US3644135A - In-situ carbiding of pyrolyzed composites - Google Patents

In-situ carbiding of pyrolyzed composites Download PDF

Info

Publication number
US3644135A
US3644135A US768685A US3644135DA US3644135A US 3644135 A US3644135 A US 3644135A US 768685 A US768685 A US 768685A US 3644135D A US3644135D A US 3644135DA US 3644135 A US3644135 A US 3644135A
Authority
US
United States
Prior art keywords
refractory metal
carbide
carbonaceous
pyrolyzed
composites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US768685A
Inventor
Fred B Speyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northrop Grumman Space and Mission Systems Corp
Original Assignee
TRW Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRW Inc filed Critical TRW Inc
Application granted granted Critical
Publication of US3644135A publication Critical patent/US3644135A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix

Definitions

  • This invention is in the field of ablation-resistant compositions of the type used, for example, in rocket noule cones and involves the impregnation of carbonaceous filament bundles with a decomposable compound of a refractory metal in liquid form.
  • the refractory metal compound Upon high-temperature treatment, the refractory metal compound decomposes and forms a carbide in situ within the filament bundles to provide a carbide coating around the individual filaments.
  • Carbide materials would be very useful because of their very high melting points and their resistance to oxidation. Even when the carbide becomes oxidized, a nonvolatile product is formed which can provide a protective barrier layer in the form ofa solid oxide or a viscous molten layer.
  • Integral refractory metal carbide structures cannot be readily used in rocket propulsion systems because of their extreme brittleness and sensitivity to thermal shock. Furthermore, there is a limitation in size to which the carbides can be fabricated by are melting, powder metallurgy methods, or other fabrication techniques.
  • carbonaceous filaments preferably in the form of a carbon or graphite cloth
  • a solution of a refractory metal halide in an organic hydroxy solvent As the solvent is evaporated or otherwise driven ofi', the halide reacts with the solvent to form a metalloxane polymer or a solvated metalloxyhalide.
  • the polymer Upon treatment of the impregnated cloth at elevated temperatures, the polymer is decomposed, and the refractory metal is capable of reacting to form a carbide with the decomposition products of the polymer or with the carbonaceous filament bundles or strands in which it has become impregnated.
  • the process of the present invention makes it possible to predetermine the amount of carbide quite accurately by control of the amount of the organometallic compound used in impregnation.
  • the metalloxane polymer when dried and powdered can be used, per se, in dispersed form in high-temperature bonding resins such as phenolic or epoxy resins which are used to bond laminates of the cloth together.
  • Another advantage stems from the fact that the impregnation technique makes it possible to incorporate more than one refractory metal carbide into the carbonaceous filament by a single operation.
  • FIG. I is a somewhat schematic view of a continuous web treating apparatus for impregnating the carbonaceous filament bundles
  • FIG. 2 is a greatly enlarged cross sectional view of the bundle after deposition of a metalloxane polymer thereon;
  • FIG. 3 illustrates the structure of FIG. 2 after coating with a resin
  • FIG. 4 is a cross-sectional view on an enlarged scale of the filament bundle after carburization.
  • reference numeral I0 indicates generally a supply reel from which a woven web 11 composed of carbonaceous filament bundles, either carbon or graphite, is continuously unrolled.
  • the web 11 is first trained around the periphery of the roll 12 which is partly immersed in an impregnating solution 13 contained with a trough 14.
  • the impregnating solution 13 consists of a solution of a refractory metal halide which may be the chloride, bromide, or iodide of refractory metals such as titanium, tantalum, molybdenum, tungsten, vanadium, hafnium, zirconium. niobium, or the like.
  • the impregnating solution also contains an organic hydroxy solvent which, in the preferred form of the invention, is either an aliphatic alcohol containing from one to five carbon atoms per molecule, or is a polyol containing from two to five carbon atoms per molecule.
  • Typical among the impregnating solutions which can be used is the reaction product between tantalum pentachloride and methyl alcohol which produces an alkoxide according to the equation:
  • a halide-free alkoxide product can also be prepared by reacting a halide with the alcohol and anhydrous ammonia according to the equation:
  • the alkoxide product in this case does not remain as such but apparently rearranges with a polymeric structure.
  • the web II passes over a roll I5 where the volatiles and acid are removed by heating with the metalloxane remaining impregnated in the web 11.
