer of the granular conductor.
  • a nonconducting container for the granular material at both ends of each electrolytic bath in which the running wires are treated.
  • relatively conventional apparatus can be employed including an electrolytic bath means for the electrolyte including a current-supply electrode, and also means to transportthe wires through the bath or electrolyte and the nonconducting container which can be slotted in its oppositely facing sidewalls for passage of the wires therethrough.
  • conductor of the first class is employed herein in view of the well-known sharp division of electrical conductors into three classes.
  • the first class of conductors sometimes referred to as metallic or electronic conductors, consists of the metals, alloys and a few other substances such as carbon.
  • conductors of the second class are electrolyte conductors
  • third class conductors are mixed conductors wherein current passes partly in a metallic and partly in an electrolytic manner.
  • the granular conductors of the present invention are restricted to first class conductors consisting essentially of a highly electrically conductive solid material. For example, one can select metals such as copper, nickel or aluminum or alloys such as Monel, Hastelloy, brass or steels.
  • Electrical carbon or graphite may also be employed as the granular conductor.
  • the choice of such a conductor will depend to some extent upon the manner in which the running wires are being treated, i.e., whether they must act as the anode or the cathode in the electrolytic bath.
  • the choice of the most suitable granular material to provide electrical contact with the wires may also be determined by the desirability of employing a corrosion-resistant material as well as one which will properly handle the current supply.
  • the selection of any particular granular conductor of the first class can be easily made by one skilled in this art, based upon the normal conditions placed upon such conducting materials by any particular electrolytic process. It has been found to be particularly advantageous to supply the layer or bed of the nonconducting container with particles of the first class conductor which have a substantially uniform cubical or spherical shape.
  • FIG. 1 is a partially schematic cross-sectional view taken longitudinally through a typical electrolytic bath which has been equipped in accordance with the invention.
  • FIG. 2 is a schematic illustration of an overall process for the electrolytic treatment of a plurality of wires as they are conducted through several treatment baths of zones.
  • FIG. 3 is a vertical cross-sectional view of one embodiment of a nonconducting container which holds a layer of the granular first class conductor, the cross section being taken in the longitudinal or running direction of the planar group of wires being treated;
  • FIG. 4 is a vertical cross-sectional view of the same nonconducting container taken transversely to the longitudinal or running direction of the planar group of wires.
  • a planar group of wires 1 are conducted in the direction of the arrows through an electrolytic cell or treatment bath 2 which is supported by any suitable means above and slightly within a primary vessel 3 for the bath liquid 4.
  • This bath liquid is circulated from the lower vessel or tank 3 by means of pump 5 through fluid conduit 6 into the electrolytic cell 2 where excess bath liquid overflows at either end.
  • This cell 2 is equipped with an anodic electrode 7, in accordance with any conventional construction for an electrolytic cell, and the planar group of wires 1 are conducted through the cell 2 at a predetermined distance from the anode 7.
  • a nonconducting container 8 is mounted in any suitable manner and holds a layer or bed 9 of a granular first class conductor with suitable means such as slotted walls for transporting the planar group of wires 1 through each bed 9 as well as through the electrolytic cell 2.
  • Each container 8 is also provided with a suitable electrode 10, in this instance a cathode, which is preferably located at the bottom of the container.
  • FIG. 2' A typical overall process is illustrated in FIG. 2' in which a plurality of wires ill are drawn from the feed rolls 12, if desired with suitable braking means such as a friction brake on the rolls l2, and the individual wires are then collected into a horizontal planar group over the guide roller 13 or similar guide means so as to be conductedthrough a series of treatment baths or zones and finally taken E over a second guidemeans 14 onto individual takeup spools or cylinders 15. It is of course important that the planar group of wires be drawn through the entire system by the takeup rolls 15 under sufficient tension so as to be properly situated or located in each of the treatment baths or zones.
  • the wires 11 can be first conducted through a pickling or etching bath 16 contained within the cell 17 having an anode R8.
  • the wires 11 can then run through a water bath 19 into a number of sequentially arranged electrolytic cells 20 and 21 containing anodes 22 and 23, respectively, e.g., in order to plate the wires with brass, zinc or some other typical plating material.
  • the wires 11 are transported through a second water bath 24 and a drying chamber 25 and then collected in a conventional manner.
  • Individual nonconducting containers 8 for the granular first class conductor material 9 are arranged at each end of the electrolytic cells 16, 20 and 21 in order to provide a cathodic connection at 10, e.g., as shown on a somewhat larger scale for an individual electrolytic cell in FIG. 1.
  • the primary vessel or tank 3 as well as the recirculation of the electrolytic bath fluid has been omitted from FIG. 2 in order to simplify the schematic flowsheet as much as possible.
  • FIGS. 3 and 4 An especially preferred embodiment of the nonconducting container of the invention with its layer or bed of a granular first class conductor is illustrated in detail in FIGS. 3 and 4 by showing a longitudinal and transverse cross section, respectively, with reference to the running direction of the planar group of wires 8 being transported therethrough.
