US3645545A - Entrance-exit atmospheric isolation device - Google Patents
Entrance-exit atmospheric isolation device Download PDFInfo
- Publication number
- US3645545A US3645545A US59496A US3645545DA US3645545A US 3645545 A US3645545 A US 3645545A US 59496 A US59496 A US 59496A US 3645545D A US3645545D A US 3645545DA US 3645545 A US3645545 A US 3645545A
- Authority
- US
- United States
- Prior art keywords
- gas
- restricting means
- atmosphere
- accordance
- allowing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67161—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
- H01L21/67173—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/06—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
- C30B31/10—Reaction chambers; Selection of materials therefor
- C30B31/106—Continuous processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S277/00—Seal for a joint or juncture
- Y10S277/906—Seal for article of indefinite length, e.g. strip, sheet
Definitions
- Walter Y ABSTRACT An atmospheric isolation device for separation of two atmospheres of a continuous semiconductor processing apparatus which includes a gas entryvtube, a plurality of first gas restricting means leading to a first atmosphere, a plurality of second gas restricting means leading to a second atmosphere, and adjacent to each gas restricting means an expansion chamber for increasing back pressure and for destroying lift produced by theBemouilli effect of the gas passing through the restricting means.
- INIVENTORS mm GARNACHE Fl 5. 3 DONA KENNEY BY WM AGENT 1 ENTRANCE-EXIT ATMOSPHERIC ISOLATION DEVICE BACKGROUND OF THE INVENTION 1.
- This invention relates to isolation devices used to separate two different atmospheres in continuous semiconductor processing apparatus, and more particularly to the structure of an entry-exit seal for continuous vapor deposition apparatus of the types disclosed in copending applications: Ser. No. 345 filed on Jan. 2, 1970, and entitled Method and Apparatus for Diffusion Limited Mass Transport" or Ser. No. 825,827 filed May 19, 1969, and entitled Continuous Systems for Fabricating Semiconductor Substrates to Contain a Diffused Conductivity Type Determining Impurity Therein, both assigned to the assignee of the instant invention.
- Atmospheric isolation devices of the prior art are found to consist of three basic types: (1) restricted aperture types, (2) positive pressure types and (3) negative pressure types. These devices find application in various processing apparatus where it is desirable to prevent gaseous phase material, or other contaminants, from passing through an opening through which workpieces must pass. These devices are most appropriately used between ambient atmosphere and reaction vessel atmosphere, such as found in vapor deposition or sputtering apparatus. v
- the restricted aperture prior art device consists of a relatively long, low ceilinged, or restricted, passage which utilizes gas viscosity in combination with a gas pressure head developed over an extented distance to maintain positive controlled flow in a direction either toward or away from a particular part of the apparatus.
- These devices have their primary application where a relatively large pressure differential exists between the two atmospheres, for example, ambient atmosphere and a pressure vessel.
- the positive pressure devices utilize a multiple stream concept wherein a single external gas stream, usually an inert gas, is divided such that part of the gas flows into the ambient and part flows into the processing vessel, thereby preventing the mixing of gases of the two atmospheres to be isolated.
- This type device has its primary application in apparatus where the mixing of two atmospheres on both sides of the seal is not permissible, for example, where the process gas is explosive in air.
- Negative pressure devices are constructed similarly to the positive pressure types but the gas flow is reversed. Gases are drawn from both the process vessel and the atmosphere to prevent leaking of the process gases into the atmosphere.
- the invention herein disclosed is constructed to realize the aforementioned objects, goals and advantages, and comprises in its preferred form a positive pressure isolation device having a gas inlet means and two atmospheric communicating passages.
- the passages are formed by a series of alternating restricted apertures and expansion chambers.
- the restricted apertures provide means to increase back pressure and limit gas flow rates, while the expansion chambers provide relief from the Bernouilli effect caused by the restrictions and also produce a drop in enthalpy, or internal energy, of the gas stream by allowing controlled expansion, thereby allowing higher pressures to be used than possible with the low ceiling, or extended restricted aperture, type devices.