  • the web passes around roll I6 partly immersed in a resin-impregnant solution 17 contained within a trough I8.
  • Various high-temperature bonding resins usually phenolic or epoxy resins are known and commercially available in the field. The chemistry of these resins, therefore, does not form a feature of the present invention.
  • the powdered metalloxane may be dispersed into the resin solution to provide additional refractory metal for carbiding with the pyrolyzed resin.
  • the web I] passes over a second drying area roll 19 and then is wound up on a takeup roll 20.
  • the metalloxane-saturated resin-impregnated cloth will be used in the form of a laminate.
  • the web may be trained about a mandrel or cut into shaped pieces and subjected to pressure and heat in a mold to consolidate the plies of the laminate and to cure the phenolic or other bonding resin.
  • the laminate can then be pyrolyzed at temperatures ranging from about l,500 to 2,000 E, in an inert atmosphere such as argon. Temperatures of about 1,600 are typical for phenolic resins.
  • the pyrolyzed laminate can be resaturated with the refractory metal solution or resin-metalloxane solution of the type identified at reference numerals I3 and I8. This impregnation can then be followed by another dry pyrolysis step typically at 1,600" F. in an argon atmosphere.
  • the next step in the procedure consists in carburizing the pyrolyzed material at temperatures of about 2,500 to 3,500" F. in vacuum or in the presence of an inert gas such as argon.
  • an inert gas such as argon.
  • the refractory metal remaining after pyrolysis combines with carbon present from the decomposi tion of the organometallics or resinous impregnant or with the surrounding carbonaceous material of the filament bundles in which it is embedded to form carbides.
  • the final step of the process may consist of a graphitizing treatment at about 4,SOO-5,500 F. under vacuum conditions or inert gas to form a substantially high-temperature, oxidation-resistant composite.
  • FIG. 2 illustrates a fiber bun dle 21 after impregnation with the metalloxane polymer particles 22 resulting from the reaction of the refractory metal halide with the organic hydroxy compound.
  • FIG. 3 shows the bundle after coating with a phenolic resin coating 23.
  • the metalloxane particles react with the carbon present from the decomposition of the polymer. or with the carbonaceous strands to form carbide deposits 24 which envelop the individual strands of the bundle 21.
  • Decomposition of the phenolic resin coating 23 results in the formation of adherent carbon particles 25. if the metalloxane polymer was included in the phenolic resin additional amounts of the metal carbide will appear interspersed with the carbon particles.
  • the amount of the refractory metal carbides which appear in the carbonaceous filament bundles can be varied at will depending upon the ultimate use to which the composi tion if to be put, typically the refractory metal carbide particles constitute about 40 to 80 percent by weight of the carbide-loaded laminate.
  • Additional benefits can be achieved by adding a refractory metal or its hydride into the metalloxane solution or the phenolic resin solution. This increases the amount of l'fl'8CtO ry metal available for the carburization reactions,
  • a composition as recited in Example A was used to impregnate a graphite fabric. After pyrolysis at 1.600 F. in an argon atmosphere, and carburization at 3,500 F. in vacuum, the composite consisted of 22 percent by weight of the graphite fabric and 78 percent by weight of zirconium carbide. It had a specific gravity of 1.83.
  • Example B A composition of the type indicated in Example B was used to impregnate a graphite fabric under the same conditions as in the previous example to provide a fabric containing 35 percent graphite by weight, 60 percent by weight tantalum carbide. and 4 percent carbon by weight.
  • the present invention provides a means for penetrating throughout the fibers of carbonaceous materials to provide a relatively uniform dispersion of refractory carbides therein.
  • the products which result have the high-temperature, oxidation resistance properties characteristic of carbide materials without the brittleness which has prohibited the use of monolithic carbide structures for high temperature use.
  • organic hydroxy solvent is a polyol containing from two to five carbon atoms per molecule.
  • halide is a halide of a metal selected from the group consisting of tantalum. titanium, tungsten, molybdenum. vanadium, hafnium. zirconium. thorium and niobium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Ablation-resistant compositions for use in high-temperature environments produced by impregnating bundles of carbonaceous filaments with an organometallic compound of a refractory metal followed by pyrolysis and carburizing to thereby form the refractory metal carbide in uniformly dispersed form throughout the bundles of carbonaceous filaments.