  • the opposing vertical sidewalls 26 and 27 of the nonconducting container 8 are arranged transversely and preferably perpendicularly to the horizontally transported planar group of wires l and are provided with vertical slots 28 and 29 for the entry and exit of the wires as they pass through the container.
  • the electrode 31 can have any conventional structure with appropriate connection to a current supply line or lines 34 and $5. This electrode may be either positive or negative depending upon the polarity to be exhibited by the transported wires.
  • the first class granular conductor 9 is arranged above and below the planar group of wires 1 and causes current to flow between the electrode 31 and these wires.
  • the granular conductor is made up of individual spherical particles 36 which are preferably uniform in size as supplied to the container in arranging a bed or layer around the wires.
  • the vertical slots 2% and 29 in the oppositely facing sidewalls of the container 5 may be sufiiciently large to permit the use of different wire sizes, e.g., with a slot width of about 2-4 mm. it is especially desirable to arrange these slots at uniform intervals so that the individual running wires are carried substantially parallel to one another at approximately equal intervals.
  • the container itself can be constructed of any suitable nonconducting material including various plastics and preferably fiber-reinforced plastics such a polyvinyl chloride, polycarbonates, melamine resins and the like.
  • the laterally exposed surfaces of the slots 28 and 29 can be protected by inserting pins or other such suitable liners of a hard and wear-resistant material such as a sintered aluminum oxide supplemented by various metal carbides.
  • the slots are then fully adapted to function as guides for the transported wires.
  • the size and shape of the particles or granules of the first class conductor material which provides the electrically conducting bed can vary within a relatively broad range. It is important, however, that the individual granules be sufficiently large to prevent their withdrawal or ejection through the slots in the container. On the other hand, these granules must not be so large as to cause the individual wires to deviate substantially from their lineal-and preferably parallel path through the container. In other words, the individual wires should be capable of clearing a relatively straight path through the container without being turned laterally toward one side or the other.
  • the height of the granular bed above the planar group of wires is also limited to some extent for this same reason, i.e., to prevent a vertical bending or deflection in the path of the wires as well as a lateral or horizontal deflection.
  • the size or diameter of the contact material or granular first class conductor should preferably be at least about 1 mm. larger than the slot width up to a maximum size of about 10-12 mm.
  • the individual parallel wires are preferably spaced at an interval which is substantially larger than the size or diameter of the contacting granules, e.g., I and it to two times the diameter of the granules or even more. With the abovenoted dimensions for the wires, slots and granules, one can thus space the wires at intervals of up to approximately 25 mm. It is desireable to space the wires as closely as possible in order to achieve a maximum capacity of a single-operating,
  • the planar group of wires ll preferably divides the height of the layer into proportions or lower and upper layers of 1:2 to I25, as measured upwardly from the electrode located in bottom portion of the container. The contact pressure of the granular conductor located above the running wires with this arrangement tends to favor a good conduction of the current to the wires.
  • the running wires cause a partial intermixing of the granular conductor, and although there occurs a partial wearing or reduction in size of the granules, fresh granulated material can be introduced during the transport of the wires by adding the granules to the top of the bed. Since electrolytic processes are generally stopped for cleaning periodically, e.g., every 1-2 weeks, excessively small particles can be sorted out at such intervals to avoid too great a loss of granular material through the container slots.
  • a planar group of steel wires to be patinated or etched is selected so as to provide 32 individual wires with a diameter of 0.8 mm. for each wire.
  • the etching or patination of the wires takes place under conventional conditions at 900 C. and the wires are then quenched in a lead bath at about 520 C.
  • the steel wires are drawn at a linear velocity of 40 meters/minute through two nonconducting containers 8 as shown in F168. 3 and positioned at each end of the etching bath as generally illustrated in FlGS. l and 2.
  • the first container is located about 20 cm. before the etching bath while the second container is located the same distance after the bath, i.e., in the running direction of the wires.
  • Each container 8 is filled with a cubical granulate having side dimensions of 4 mm. to provide a bed or layer height of 80 mm.
  • the cubical granulate is composed of liastelloy C which is an alloy of approximately the following composition: 51% Ni, l5.5l7.5% Cr, 16-18% Mo, 45% W, 47% Fe and 0.15% C.
  • the length of the nonconducting container amounts to 25 cm., and its breadth (transverse to the running wires) amounts to 90 cm.
  • the planar group of wires runs horizontally through vertical slots having a width of approximately 2 mm. so that the wires are spaced parallel to one another at an interval of about 25 mm.
  • the planar group of wires is positioned within the granular bed at a height of about 20 mm. from the cathode, i.e., the electrode located at the bottom of the container, so that about three-fourths of the granular bed lies above the planar group of wires.
  • the cathode is a carbon electrode.
  • the etching bath is 2.60 meters long and is equipped with a conventional carbon anode.
  • the electrolyte of the bath is a percent hydrochloric acid.