- FIG. 1 there is shown the isolation device 10 of the instant invention mounted on the exit end of the process apparatus 12 of the aforementioned copending application, Ser. No. 345, the description and operation of which is herein expressly incorporated by reference.
- the isolation device is mounted on plate 14 which may be bolted, or otherwise attached, to the process apparatus.
- Inlet gas tube 20 mounted on the top of isolation device It) is provided to supply inert gas, for example argon, or other suitable gas, to effectuate operation of the device.
- Tube 20 normally is connected to a metered source of inert gas, not shown. It should beunderstood that the operation of the device is independent of the particular gas used and that any gas compatible with the two atmospheres to be isolated may be used.
- gas is delivered in a downward direction, as indicated by arrow 21, through tube 20 into chamber 22 from which it exits through gas restricting means, apertures 24 and 26.
- the restricted apertures are formed partially by the upper surface of carrier 16 and substrates l8 and partially by projections 28 of a top plate 30. Projections 28 may be formed by transverse grooves milled into top plate 30 or may be separately constructed and mounted into position.
- the shape of the restricted apertures is a gap of uniform width formed by the substantially parallel spaced relation between the upper surfaces of carriers 16 and substrates R8 and the lower edges or surface of projections 28.
- expansion chambers 32 Located adjacent to apertures 24 and 26 are expansion chambers 32 into which the gas then passes. Thereafter, there are provided a series of alternating restricted apertures 24 and I6 and expansion chambers 32, the particular number and size of which is optional depending upon the desired design characteristics of the isolation device as will be discussed below.
- Carriers l6, normally consisting of machined high purity graphite, supporting semiconductor substrates 18 are continuously passed through the apparatus, for example, from left to a right.
- FIG. 3 shows a sectional view of the isolation device and more clearly illustrates the shape of restricted apertures 26 and expansion chambers 32.
- the carriers 16 are shown supported by bottom plate 34 and guided through recess 35.
- Both bottom plate 34 and top plate 30 may be constructed of stainless steel or other suitable material compatible with the atmospheres found in the process apparatus.
- a gas inlet tube 20 and a plurality of first gas restricting means, apertures 24, leading to the first atmosphere, or the processapparatus, and a series of second gas restricting means, apertures 26, leading to the second or ambient, atmosphere, and adjacent to each gas restricting aperture is an expansion chamber 32.
- the particular number, size and location of the various elements of the isolation device are best determined depending on' the particular inert gas used, as well as the processing system requirements.
- a typical example of an application of theinstant invention would be in a vapor deposition process such as. silicon deposition.
- a certain net gas flow rate into the process apparatus to assure proper operation and safety of the system. For example, 1 liter per minute through a 4 inch wide restriction would be typical. Utilizing this flow rate and providing a typical gas restricting aperture size of 0.010 inch, the linear gas flow rate at the process side of the device would be about 5 centimeters per second, depending upon the width of carrier 16.
- P and V When applied to the lifting of a substrate from its carrier, P and V refer to the underside of the substrate where the velocity is zero and P and V refer to the top side of the substrate. It is obvious that at any streaming velocity the pressure gradient will be such as to provide a lifting force. Applying a minimum safe streaming velocity of 5 centimeters per second with, for example, argon gas having a density (p) of 1.78 grams per liter and utilizing a substrate area of 2.57 l" square meters the lift obtained is approximately 5.7 grams. Since the typical wafer weighs approximately 3 grams it must lift off the carrier.
- the solution as described herein is to provide a thickness for projection 28 which will reduce the effective lift area of reduced pressure to prevent the lifting of substrates.
- a flow rate of twice that flowing into the process apparatus is desirable for the ambient side of the device, that is, a series of five sets of expansion chambers and apertures.
