US3640523A - Copy sheet handling apparatus for electrostatic office copiers - Google Patents

Copy sheet handling apparatus for electrostatic office copiers Download PDF

Info

Publication number
US3640523A
US3640523A US74349A US3640523DA US3640523A US 3640523 A US3640523 A US 3640523A US 74349 A US74349 A US 74349A US 3640523D A US3640523D A US 3640523DA US 3640523 A US3640523 A US 3640523A
Authority
US
United States
Prior art keywords
roller
sheet
copy
prefeed
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US74349A
Inventor
Christian A Beck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pitney Bowes Inc
Original Assignee
Pitney Bowes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pitney Bowes Inc filed Critical Pitney Bowes Inc
Application granted granted Critical
Publication of US3640523A publication Critical patent/US3640523A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6502Supplying of sheet copy material; Cassettes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/08Separating articles from piles using pneumatic force
    • B65H3/10Suction rollers

Definitions

  • a pivotal pressure pad assembly momentarily presses a sheet stack against the ports, leaving the top sheet adhered to the feed roller which is then rotated to advance the separated top sheet to a prefeed position.
  • Additional actuating apparatus operating on command, rotates the feed roller through the remainder of a complete revolution to feed the prefed sheet from the apparatus and to reorient the feed roller for the next sheet separation and prefeed cycle.
  • One way in which to reduce the copier size is to go to precut copy paper in lieu of roll copy paper which must be withdrawn and cut to the size of the original sheet during each copy cycle.
  • the precut copy sheets are stacked on a tray or the like and must be individually separated from the stack and fed seriatum through the copier. Reliable separation of a single paper sheet from a stack is not an easy task. If a single copy sheet is not successfully separated and fed, the ensuing copy cycle is a complete waste of time. Moreover, if separation and feeding is performed improperly, the copy sheet may jam up somewhere along its feed path. The copier must then be shut off and the jam cleared, which may require a service call.
  • a prefeed technique is typically resorted to. Generally, this involves separating a single sheet from a copy sheet stack and advancing it to a fixed prefeed position at the conclusion of each copy cycle. Thus, when a next copy cycle is called for a copy sheet is already separated from its stack and is fed through the various copy process station, starting from the prefeed position. This simplities the problem of synchronization and also significantly shortens the time required for single copy runs.
  • an object of the present invention is to provide improved apparatus for handling precut copy sheets in an electrostatic office copier.
  • a further object is to provide apparatus of the above character for separating a copy sheet from a sheet stack, feeding the separated copy sheet to a prefeed position, and thereafter, on command, feeding the prefed copy sheet along the initial portion of its feed path through the copier.
  • Yet another object is to provide apparatus of the above character wherein the various copy sheet handling functions are coordinated and controlled in an efficient and reliable manner.
  • An additional object is to provide apparatus of the above character which is compact, inexpensive to manufacture, reliable and fast in operation.
  • a self-contained feed roller structure which is externally actuated to effect separation of the top sheet of paper or the like from a sheet stack and to feed the separated sheet to a reference or prefeed position.
  • the feed roller has incorporated therein a compressible bellows which is in communication with one or more suction ports in the feed roller surface. The bellows, by virtue of its inherent resiliency, normally assumes a distended condition and is compressed by external actuator means.
  • the paper sheet stack While the bellows is compressed, the paper sheet stack is elevated so as to bring the top most sheet into sealed contacting engagement with the roller surface surrounding the suction ports. The compacting pressure on the bellows is then released, thereby creating a partial vacuum sufficient to hold the top sheet against the feed roller. The sheet stack is then lowered, thereby separating the stack from the top sheet which remains adhered to the feed roller. The feed roller is then rotated through a predetermined angle to advance the separated sheet to a desired prefeed position.
  • the actuator means includes a first cam which is rotated to compress and release the bellows within the feed roller.
  • a second cam is rotated in coordination with the first cam to effect the raising and lowering of the sheet stack by a pivotal pressure pad assembly in timed relation with the actuation of the bellows.