Description

O Umted States Patent [151 3,644,135 Speyer 51 Feb. 22, 1972 [54] IN-SITU CARBIDING OF PYROLYZED 3,281,261 [0/1966 Lynch ..1 17/46 COMPOSITES 3,148,026 9/1964 Roderburg ....117/46 X 3,027,278 3/1962 Re k ....ll7 46 X Ohm 2,695,247 11/1954 1111 1;: ..117/46 x [73] Assignee: TRW Inc., Cleveland, Ohio Primary Examiner-Robert F. Burnett [22] Filed 1968 Assistant Examiner-Mark A. Litman [2|] Appl. No.: 768,685 Attorney-Hill, Sherman, Meroni, Gross 8: Simpson [521 u.s.c1 ..l17/46,117/1l8,161/88, [571 ABSTRACT 61/170 Ablation-resistant compositions for use in high-temperature [51] Int.Cl. ..C23c 3/04,C23c 9/06,C03c 17/20 environments d d by im r nating bundles of car- [58] FIeIdolSem-ch l7/46 CC 46 CB, 102; bonaceous mamems an organomewmc compound f 3 156/155 refractory metal followed by pyrolysis and carburizing to thereby form the refractory metal carbide in uniformly [561 Mm Cited dispersed form throughout the bundles of carbonaceous fila- UNlTED STATES PATENTS 3,385,915 5/1968 Hamling...............................l17/46 X 5 Claim 4 Drawing Figures IN-SITU CARBIDING OF PYROLYZED COMPOSITES BACKGROUND OF THE INVENTION 1. Field of the Invention This invention is in the field of ablation-resistant compositions of the type used, for example, in rocket noule cones and involves the impregnation of carbonaceous filament bundles with a decomposable compound of a refractory metal in liquid form.
Upon high-temperature treatment, the refractory metal compound decomposes and forms a carbide in situ within the filament bundles to provide a carbide coating around the individual filaments.
2. Description of the Prior Art Silica and carbon have been shown to be inadequate in withstanding the conditions existing in rocket thrust chambers because of the combination of high temperatures, high gas pressures, and highly oxidizing environments.
In recent years, many techniques have been developed for providing carbonaceous composites which resist ablation. These techniques have involved various modes of filament winding and layup and depend upon fiber orientation, the creation of boundary layer flows, refractory metal inserts, and the like, to resist ablation. In some cases, the finished nozzles have been coated with refractory metal slurries to extend the life of the composites. However, none of these composites has had a uniformly dispersed carbide because of the difficulty in depositing carbide particles in the intersticies of the carbonaceous filament bundles.
Carbide materials would be very useful because of their very high melting points and their resistance to oxidation. Even when the carbide becomes oxidized, a nonvolatile product is formed which can provide a protective barrier layer in the form ofa solid oxide or a viscous molten layer.
Integral refractory metal carbide structures cannot be readily used in rocket propulsion systems because of their extreme brittleness and sensitivity to thermal shock. Furthermore, there is a limitation in size to which the carbides can be fabricated by are melting, powder metallurgy methods, or other fabrication techniques.
SUMMARY OF THE INVENTION In the present invention, carbonaceous filaments, preferably in the form ofa carbon or graphite cloth, are impregnated with a solution of a refractory metal halide in an organic hydroxy solvent. As the solvent is evaporated or otherwise driven ofi', the halide reacts with the solvent to form a metalloxane polymer or a solvated metalloxyhalide. Upon treatment of the impregnated cloth at elevated temperatures, the polymer is decomposed, and the refractory metal is capable of reacting to form a carbide with the decomposition products of the polymer or with the carbonaceous filament bundles or strands in which it has become impregnated.
The process described provides several advantages in producing this type of product. For one thing, complete penetration throughout the cloth fibers can be secured prior to carbiding. The polymers which form within the cloth provide flexibility and improve the handleability of the cloth. A further advantage of this improvement in handleability is evidenced if the filament bundles are preimpregnated with the metalloxane prior to weaving.
Because of the control that is inherently possible in the impregnation step, the process of the present invention makes it possible to predetermine the amount of carbide quite accurately by control of the amount of the organometallic compound used in impregnation.
The metalloxane polymer when dried and powdered can be used, per se, in dispersed form in high-temperature bonding resins such as phenolic or epoxy resins which are used to bond laminates of the cloth together.