- Apparatus for providing isolation between a first atmosphere and a second atmosphere comprising:
- first gas restricting means for allowing a con trolled quantity of gas to pass from said gas inlet means to said first atmosphere; atmosphere;
- At least one gas expansion chamber located adjacent to each one of said first and second gas restricting means for interrupting the Bemouilli effect created by said gas restricting means and for further providing a reduction in enthalpy by allowing controlled expansion of gas to increase back pressure.
- Apparatus for providing isolation between ambient atmosphere and a continuous semiconductor processing apparatus atmosphere comprising:
- first and second gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said continuous semiconductor processing apparatus atmosphere
- said first and second gas restricting means being defined partially by semiconductor substrate surfaces and a substrate carrier and partially by a carrier conforming member mounted in parallel spaced relation to the surface of the carrier, said restricting means further comprising an effective lift area less than necessary to lift substrates from their carriers;
- At least one gas expansion chamber located adjacent to each of said restricting means for disrupting the Bemouilli effect produced by a flowing gas stream passing through said restricting means and for creating a reduction in enthalpy by means of controlled expansion of gas to increase back pressure.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
An atmospheric isolation device for separation of two atmospheres of a continuous semiconductor processing apparatus which includes a gas entry tube, a plurality of first gas restricting means leading to a first atmosphere, a plurality of second gas restricting means leading to a second atmosphere, and adjacent to each gas restricting means an expansion chamber for increasing back pressure and for destroying lift produced by the Bernouilli effect of the gas passing through the restricting means.
Description
United States Patent Garnache et al.
[ Feb. 29, 1.972
[54] ENTRANCE-EXIT ATMOSPHERIC ISOLATION DEVICE [72] Inventors: Richard R. Garnache, South Burlington;
Donald M. Kenny, Shelburne, both of Vt.
[73] Assignee:
International Business Machines Corporation, Armonk, NY.
[22] Filed: July 30, 1970 [211 App]. No.: 59,496
- 521 ..277/72 SR, 1 18/49 51] ..B65d 53/00 58 Field of Search ..118/48-49.5, 50,
[56] References Cited umrso STATES PATENTS 2,580,976 1/1952 Toulmin', Jr. ..1 18/495 3,473,510 10/1969 3,531,319 9/1970 Martorana Sheng et al. ..118/49.5 ...1 18/48 X FOREIGN PATENTS OR APPLICATIONS 766,459 1/1957 Great Britain ..118/49 Primary ExaminerMorris Kaplan Attorney-Hanifin and Jancin and Howard J. Walter Y ABSTRACT An atmospheric isolation device for separation of two atmospheres of a continuous semiconductor processing apparatus which includes a gas entryvtube, a plurality of first gas restricting means leading to a first atmosphere, a plurality of second gas restricting means leading to a second atmosphere, and adjacent to each gas restricting means an expansion chamber for increasing back pressure and for destroying lift produced by theBemouilli effect of the gas passing through the restricting means.
9 Claims, 3 Drawing Figures Pa tented Feb. 29, 1912 3,545,545
INIVENTORS mm GARNACHE Fl (5. 3 DONA KENNEY BY WM AGENT 1 ENTRANCE-EXIT ATMOSPHERIC ISOLATION DEVICE BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to isolation devices used to separate two different atmospheres in continuous semiconductor processing apparatus, and more particularly to the structure of an entry-exit seal for continuous vapor deposition apparatus of the types disclosed in copending applications: Ser. No. 345 filed on Jan. 2, 1970, and entitled Method and Apparatus for Diffusion Limited Mass Transport" or Ser. No. 825,827 filed May 19, 1969, and entitled Continuous Systems for Fabricating Semiconductor Substrates to Contain a Diffused Conductivity Type Determining Impurity Therein, both assigned to the assignee of the instant invention.