  • Drive means rotating in synchronism with the first and second cams selectively engages the feed roller to effect the requisite incremental rotation thereof for advancing the separated sheet to the prefeed position.
  • cam actuated detent means insure that the feed roller is properly angularly oriented at the conclusion of a sheet separation and prefeed operation.
  • the prefed copy paper sheet is advanced through a charging station, an imaging station and a developing station pursuant to reproducing on the copy sheet the image borne by an original document sheet.
  • the suction feed roller also participates in the feeding of a separated sheet beyond its prefed position. Separate drive means are provided for rotating the feed roller through an angle which would return it to its angular orientation at the beginning of a sheet separation and prefeed operation.
  • the previously prefed sheet is advanced by the feed roller to a point where it is engaged by secondary feed rollers operating to completely withdraw the sheet from the apparatus of the in vention.
  • Cam means operating in synchronism with the second drive means controls the elevational position of the sheet stack in order that advancement of the prefed sheet beyond its prefeed position will not disturb the stack and also controls the detent means so as to insure that the feed roller is properly angularly oriented for the initiation of the next sheet separation and prefeed operation, which preferably occurs at the conclusion of a copy cycle.
  • FIG. 1 is a longitudinal sectional view of an electrostatic photocopier employing the apparatus of the present invention
  • FIG. 2 is a perspective view of the sheet separation and prefeed apparatus of the invention
  • FIG. 3 is a front elevational view, partially broken away, of the apparatus of FIG. 2;
  • FIG. 4 is a sectional view taken along line 44 of FIG. 3'
  • FIG. 5 is a longitudinal sectional view of the feed roller included in the apparatus of FIG. 2;
  • FIG. 6 is a side elevational view, partially broken away, of one of the pressure pads incorporated in the apparatus of FIG. 2;
  • HO. 7 is a sectional view taltert along line 7-4 of FIG. 3 showing the positions of the various parts at the beginning of a sheet separation and pret'eed operation;
  • FIG. 8 is a sectional view taken along line 7-7 of FIG. 3 showing the positions of the various parts upon achievement of separation of the top sheet from the sheet stack;
  • HO. 9 is a sectional view taken along line 7-7 of FIG. 3 showing the positions of the various parts after the separated sheet has been advanced to a prefeed position;
  • FIG. is a sectional view taken along line 10 ll] of FIG. 3 showing the detent means incorporated into the apparatus of the present invention
  • FIG. II is a fragmentary perspective view of the apparatus for advancing a pt'efed sheet beyond its prefeed position
  • FIG. I2 is a side elevational view of the actuating means in corporated in the apparatus of FIG. I1;
  • FIG. 13 is an end elevational view of the actuating means of FIG. I2.
  • FIG. I the apparatus of the present invention is illustrated as being incorporated in an electrostatic photocopier of the direct imaging type which employs copy paper having a photoconductive coating thereon, such as Electrofax paper. It will be appreciated, however, that the apparatus of the present invention has application in other types of office copiers as well as to sheet handling apparatus generally.
  • a stack ID of precut copy sheets is supported on a tray l2 with the leading edges of the stacked sheets positioned adjacent the sheet-handling apparatus of the present invention, generally indicated at [4.
  • the sheethan dling apparatus 14 includes a sheet separator and sheet feed roller I6 which, in a manner to be described, is employed to separate the top sheet from the copy sheet stack 10 and then advance the separated sheet to a prefeed position where its leading edge is engaged between feed roller I6 and an idler feed roller 18.
  • separation of the top sheet from the sheet stack 10 is effected, in accordance with the invention, by adapting the feed roller [6 with means for creating a partial vacuum at suction ports formed in its peripheral sur face.
  • a pressure pad assembly is actuated to lift the leading edges of the stack 10 so that the upper surface of the top sheet is pressed against the periphery of the feed roller l6 in sealing relation to the suction ports therein. A partial vacuum is then created at these ports to ad here the top sheet to the feed roller periphery which is then readily separated from the rest of the stack 10 merely by pivoting the pressure pad assembly away from the feed roller 16.