  • a current of 15 amperes is applied to each individual wire, which corresponds to a voltage or potential of approximately 7 volts, taking into consideration the length of the bath and the electrical resistance.
  • the group of wires leaves the etching bath in a white etched condition which is thus uniformly freed of the dark gray oxide layer.
  • EXAMPLE 2 The wires are drawn through the plating bath as shown in H6. 11 at a linear velocity of 40 meters/minute, with the nonconducting containers located before and after the bath in the same manner as in Example 1. ln each case, the container is filled to a layer height of 60 mm. with prismatic or columnar granules having a thickness of 5 mm. and a height of 6 mm.
  • the planar group of wires passes through the granular bed at a distance of 20 mm. from the cathode at the bottom of the container, the cathode in this instance being a V4A-electrode.
  • a current of 15 amperes is applied to each individual wire, corresponding to a potential of 6.9 volts when considering a plating bath length of 2.80 meters and the electrical resistance.
  • the wires leave the plating bath with a uniform brass coating of 0.4 microns.
  • the present invention offers a highly satisfactory technique for conducting a large number of wires continuously through two or even several electrolytic baths, e.g., as in sequential etching and plating operations.
  • the method and apparatus of the invention are widely applicable to any electrolytic treatment of steel, iron or other metallic wires which requires a consistent and uniform supply of electrical current to the wires.
  • other preliminary treatments of the wires are also equally successful as in scouring or degreasing by electrolytic means.
  • the invention is also useful in finishing treatments such as electrolytic polishing which generally requires an anodic decomposition of the material being polished. it is thus immaterial whether the electrolytic reaction taking place on the transported wires is to be carried out anodically or cathodically.
  • the granular first class conductor material employed in accordance with the invention exhibits a considerably smaller mechanical tension on the transported wires as compared to relatively massive rotating rollers or so-called contact drums or cylinders. While the use of the latter of these mechanically tensioning and contacting means often raises the tension to the breaking point limits, especially with thinner wires, this effect does not occur with the technique of the present invention and there are considerably fewer disturbances or work stoppages from the breaking of individual wires. Also, there is much less need to interrupt the running of the wires in order to replace current supplying elements even though there is an eventual mechanical wear or corrosive decomposition of the granular first class conductor. If desired, means can be provided to slowly removed granular material from the bottom portion of the nonconducting container while adding fresh granules at the top. Such modifications can be easily accomplished within the scope of the invention.
  • the electrical contacting means of the invention including the nonconducting container and its content of a granular first class concluctor costs only a fraction of the relatively expensive devices previously used. Also, there is much less maintenance and supervision where labor costs tend to be much higher in relation to the effective time of actual operation.
  • the contacting device or method of the present invention has been proven to be relatively independent of the drawing-off speeds, thereby permitting higher transporting or drawing speeds for the wires without causing substantially greater damage or more frequent breakdowns.
  • the electrically conducting material employed in the roller, drum or wire contacting elements of previous devices must have a high mechanical strength as well as excellent resistance to corrosive chemicals. Because of this double requirement, the available choices of a suitable contact are narrowly limited.
  • the granular conducting materials of the first class employed for purposes of the present invention do not require such a high mechanical strength and are preferably chosen primarily for their resistance to chemical attack, e.g., by the electrolyte, so that a series of previously nonuseful materials can be selected as the granular contacting means for supplying current to the transported wires.
  • the granular conductor of the invention is preferably arranged in a nonconducting container with vertical sidewalls which are slotted to receive the transported wires running horizontally therethrough, it will be recognized that this preferred construction and arrangement can be modified in various ways without departing from the more essential features of the invention.
  • the nonconducting material can be formed as a liner on a more rigid exterior shell or the side and/or end walls can be positioned at an angle to the vertical, e.g., to funnel or channel the granules downwardly while providing any suitable discharge opening at the bottom of the container.
  • the planar group of wires can be guided in somewhat different paths by means of suitable guide pins or combs, and braking or tension regulating means can be applied to the wires as well as to the feed rolls or drums from which the wires are supplied.
  • the tension should preferably be sufficiently great to maintain a reasonably linear path of travel for each wire against the pressure exerted by the granular contact material.
  • the braking tension exerted solely by the granular contact material is sufficient to yield highly satisfactory results at normal operating speeds, thereby permitting a very simple and inexpensive construction of the electrical contacting means in combination with each electrolytic treatment of the wires.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
US20888A 1969-03-20 1970-03-19 Process and apparatus for electrolytic treatment of transported wires Expired - Lifetime US3645856A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19691914178 DE1914178A1 (de) 1969-03-20 1969-03-20 Verfahren zur Kontaktgabe von Draehten in Drahtgalvanisierungsanlagen