2. Description of the Prior Art Atmospheric isolation devices of the prior art are found to consist of three basic types: (1) restricted aperture types, (2) positive pressure types and (3) negative pressure types. These devices find application in various processing apparatus where it is desirable to prevent gaseous phase material, or other contaminants, from passing through an opening through which workpieces must pass. These devices are most appropriately used between ambient atmosphere and reaction vessel atmosphere, such as found in vapor deposition or sputtering apparatus. v
The restricted aperture prior art device consists of a relatively long, low ceilinged, or restricted, passage which utilizes gas viscosity in combination with a gas pressure head developed over an extented distance to maintain positive controlled flow in a direction either toward or away from a particular part of the apparatus. These devices have their primary application where a relatively large pressure differential exists between the two atmospheres, for example, ambient atmosphere and a pressure vessel.
The positive pressure devices utilize a multiple stream concept wherein a single external gas stream, usually an inert gas, is divided such that part of the gas flows into the ambient and part flows into the processing vessel, thereby preventing the mixing of gases of the two atmospheres to be isolated. This type device has its primary application in apparatus where the mixing of two atmospheres on both sides of the seal is not permissible, for example, where the process gas is explosive in air.
Negative pressure devices are constructed similarly to the positive pressure types but the gas flow is reversed. Gases are drawn from both the process vessel and the atmosphere to prevent leaking of the process gases into the atmosphere.
The above-described prior art devices, although effective in certain applications, prove to be undesirable in the semiconductor processing apparatus disclosed in the above-referenced applications. The prior art devices require, depending on the type used, either high-gas flow rates or high-back pressure. Furthermore, when reasonable stream velocities needed to provide a proper margin of safety are used, sufiicient lift is developed by the Bernouilli effect to cause semiconductor substrates to be lifted bodily from their carriers, thereby causing irreparable damage to the substrates.
SUMMARY OF THE INVENTION It is therefore an object of this invention to prevent damage to semiconductor wafers while passing from one atmosphere to another in a semiconductor processing system.
It is another object to provide an improved structure for a gaseous phase isolation device having improved efficiency without increasing costs for materials.
It is a further object of this invention to provide an effective gaseous phase isolation device which uses relatively low-back pressures more efficiently than prior art devices.
The invention herein disclosed is constructed to realize the aforementioned objects, goals and advantages, and comprises in its preferred form a positive pressure isolation device having a gas inlet means and two atmospheric communicating passages. The passages are formed by a series of alternating restricted apertures and expansion chambers. The restricted apertures provide means to increase back pressure and limit gas flow rates, while the expansion chambers provide relief from the Bernouilli effect caused by the restrictions and also produce a drop in enthalpy, or internal energy, of the gas stream by allowing controlled expansion, thereby allowing higher pressures to be used than possible with the low ceiling, or extended restricted aperture, type devices.
The foregoing and other objects, features and advantages of the invention will be apparent from the more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING DETAILED DESCRIPTION OF THE INVENTION Although the structure of the instant invention may be utilized as either an entry, exit or intermediate isolation device, only the application as an exit seal need be discussed in detail, as the structure and operation of the device is independent of its location in the processing apparatus.
Referring now to FIG. 1 there is shown the isolation device 10 of the instant invention mounted on the exit end of the process apparatus 12 of the aforementioned copending application, Ser. No. 345, the description and operation of which is herein expressly incorporated by reference. The isolation device is mounted on plate 14 which may be bolted, or otherwise attached, to the process apparatus. Mounted in a recess on carriers 16 shown leaving the isolation device 10, are semiconductor substrates 18. In operation, carriers 16 are continuously passed through the apparatus. Inlet gas tube 20 mounted on the top of isolation device It) is provided to supply inert gas, for example argon, or other suitable gas, to effectuate operation of the device. Tube 20, normally is connected to a metered source of inert gas, not shown. It should beunderstood that the operation of the device is independent of the particular gas used and that any gas compatible with the two atmospheres to be isolated may be used.