  • feed roller 16 is then driven through an increment of rotation such that the leading edge of the separated sheet is advanced through the nip of feed roller 16 and idler roller 18 to a prefeed position.
  • the presence of a prefed sheet is sensed by a switch 22.
  • sheet separation and prefeed occurs at the conclusion of each copy cycle.
  • the prefeed sheet is then advanced to and through the various copy processing stations.
  • a prefed sheet indicated at 24 is advanced from its prefeed position by rotation of feed roller 16 through a suitable corona charger 26. Rotation of feed roller l6 continues until the leading edge of copy sheet 24 is engaged between a set of feed rollers 28.
  • the sheet-handling apparatus I4 is controlled by actuating means, generally indicated at 30 To initiate operation of the actuating means 30, the copier is turned on to provide continuous drive to feed rollers 32 positioned in a document feed path.
  • a document 36 to be copied is inserted into the nip of feed rollers 32 and the passage of its leading edge therebeyond trips a switch 34 which signals the actuating means 30 into operation.
  • a preted copy sheet 24 is then advanced by rotation of the feed roller l6 through the corona charger 26 and its leading edge arrives at the nip of feed rollers 28 substantially at the same time as does the leading edge of the original document 36 being fed by feed rollers 32.
  • the copy sheet 24 and the original document sheet 36 then pass through an imaging station, generally indicated at 38, where the copy sheet is selectively discharged by light to transform the image borne by the original document to a latent electrostatic image on the surface of copy sheet 24.
  • the juxtaposed docu' ment sheet and copy sheet are fed by feed rollers 40 to feed rollers 42 which are also adapted to separate the sheets such that they may thereafter follow separate paths.
  • lmminently suitable juxtaposed sheet feeding and separating apparatus is disclosed in copending application of Beck and Tomasch entitled Separator for Juxtaposed Sheets, Ser. No. 23,215, filed Mar. 27, 1970 and assigned to the assignee of the present application.
  • the copy sheet 24 and the document sheet 36 are selectively acted upon by operation of the separator feed rollers 42 to develop a separation therebetween, such that the document sheet passes over a separator guide plate 43 while the copy sheet passes under the separator guide plate.
  • the document sheet 36 follows a path defined by guide plates 44 for return to the operator.
  • the copy sheet 24 passes over a guide plate 45 to a development station, generally indicated at 46, where the latent electrostatic image carried thereby is developed into a visible image.
  • the developed sheet precedes along a path defined by guide plates 48 for delivery to the
  • the feed roller 16 as best seen in FIG. 5, consists of an elongated cylinder 50 with a detent disc 52 secured in its left end and an end cap 54 secured in its right end.
  • a partition 56 is secured within cylinder 50 by screws 57.
  • a bellows 58 formed of a suitable material such as metal, is mounted and hermetically sealed at its left end to one side of partition 56. The other end of bellows S8 is sealed off by an end plate 60. Bellows S8 is formed such that it normally assumes an extended condition as indicated in phantom.
  • a pair of tubular fittings 62 extend through partition 56 and communicate with the interior of bellows 58.
  • a pair of fittings 64 are secured in the wall of cylinder 50 and are coupled to fittings 62 by separate lengths of flexible tubing 66.
  • the fittings 64 thus provide ports 65 at axially aligned points in the periphery of cylinder 50 which are in pneumatic communica tion with the interior of bellows 58. It will be understood that while two ports 65 are shown in the illustrated embodiment, an additional number of ports may be provided. Also, a single port 65 may be sufficient for effecting sheet separation and prefeed in the manner to be described.
  • a rubber gripper ring 68 is carried by the feed roller cylinder 50 at the axial location of each port 65. In the vicinity of each fitting 64, the material of gripper ring 68 is removed and an insert 70 is substituted.
  • Rubber gripper rings 68 are formed of a suitable durometer rubber or other elastomeric material for proper sheet feeding coaction with idler roller l8 (FIG. I).