Another advantage stems from the fact that the impregnation technique makes it possible to incorporate more than one refractory metal carbide into the carbonaceous filament by a single operation.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a somewhat schematic view of a continuous web treating apparatus for impregnating the carbonaceous filament bundles;
FIG. 2 is a greatly enlarged cross sectional view of the bundle after deposition of a metalloxane polymer thereon;
FIG. 3 illustrates the structure of FIG. 2 after coating with a resin; and
FIG. 4 is a cross-sectional view on an enlarged scale of the filament bundle after carburization.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral I0 indicates generally a supply reel from which a woven web 11 composed of carbonaceous filament bundles, either carbon or graphite, is continuously unrolled. The web 11 is first trained around the periphery of the roll 12 which is partly immersed in an impregnating solution 13 contained with a trough 14.
The impregnating solution 13 consists of a solution of a refractory metal halide which may be the chloride, bromide, or iodide of refractory metals such as titanium, tantalum, molybdenum, tungsten, vanadium, hafnium, zirconium. niobium, or the like. The impregnating solution also contains an organic hydroxy solvent which, in the preferred form of the invention, is either an aliphatic alcohol containing from one to five carbon atoms per molecule, or is a polyol containing from two to five carbon atoms per molecule. Typical among the impregnating solutions which can be used is the reaction product between tantalum pentachloride and methyl alcohol which produces an alkoxide according to the equation:
A halide-free alkoxide product can also be prepared by reacting a halide with the alcohol and anhydrous ammonia according to the equation:
The alkoxide product in this case does not remain as such but apparently rearranges with a polymeric structure.
Graphite or carbon cloth when treated with solutions of this type is very readily saturated. The highly acidic nature of the solution provides excellent fiber wetting. The hydrogen chloride which is generated as part of the reaction evaporates from the cloth leaving a thermosetting metalloxane polymer in the form of particles which envelop each fiber and act to give a much improved handleability to the normally fragile graphite or carbon cloth.
After impregnation, the web II passes over a roll I5 where the volatiles and acid are removed by heating with the metalloxane remaining impregnated in the web 11. Next, the web passes around roll I6 partly immersed in a resin-impregnant solution 17 contained within a trough I8. Various high-temperature bonding resins, usually phenolic or epoxy resins are known and commercially available in the field. The chemistry of these resins, therefore, does not form a feature of the present invention. However, the powdered metalloxane may be dispersed into the resin solution to provide additional refractory metal for carbiding with the pyrolyzed resin.
After impregnation with the bonding resin, the web I] passes over a second drying area roll 19 and then is wound up on a takeup roll 20.
Normally, the metalloxane-saturated resin-impregnated cloth will be used in the form of a laminate. In this type of operation, the web may be trained about a mandrel or cut into shaped pieces and subjected to pressure and heat in a mold to consolidate the plies of the laminate and to cure the phenolic or other bonding resin. Upon removal from the mold, after curing, the laminate can then be pyrolyzed at temperatures ranging from about l,500 to 2,000 E, in an inert atmosphere such as argon. Temperatures of about 1,600 are typical for phenolic resins. Then, the pyrolyzed laminate can be resaturated with the refractory metal solution or resin-metalloxane solution of the type identified at reference numerals I3 and I8. This impregnation can then be followed by another dry pyrolysis step typically at 1,600" F. in an argon atmosphere.
The next step in the procedure consists in carburizing the pyrolyzed material at temperatures of about 2,500 to 3,500" F. in vacuum or in the presence of an inert gas such as argon. During carburization, the refractory metal remaining after pyrolysis combines with carbon present from the decomposi tion of the organometallics or resinous impregnant or with the surrounding carbonaceous material of the filament bundles in which it is embedded to form carbides. The final step of the process may consist of a graphitizing treatment at about 4,SOO-5,500 F. under vacuum conditions or inert gas to form a substantially high-temperature, oxidation-resistant composite.