Referring to FIG. 2, gas is delivered in a downward direction, as indicated by arrow 21, through tube 20 into chamber 22 from which it exits through gas restricting means, apertures 24 and 26. The restricted apertures are formed partially by the upper surface of carrier 16 and substrates l8 and partially by projections 28 of a top plate 30. Projections 28 may be formed by transverse grooves milled into top plate 30 or may be separately constructed and mounted into position. The shape of the restricted apertures is a gap of uniform width formed by the substantially parallel spaced relation between the upper surfaces of carriers 16 and substrates R8 and the lower edges or surface of projections 28.
Located adjacent to apertures 24 and 26 are expansion chambers 32 into which the gas then passes. Thereafter, there are provided a series of alternating restricted apertures 24 and I6 and expansion chambers 32, the particular number and size of which is optional depending upon the desired design characteristics of the isolation device as will be discussed below.
Carriers l6, normally consisting of machined high purity graphite, supporting semiconductor substrates 18 are continuously passed through the apparatus, for example, from left to a right.
FIG. 3 shows a sectional view of the isolation device and more clearly illustrates the shape of restricted apertures 26 and expansion chambers 32. The carriers 16 are shown supported by bottom plate 34 and guided through recess 35. Both bottom plate 34 and top plate 30 may be constructed of stainless steel or other suitable material compatible with the atmospheres found in the process apparatus.
ln summary, it will be seen that there is provided a gas inlet tube 20 and a plurality of first gas restricting means, apertures 24, leading to the first atmosphere, or the processapparatus, and a series of second gas restricting means, apertures 26, leading to the second or ambient, atmosphere, and adjacent to each gas restricting aperture is an expansion chamber 32.
The particular number, size and location of the various elements of the isolation device are best determined depending on' the particular inert gas used, as well as the processing system requirements.
A typical example of an application of theinstant invention would be in a vapor deposition process such as. silicon deposition. In such a system it is desirable to utilize a certain net gas flow rate into the process apparatus to assure proper operation and safety of the system. For example, 1 liter per minute through a 4 inch wide restriction would be typical. Utilizing this flow rate and providing a typical gas restricting aperture size of 0.010 inch, the linear gas flow rate at the process side of the device would be about 5 centimeters per second, depending upon the width of carrier 16. I
In order to determine the appropriate thickness of each projection 28 and thereby set the effective lift produced by the flowing gas, Bernouillis equation must be used.
In its simplest form Bernouillis equation may be written as:
When applied to the lifting of a substrate from its carrier, P and V refer to the underside of the substrate where the velocity is zero and P and V refer to the top side of the substrate. It is obvious that at any streaming velocity the pressure gradient will be such as to provide a lifting force. Applying a minimum safe streaming velocity of 5 centimeters per second with, for example, argon gas having a density (p) of 1.78 grams per liter and utilizing a substrate area of 2.57 l" square meters the lift obtained is approximately 5.7 grams. Since the typical wafer weighs approximately 3 grams it must lift off the carrier. The solution as described herein is to provide a thickness for projection 28 which will reduce the effective lift area of reduced pressure to prevent the lifting of substrates. With a weight of 3 grams and a lift factor of 5.7 grams over the area of the wafer, it is obvious that a reduction in surface area of 50 percent is required to prevent lifting of the wafer. This can be accomplished by a combination of equal width expansion chambers and gas restricting apertures. The spacing between the substrate and the aperture will determine the pressure required to produce the 5 centimeter per second streaming velocity through one set of gas restricting apertures and expansion chambers. The number of apertures and expansion chambers will determine the overall system pressure. Apparatus constructed in accordance with the above description having expansion chambers produces four times the back pressure of a smooth restricted aperture at the same streaming velocity. For example, a back pressure of approximately 4 ounces may be expected to provide a flow rate of 1 liter per minute through the device into the process apparatus, having an internal pressure of 0.1 ounce.