  • Insert 70 is preferably of a softer resilient material than gripper ring 68 so that, in the manner to be described, the top sheet of the sheet stack 10 is adequately sealed against the material surrounding the ports 65 by operation of the pressure pad assembly 20 (FIG. I) at the time a negative pressure or suction is created at the ports 65 by operation of the bellows 58. It will be appreciated that certain elastomen'c materials may be conducive to both functions, thus eliminating the need for inserts 70.
  • the inserts 70 are apertured so as to communicate with the ports 65 provided by fittings 64 and is also recessed to provide a suction cuplike shape for improved adherence of a paper sheet thereto upon actuation of the hellows S8.
  • a coaxial stub shaft 74 secured to detent disc 52, serves to mount the left end of feed roller I6; the shaft being journaled in an upright side frame 76 secured to a base 77.
  • the other end of feed roller 16 is rotatably mounted by a sleeve 78 secured in a central bore through end cap 54 and joumaled by a bushing 80 mounted by side frame member 82, also secured to base 77 (FIG. 3).
  • An elongated actuating pin 84 extends through sleeve 78 with its left end fastened to end plate 60 of bellows 58.
  • Actuating pin 84 carries an integral cam follower disc 86 at a point beyond bushing 80; the cam follower disc being acted upon by a sheet separation and prefeed actuating mechanism to be described.
  • the bellows 58 is constructed such that its normal unconstrained condition is that indicated in phantom in FIG. 5.
  • pin 84 and cam follower disc 86 are pushed to the right, assuming the phantom position shown in FIG. 5.
  • pin 84 acts to compress the bellows 58.
  • the top sheet of the stack I is brought into sealing engagement about ports 65, whereupon the bellows is released to assume its extended position. This is effective to create a negative pressure or suction at ports 65 sufficient to securely hold the paper sheet thereto.
  • Mechanism 88 is powered from a drive train consisting, in part, of gears 89 and 90, shaft 91 and gears 92 and 93 (FIG. 3) which are all driven as long as the copier is turned on.
  • a shaft 96 for gear 93 constitutes the input shaft to a one revolution clutch 98 which is engaged by actuation of a solenoid I00.
  • the solenoid 100 each time the solenoid 100 is actuated, it causes the clutch 98 to couple its input shaft 96 to its output shaft I02 for one complete revolution, after which the two shafts are decoupled.
  • Output shaft I02 carries a radial disc cam I04, a helical cam I06 and a disc I08 having a spur gear segment IIO formed in its periphery and an internal annular cam track 112 with a raised cam segment 114 formed therein. It is thus seen that upon engagement of clutch 9B, cam I04, cam I06 and disc I08 are driven through one complete revolution.
  • radial disc cam I04 acts on a cam follower II6a carried by a cam follower arm I16 which is secured at its lower end on a shaft 118 rotatably mounted by brackets I19 (FIG. 3).
  • a hookshaped actuator I20 secured on the left end of shaft 118, acts on an actuator pin I22 to downwardly pivot a carriage 124, included in the pressure pad assembly 20 (FIG. I).
  • Carriage 124 is pivotally mounted on a fixed shaft I26, seen in FIGS. I and II.
  • a spring I28 biases cam follower II6a against the periphery of radial disc cam I04.
  • each bracket I30 supports a pair of brackets I30, secured thereto by bolts 131.
  • the upper end of each bracket I30 is bent laterally outward so as to support a pressure pad 132.
  • each pressure pad which is formed of a suitable material such as metal, has a threaded shaft I32a which extends through a hole in the lateral portion of bracket I30 and receives a nut I33 clamping the pressure pad thereto.
  • the face of each prasure pad is formed on a radius corresponding to the radius of curvature of the gripper rings 68 (Fig. 2).
  • a recess 132b is formed in the front surface of the pressure pads so as to leave a rim I32c which acts as the pressure transmitting surface for pressing the top sheet of the sheet stack I0 against the surface of insert 70 surrounding ports 65 (FIG.
  • the leading edges of the sheet stack I0 lie in the area between feed roller 16 and the pressure pads I32.
  • the carriage 124 is normally urged toward the feed roller I6 by springs I36 (FIG. 3).