Publications (1)

Publication Number Publication Date
US3645856A true US3645856A (en) 1972-02-29

Family

ID=5728754

Family Applications (1)

Application Number Title Priority Date Filing Date
US20888A Expired - Lifetime US3645856A (en) 1969-03-20 1970-03-19 Process and apparatus for electrolytic treatment of transported wires

Country Status (8)

Country Link
US (1) US3645856A (en:Method)
BE (1) BE747763A (en:Method)
DE (1) DE1914178A1 (en:Method)
ES (1) ES376420A1 (en:Method)
FR (1) FR2037230A7 (en:Method)
GB (1) GB1296497A (en:Method)
LU (1) LU60561A1 (en:Method)
NL (1) NL7003896A (en:Method)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865701A (en) * 1973-03-06 1975-02-11 American Chem & Refining Co Method for continuous high speed electroplating of strip, wire and the like
US4322280A (en) * 1979-12-11 1982-03-30 Siemens Aktiengesellschaft Electrolysis device for the galvanic reinforcement of tape-shaped plastic foils which are precoated to be conductive
US4904351A (en) * 1982-03-16 1990-02-27 American Cyanamid Company Process for continuously plating fiber
IT201700065757A1 (it) * 2017-06-14 2018-12-14 Assembling S R L Apparecchio di trattamento filo metallico, elettrolitico od elettrochimico e cella elettrolitica utilizzata