A similar determination may be made for the second, or ambient, atmosphere side of the isolation device. Typically a flow rate of twice that flowing into the process apparatus is desirable for the ambient side of the device, that is, a series of five sets of expansion chambers and apertures.
It should be understood that the structure of the above described device is not limited to positive pressure operation and may in some applications be utilized with a negative presdescribed with reference to a preferred embodiment thereof,
it will be understood b those skilled in the art that various changes in the form an details may be made therein without departing from the spirit and scope of the invention.
What is claimed is:
1. Apparatus for providing isolation between a first atmosphere and a second atmosphere comprising:
a gas inlet means;
a plurality of first gas restricting means for allowing a con trolled quantity of gas to pass from said gas inlet means to said first atmosphere; atmosphere;
a plurality of second gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said second atmosphere; atmosphere;
at least one gas expansion chamber located adjacent to each one of said first and second gas restricting means for interrupting the Bemouilli effect created by said gas restricting means and for further providing a reduction in enthalpy by allowing controlled expansion of gas to increase back pressure.
2. Apparatus in accordance with claim 1 wherein said gas restricting means are of equal size.
3. Apparatus in accordance with claim 1 wherein said gas restricting means are substantially in the shape of an aperture formed by two substantially parallel spaced surfaces.
4. Apparatus in accordance with claim 3 wherein said gas restricting means are formed partially by projections having a substantially flat surface and partially by substantially flat workpieces.
5. Apparatus in accordance with claim 3 wherein the width of said projections and said expansion chambers are substantially equal.
6. Apparatus for providing isolation between ambient atmosphere and a continuous semiconductor processing apparatus atmosphere comprising:
gas inlet means;
a plurality of first gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said room-ambient atmosphere;
a plurality of second gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said continuous semiconductor processing apparatus atmosphere, said first and second gas restricting means being defined partially by semiconductor substrate surfaces and a substrate carrier and partially by a carrier conforming member mounted in parallel spaced relation to the surface of the carrier, said restricting means further comprising an effective lift area less than necessary to lift substrates from their carriers; and
at least one gas expansion chamber located adjacent to each of said restricting means for disrupting the Bemouilli effect produced by a flowing gas stream passing through said restricting means and for creating a reduction in enthalpy by means of controlled expansion of gas to increase back pressure.
7. Apparatus in accordance with claim 6 wherein said carrier conforming member comprises a substantially flat surface.
8. Apparatus in accordance with claim 6 wherein said first and second gas restricting means are of equal size.
9. Apparatus in accordance with claim 6 wherein the total width of one gas restricting means and one gas expansion chamber together equals less than the width of one semicon ductor substrate.
( 223? UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 645, 545 Dated February 29, 1972 lnv tofl Richard R. Garnache and Donald M. Kenney It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 4, Line 15 after "atmosphere;" delete atmosphere; Column 4, Line 18, after "atmosphere;" delete atmosphere; and substitute therefor and Signed and sealed this 6th day of February 1973.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTISCHALK Attesting Officer Commissioner of Patents
Claims (9)
1. Apparatus for providing isolation between a first atmosphere and a second atmosphere comprising: a gas inlet means; a plurality of first gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said first atmosphere; atmosphere; a plurality of second gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said second atmosphere; atmosphere; at least one gas expansion chamber located adjacent to each one of said first and second gas restricting means for interrupting the Bernouilli effect created by said gas restricting means and for further providing a reduction in enthalpy by allowing controlled expansion of gas to increase back pressure.
2. Apparatus in accordance with claim 1 wherein said gas restricting means are of equal size.
3. Apparatus in accordance with claim 1 wherein said gas restricting means are substantially in the shape of an aperture formed by two substantially parallel spaced surfaces.
4. Apparatus in accordance with claim 3 wherein said gas restricting means are formed partially by projections having a substantially flat surface and partially by substantially flat workpieces.