FIG. 2 illustrates a fiber bun dle 21 after impregnation with the metalloxane polymer particles 22 resulting from the reaction of the refractory metal halide with the organic hydroxy compound. FIG. 3 shows the bundle after coating with a phenolic resin coating 23.
After carburizing, a structure such as that shown in FIG. 4 results. The metalloxane particles react with the carbon present from the decomposition of the polymer. or with the carbonaceous strands to form carbide deposits 24 which envelop the individual strands of the bundle 21. Decomposition of the phenolic resin coating 23 results in the formation of adherent carbon particles 25. if the metalloxane polymer was included in the phenolic resin additional amounts of the metal carbide will appear interspersed with the carbon particles.
While the amount of the refractory metal carbides which appear in the carbonaceous filament bundles can be varied at will depending upon the ultimate use to which the composi tion if to be put, typically the refractory metal carbide particles constitute about 40 to 80 percent by weight of the carbide-loaded laminate.
Additional benefits can be achieved by adding a refractory metal or its hydride into the metalloxane solution or the phenolic resin solution. This increases the amount of l'fl'8CtO ry metal available for the carburization reactions,
The following formulations are typical of those which can be used to impregnate carbonaceous filament bundles with a refractory metal:
A Ethylene glycol 30% by weight Zirconium tetra chloride 45% by weight Water or alcohol 25% by weight B, Ethylene glycol 20% by weight Methanol 20% by weight Dimethyl formarnide I01: by weight Tantalum enta chloride 50% by weight A composition as recited in Example A was used to impregnate a graphite fabric. After pyrolysis at 1.600 F. in an argon atmosphere, and carburization at 3,500 F. in vacuum, the composite consisted of 22 percent by weight of the graphite fabric and 78 percent by weight of zirconium carbide. It had a specific gravity of 1.83.
A composition of the type indicated in Example B was used to impregnate a graphite fabric under the same conditions as in the previous example to provide a fabric containing 35 percent graphite by weight, 60 percent by weight tantalum carbide. and 4 percent carbon by weight.
From the foregoing, it will be understood that the present invention provides a means for penetrating throughout the fibers of carbonaceous materials to provide a relatively uniform dispersion of refractory carbides therein. The products which result have the high-temperature, oxidation resistance properties characteristic of carbide materials without the brittleness which has prohibited the use of monolithic carbide structures for high temperature use.
it should be obvious that various modifications can be made to the described embodiments without departing from the scope of the present invention.
I claim as my invention:
1. The method of making an erosion-resistant composite which com rises impregnating a fabric of carbonaceous filament bund es with a solution ofa refractory metal halide in an organic hydroxy solvent, reacting said halide with said solvent to form a metalloxane polymer and thereafter pyrolyzing and carburizing the metalloxane polymer to provide a dispersion of refractory metal carbide throughout said fabric.
2. The method of claim 1 in which said organic hydroxy solvent is an alcohol containing one to five carbon atoms per molecule.
3. The method of claim 1 in which said organic hydroxy solvent is a polyol containing from two to five carbon atoms per molecule.
4. The method of claim 1 in which said carbonaceous filament bundles are in the form ofa woven cloth.
5. The method of claim 1 in which said halide is a halide of a metal selected from the group consisting of tantalum. titanium, tungsten, molybdenum. vanadium, hafnium. zirconium. thorium and niobium.
I I i I II Patent No.
Inventor(s) and that said Letters Patent are UNITED STATES PATENT OFFICE CERTIFICATE OE CORRECTION 3,644,135 Dated February 22, 1972 F red B. Spever It is certified that error appears in the above-identified patent hereby corrected as shown below:
The equation appearing on line 32 of column 2 should read:
T aC 15+3CH3OH TaC12(OCH3)3+3HC 1 The equation appearing on line 36, Column 2 should read:
ZrC 1 +4C H OH+4NH Zr(OC Column 3, line 30, "if to be put" should read is to be put--.
Signed and sealed this 12th day of September 1972.
(SEAL) Attest:
ROBERT GOI'TSCHAEK EDWARD M.FLETCHER ,JR Attesting Officer Commissioner of Patents USCOMM-DC 60376-969 I! u s sovcnunzm Pumnuc OFFICE I969 0-366-1141 FORM PO-1050 (\0-69]