  • the pressure pads I32 engage the undersurface of the bottom sheet of the sheet stack and lift the leading ends of the stacked sheets upwardly to bring the upper surface of the top sheet adjacent its leading edge into sealing engagement about the ports 65.
  • the carriage I24 carries lateral extensions which are bent upwardly and extend toward the feed roller and curve downwardly to provide outrigger elements 138 which act to support the lateral edge portions of the sheet stack as the lea-,ing edge portions therefore are lifted upwardly toward the feed roller 16 by clockwise pivotal movement of the carriage 124.
  • Outrigger elements I38 also serve as supports for stop elements I which extend upwardly in abutting engagement with the leading edges of the sheet stack I0. These stop elements 140 serve to prevent forward movement of the underlying sheets in the sheet stack as the separated top sheet is advanced to its prefeed position and beyond by rotation of the feed roller I6.
  • the helical cam I06 carried on shaft I02 acts on the cam follower disc 86 which was described in connection wiui FIG. 5.
  • the trailing end [06a of helical cam I06 engages the cam follower disc 86 thereby compressing bellows 58 through actuating rod 84.
  • This initial condition is also seen in FIG. 4.
  • cam follower 86 is released, permitting the bellows S8 to extend, thereby creating a suction at ports 65. It is seen that as helical cam 106 continues to rotate, the leading, laterally offset end I06b of the cam engages the cam follower disc 86 to cause the bellows 58 to be gradually compressed to the state shown in FIG. 5.
  • cam follower I I60 is riding in the valley 1040 of radial disc carn I04.
  • Actuator I20 is thus located and held in its extreme clockwise position by spring I28, thereby permitting the carriage I24 to be positioned by spring 136 ad- 35 jacent the feed roller I6 and press the top sheet of the stack 10 into sealing relation with the ports 65.
  • the actuator I20 is oriented on its shaft 118 such that the pressure pads 132 are always capable of pressing the top sheet against the ports 65 regardless of the number of sheets in the sheet stack 10.
  • cam follower II6a rides out of valley 1040, thereby causing cam follower arm II6 to rock counterclockwise bringing actuator I20 into depressing engagement with the actuator rod 122.
  • the carriage 124 is then rocked in the counterclockwise direction dropping the leading edges of the underlying sheets in the sheet stack 10 away from the feed roller 16. The top sheet thus becomes separated from the remainder of the stack by virtue of the suction created at ports 65.
  • Prefeed is accomplished by rotation of the feed roller by engagement with the gear segment IIO formed on the periphery of disc 10!] rotating with cams I04 and I06 on shaft I02. Rather than have mating gear teeth formed on the feed roller 16, it is preferred to provide a ring of rubber or other suitable elastomeric material secured to end cap 54 (FIG. 5) which is engaged by the gear segment IIO.
  • cam follower I52 can'ied by a cam follower arm I54 is rocked downwardly by cam segment I14.
  • the other end of cam follower arm I54 is secured on an elongated shaft 156 which is appropriately mounted by means not shown.
  • the other end of shaft I56 carries a detent release arm I58 which supports at its free end a pawl I60 adapted to operate against detent disc 52 secured to the left end of feed roller I6.
  • the detent disc 52 as best seen in FIG. 10, is formed having a pair of radial walls 52a and 52b.
  • cam follower arm I54 disengages the pawl I60 from the radial wall 52a of detent disc 52. This frees the feed roller I6 for clockwise rotation as the gear segment teeth I10 bite into the ring I50. Before the last tooth of gear segment IIO rotates out of driving engagement with the ring I50, cam segment I14 terminates, thereby permitting the pawl I60 to rise back into engagement with the periphery of detent disc 52 before it encounters radial wall 52b; this movement being induced by return spring I62.
  • FIGS. 7 through 9 The positions of the various parts of the sheet handling apparatus I4 at various stages in the sheet separation and prefeed operation are shown in FIGS. 7 through 9.
  • the parts are shown in their positions at the beginning of a sheet separation and prefeed operating cycle, which positions are also illustrated in the perspective view of FIG. 2.