5. Apparatus in accordance with claim 3 wherein the width of said projections and said expansion chambers are substantially equal.
6. Apparatus for providing isolation between ambient atmosphere and a continuous semiconductor processing apparatus atmosphere comprising: gas inlet means; a plurality of first gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said room-ambient atmosphere; a plurality of second gas restricting means for allowing a controlled quantity of gas to pass from said gas inlet means to said continuous semiconductor processing apparatus atmosphere, said first and second gas restricting means being defined partially by semiconductor substrate surfaces and a substrate carrier and partially by a carrier conforming member mounted in parallel spaced relation to the surface of the carrier, said restricting means further comprising an effective lift area less than necessary to lift substrates from their carriers; and at least one gas expansion chamber located adjacent to each of said restricting means for disrupting the Bernouilli effect produced by a flowing gas stream passing through said restricting means and for creating a reduction in enthalpy by means of controlled expansion of gas to increase back pressure.
7. Apparatus in accordance with claim 6 wherein said carrier conforming member comprises a substantially flat surface.
8. Apparatus in accordance with claim 6 wherein said first and second gas restricting means are of equal size.
9. Apparatus in accordance with claim 6 wherein the total width of one gas restricting means and one gas expansion chamber together equals less than the width of one semiconductor substrate.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5949670A | 1970-07-30 | 1970-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3645545A true US3645545A (en) | 1972-02-29 |
Family
ID=22023329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US59496A Expired - Lifetime US3645545A (en) | 1970-07-30 | 1970-07-30 | Entrance-exit atmospheric isolation device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3645545A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4048955A (en) * | 1975-09-02 | 1977-09-20 | Texas Instruments Incorporated | Continuous chemical vapor deposition reactor |
US4075972A (en) * | 1975-08-20 | 1978-02-28 | Nippondenso Co., Ltd. | Apparatus for thermal diffusion of semiconductor devices |
US4147432A (en) * | 1975-11-26 | 1979-04-03 | Nippondenso Co., Ltd. | Apparatus for thermal diffusion by high frequency induction heating of semiconductor substrates |
US4331526A (en) * | 1979-09-24 | 1982-05-25 | Coulter Systems Corporation | Continuous sputtering apparatus and method |
US4374317A (en) * | 1979-07-05 | 1983-02-15 | Reliability, Inc. | Burn-in chamber |
US4462332A (en) * | 1982-04-29 | 1984-07-31 | Energy Conversion Devices, Inc. | Magnetic gas gate |
US5133561A (en) * | 1990-02-26 | 1992-07-28 | Tokyo Electron Limited | Sealing device |
US5490881A (en) * | 1992-11-02 | 1996-02-13 | Gen Electric | Maintaining uniformity of deposited film thickness in plasma-enhanced chemical vapor deposition |
US6182973B1 (en) * | 1997-05-16 | 2001-02-06 | Balzers Hochvakuum Ag | Intermediate metallic layer for flat packing and process for the production of a flat packing with such an intermediate layer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2580976A (en) * | 1949-09-07 | 1952-01-01 | Ohio Commw Eng Co | Apparatus for plating metal strips |
GB766459A (en) * | 1953-05-15 | 1957-01-23 | Heraeus Gmbh W C | Improvements in or relating to high-vacuum coating devices |
US3123493A (en) * | 1964-03-03 | Art of bonding of vacuum metallized coatings | ||
US3473510A (en) * | 1966-02-23 | 1969-10-21 | Corning Glass Works | Method and apparatus for the continuous doping of semiconductor materials |