Claims (4)

  1. 2. The method of claim 1 in which said organic hydroxy solvent is an alcohol containing one to five carbon atoms per molecule.
  2. 3. The method of claim 1 in which said organic hydroxy solvent is a polyol containing from two to five carbon atoms per molecule.
  3. 4. The method of claim 1 in which said carbonaceous filament bundles are in the form of a woven cloth.
  4. 5. The method of claim 1 in which said halide is a halide of a metal selected from the group consisting of tantalum, titanium, tungsten, molybdenum, vanadium, hafnium, zirconium, thorium and niobium.
US768685A 1968-10-18 1968-10-18 In-situ carbiding of pyrolyzed composites Expired - Lifetime US3644135A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76868568A 1968-10-18 1968-10-18

Publications (1)

Publication Number Publication Date
US3644135A true US3644135A (en) 1972-02-22

Family

ID=25083206

Family Applications (1)

Application Number Title Priority Date Filing Date
US768685A Expired - Lifetime US3644135A (en) 1968-10-18 1968-10-18 In-situ carbiding of pyrolyzed composites

Country Status (1)

Country Link
US (1) US3644135A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991248A (en) * 1972-03-28 1976-11-09 Ducommun Incorporated Fiber reinforced composite product
US4141948A (en) * 1973-04-24 1979-02-27 General Electric Company Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4152381A (en) * 1976-12-17 1979-05-01 The United States Of America As Represented By The United States Department Of Energy Method for preparing metallated filament-wound structures
US4255483A (en) * 1977-06-14 1981-03-10 Mcdonnell Douglas Corporation Fire barrier compositions and composites
US4294788A (en) * 1979-12-05 1981-10-13 General Electric Company Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US5055348A (en) * 1986-09-04 1991-10-08 Asahi Kasei Kogyo Kabushiki Kaisha Refractory fiber spacial structure and manufacturing method thereof
US5521001A (en) * 1990-11-05 1996-05-28 Northeastern University Carbide formed on a carbon substrate
US5759620A (en) * 1981-07-01 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Formation of composite materials by the inward diffusion and precipitation of the matrix phase
US20050002848A1 (en) * 2003-07-04 2005-01-06 Hidetaka Konno Preparation of particulate metal carbide
US20080283174A1 (en) * 2007-03-30 2008-11-20 Honeywell International Inc. Bonding of carbon fibers to metal inserts for use in composites

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991248A (en) * 1972-03-28 1976-11-09 Ducommun Incorporated Fiber reinforced composite product
US4141948A (en) * 1973-04-24 1979-02-27 General Electric Company Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4152381A (en) * 1976-12-17 1979-05-01 The United States Of America As Represented By The United States Department Of Energy Method for preparing metallated filament-wound structures
US4255483A (en) * 1977-06-14 1981-03-10 Mcdonnell Douglas Corporation Fire barrier compositions and composites
US4294788A (en) * 1979-12-05 1981-10-13 General Electric Company Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US5759620A (en) * 1981-07-01 1998-06-02 The United States Of America As Represented By The Secretary Of The Navy Formation of composite materials by the inward diffusion and precipitation of the matrix phase
US5055348A (en) * 1986-09-04 1991-10-08 Asahi Kasei Kogyo Kabushiki Kaisha Refractory fiber spacial structure and manufacturing method thereof
US5521001A (en) * 1990-11-05 1996-05-28 Northeastern University Carbide formed on a carbon substrate
US20050002848A1 (en) * 2003-07-04 2005-01-06 Hidetaka Konno Preparation of particulate metal carbide
US20080283174A1 (en) * 2007-03-30 2008-11-20 Honeywell International Inc. Bonding of carbon fibers to metal inserts for use in composites
US7588179B2 (en) 2007-03-30 2009-09-15 Honeywell International Inc. Bonding of carbon fibers to metal inserts for use in composites

Similar Documents

Publication Publication Date Title
JP4458510B2 (en) Thermal protection system with fiber variable density
US4847063A (en) Hollow composite body having an axis of symmetry
US4321298A (en) Carbon fabrics sequentially resin coated with (1) a metal-containing composition and (2) a boron-containing composition are laminated and carbonized
US4476178A (en) Composite silicon carbide coatings for carbon-carbon materials
US3644135A (en) In-situ carbiding of pyrolyzed composites
US4425407A (en) CVD SiC pretreatment for carbon-carbon composites
EP0061636B1 (en) low-density thermally insulating composite
US3713865A (en) Composite product and method of making same
AU2002338656A1 (en) Thermal protection system having a variable density of fibers
JPS6257581B2 (en)
JP3034084B2 (en) Oxidation resistant carbon fiber reinforced carbon composite material and method for producing the same
US4101354A (en) Coating for fibrous carbon material in boron containing composites
US3351484A (en) Carbon fibers and method
US5395648A (en) Ceramic-ceramic composite prepregs and methods for their use and preparation
JP4450919B2 (en) Carbon fiber composite material
JPH0242790B2 (en)
RU2170220C1 (en) Method of preparing carbon-carbon composite material
US4152381A (en) Method for preparing metallated filament-wound structures
US5104636A (en) Method of making aluminum oxide precursors
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
JPH06183863A (en) Production of oxidation-resistant carbon fiber-reinforced carbon composite material
KR102123016B1 (en) Deposition Coating Method of Boron Nitride by Vapor Reaction
JP2782891B2 (en) Method for producing fiber-reinforced inorganic material
JPH03197377A (en) Carbon fiber-reinforced composite material and its production