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657548B2 (ja) * 2017-12-15 2020-03-04 富山住友電工株式会社 金属多孔体の製造方法、及びめっき処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB274405A (en) * 1926-01-05 1927-07-05 Herbert Champion Harrison Improvements in electrolytic process and apparatus
US3506546A (en) * 1966-01-03 1970-04-14 Honeywell Inc Copper coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB274405A (en) * 1926-01-05 1927-07-05 Herbert Champion Harrison Improvements in electrolytic process and apparatus
US3506546A (en) * 1966-01-03 1970-04-14 Honeywell Inc Copper coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865701A (en) * 1973-03-06 1975-02-11 American Chem & Refining Co Method for continuous high speed electroplating of strip, wire and the like
US4322280A (en) * 1979-12-11 1982-03-30 Siemens Aktiengesellschaft Electrolysis device for the galvanic reinforcement of tape-shaped plastic foils which are precoated to be conductive
US4904351A (en) * 1982-03-16 1990-02-27 American Cyanamid Company Process for continuously plating fiber
IT201700065757A1 (it) * 2017-06-14 2018-12-14 Assembling S R L Apparecchio di trattamento filo metallico, elettrolitico od elettrochimico e cella elettrolitica utilizzata

Also Published As

Publication number Publication date
DE1914178A1 (de) 1970-10-01
NL7003896A (en:Method) 1970-09-22
BE747763A (fr) 1970-08-31
FR2037230A7 (en:Method) 1970-12-31
GB1296497A (en:Method) 1972-11-15
LU60561A1 (en:Method) 1970-05-21
ES376420A1 (es) 1972-06-16

Similar Documents

Publication Publication Date Title
US4395320A (en) Apparatus for producing electrodeposited wires
US2708181A (en) Electroplating process
US3975242A (en) Horizontal rectilinear type metal-electroplating method
US2431065A (en) Continuous wire and strip electro-processing machine
US3461046A (en) Method and apparatus for producing copper foil by electrodeposition
US3676322A (en) Apparatus and method for continuous production of electrolytically treated wires
US3645856A (en) Process and apparatus for electrolytic treatment of transported wires
US3471375A (en) Process and apparatus for continuous anodic treatment
US5242571A (en) Method and apparatus for the electrolytic production of copper wire
US3244605A (en) Purification of aqueous caustic solutions
US5071713A (en) Metal fibers obtained by bundled drawing
US3682798A (en) Method and apparatus for electrorefining particulate metallic materials
US4559113A (en) Method and apparatus for unilateral electroplating of a moving metal strip
US20170241035A1 (en) Method and apparatus for electroplating
US3630864A (en) Method and apparatus for continuous electrolytic polishing of fine metal wires
US2725355A (en) Apparatus for electropolishing metallic articles
US4891105A (en) Method and apparatus for electrolytic refining of copper and production of copper wires for electrical purposes
US1322494A (en) Electrolytic method
KR850000790B1 (ko) 전기도금 와이어의 제조장치
CA1047437A (en) Method of and apparatus for, local electroplating of strip material
JPH01162798A (ja) 電気めっき用コンダクターロールの付着金属除去装置
US3109783A (en) Electrolytic plating
US3436322A (en) Plating apparatus and process
KR0174269B1 (ko) 와이어 형태의 물체를 연속으로 전해처리하기 위한 장치
KR790001163B1 (ko) 금속스트립, 특히 강스트립의 수평직선형 도금방법