US3531319A (en) * | 1963-09-16 | 1970-09-29 | Saint Gobain | Method and apparatus for the coating in vacuo of a moving ribbon |
-
1970
- 1970-07-30 US US59496A patent/US3645545A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123493A (en) * | 1964-03-03 | Art of bonding of vacuum metallized coatings | ||
US2580976A (en) * | 1949-09-07 | 1952-01-01 | Ohio Commw Eng Co | Apparatus for plating metal strips |
GB766459A (en) * | 1953-05-15 | 1957-01-23 | Heraeus Gmbh W C | Improvements in or relating to high-vacuum coating devices |
US3531319A (en) * | 1963-09-16 | 1970-09-29 | Saint Gobain | Method and apparatus for the coating in vacuo of a moving ribbon |
US3473510A (en) * | 1966-02-23 | 1969-10-21 | Corning Glass Works | Method and apparatus for the continuous doping of semiconductor materials |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075972A (en) * | 1975-08-20 | 1978-02-28 | Nippondenso Co., Ltd. | Apparatus for thermal diffusion of semiconductor devices |
US4048955A (en) * | 1975-09-02 | 1977-09-20 | Texas Instruments Incorporated | Continuous chemical vapor deposition reactor |
US4147432A (en) * | 1975-11-26 | 1979-04-03 | Nippondenso Co., Ltd. | Apparatus for thermal diffusion by high frequency induction heating of semiconductor substrates |
US4374317A (en) * | 1979-07-05 | 1983-02-15 | Reliability, Inc. | Burn-in chamber |
US4331526A (en) * | 1979-09-24 | 1982-05-25 | Coulter Systems Corporation | Continuous sputtering apparatus and method |
US4462332A (en) * | 1982-04-29 | 1984-07-31 | Energy Conversion Devices, Inc. | Magnetic gas gate |
US5133561A (en) * | 1990-02-26 | 1992-07-28 | Tokyo Electron Limited | Sealing device |
US5490881A (en) * | 1992-11-02 | 1996-02-13 | Gen Electric | Maintaining uniformity of deposited film thickness in plasma-enhanced chemical vapor deposition |
US6182973B1 (en) * | 1997-05-16 | 2001-02-06 | Balzers Hochvakuum Ag | Intermediate metallic layer for flat packing and process for the production of a flat packing with such an intermediate layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3645545A (en) | Entrance-exit atmospheric isolation device | |
GB1328390A (en) | Vapour processing of semiconductor material | |
US4438724A (en) | Grooved gas gate | |
US4537795A (en) | Method for introducing sweep gases into a glow discharge deposition apparatus | |
US4468283A (en) | Method for etching and controlled chemical vapor deposition | |
US4462332A (en) | Magnetic gas gate | |
EP2531634B1 (en) | Dynamic fluid valve and method for establishing the same | |
US4993360A (en) | Vapor growth apparatus having a diffuser section containing a flow regulating member | |
KR20000016137A (en) | Non-contact holder for wafer-like articles | |
JP2018133471A (en) | Vapor deposition apparatus | |
GB1131153A (en) | Multilayer semiconductor structure | |
ES295582A1 (en) | Apparatus for stabilized transport of web-or sheet-like materials | |
GB1381809A (en) | Methods of forming an epitaxial layer upon a substrate | |
GB1019753A (en) | Process of producing glass | |
US5374313A (en) | Magnetic roller gas gate employing transonic sweep gas flow to isolate regions of differing gaseous composition or pressure | |
JPS59121828A (en) | System for introducing, enclosing and exhausting gas to be treated for glow discharge deposition apparatus | |
GB1326334A (en) | Fluid slides | |
Cox | Vapor levitation epitaxy: A new concept in epitaxial crystal growth | |
DE3572199D1 (en) | Chemical vapor deposition wafer boat | |
Dilawari et al. | A mathematical representation of a modified stagnation flow reactor for MOCVD applications | |
JPS5756036A (en) | Plasma chemical vapor phase reactor | |
CN219592728U (en) | Two-fluid etching device | |
JPH0425122A (en) | Semiconductor processor | |
JPS55121648A (en) | Cvd device | |
Kondo et al. | Highly-uniform large-area MOVPE growth of InGaAsP by controlled stagnation point flow |