  • the pressure pads 132 are pressing the leading edge portions of the sheet stack 10 against the feed roller 16 under the force of the carriage springs 136 (FIG. 3).
  • Solenoid 100 is pulsed and the one revolution clutch 98 is engaged to rotate its output shaft I02 through a complete revolution.
  • the first event is the creation of a suction at each of the feed roller ports 65 caused by the disengagement of the helical cam trailing edge 106a from the cam follower disc 86.
  • radial disc cam I04 operates through cam follower arm II6 and actuator 120 to pivot the carriage I24 downwardly to remove the underlying sheets of the stack from the feed roller I6.
  • the top sheet la is held against the feed roller ports 65 by the suction thereat. This condition is shown in FIG. 8.
  • the cam segment I carried by disc I08 acts through cam follower arm I54 and detent release arm I58 to remove pawl I60 from engagement with the radial wall 524 of detentdisc 52.
  • the feed roller is thus free to be rotated by gear segment H0 in the clockwise direction through an angle A (FIG. I0) of approximately I00".
  • FIG. 9 the separated top sheet We of the sheet stack 10 has been advanced through the nip of idler roller I8 and the gripper rings 68 on feed roller I6 to a prefeed position.
  • stop elements I40 prevent the underlying sheets of the stack from being dragged forward by prefecding movement of top sheet I0a.
  • Switch 22 is actuated by the top sheet as it is advanced to the prefeed position and thus senses that a sheet has been successfully prefed.
  • the actuating means 30 mentioned in connection with FIG. I and illustrated in detail in FIGS. II through I3 is uniquely adapted.
  • the actuating means 30 includes a drive pulley I70 which is continuously rotated by a drive belt I72 for as long as the copier is turned on.
  • Pulley I70 is mounted on a shaft 174 which serves as the input shaft to a one revolution clutch 176.
  • the clutch output shaft I78 is adapted to rotate a radial disc cam I80, a disc 182 and a second radial disc cam I84.
  • a solenoid I86 is pulsed to pull down on a link 188 which is connected to the free end of a pivotally mounted arm I90.
  • a spring I92 (FIG. I2) normally urges the arm 190 upwardly to engage a stop [a against a ledge 194 a formed in the periphery of a detent plate I94. It is thus seen that when solenoid 186 is pulsed, the free end of arm 190 is pulled downwardly to release the detent plate I94, thereby permitting the output shaft I78 to rotate in the counterclockwise direction as seen in FIG. 12 through a complete revolution, as driven by a clutch input shaft I74. At the completion of a revolution, detent ledge 194a again encounters the stop I900 in arm I90 to inhibit further counterclockwise rotation.
  • radial disc cam I80 acts on a cam follower 200 carried by a cam follower arm 202 which is secured at its other end on a shaft 204.
  • the other end of shaft 204 carries a sector gear 206 which engages a spur gear 208 carried on a shaft 2I0 supported by a U-shaped bracket 2I2.
  • the other end of shaft 210 carries an actuator arm 214 which is oriented in actuating relation to an actuator pin 2I6 carried by carriage I24.
  • Cam follower 200 is urged against the periphery of radial disc cam I80 by a return spring 218 acting on a return spring arm 220 secured on shaft 204.
  • radial disc cam I84 acts on a cam follower 224 carried by a cam follower arm 226 which is urged in the counterclockwise direction by return spring 227.
  • Cam follower arm 226 is pivotally mounted on a shaft 228 and carries a pin 230 which is received in an elongated slot 232 formed in the free end of detent release arm I58.
  • This lost motion connection permits the pawl I60 to be released from detent disc 52 by rotation of disc 108 (FIG. 2) or radial disc cam I84.
  • cam follower 224 rides up on cam rise I840 upon rotation of radial disc cam I84 to free pawl from radial wall 52b.
  • Cam rise I84a terminates at [84b and the pawl is permitted to assume a position in intercepting relation to radial wall 520 as feed roller I6 is rotated in the clockwise direction.
  • a spur gear 240 is secured on shaft 74 extending from the left end of the feed roller.
  • gear segment teeth [82a formed in the periphery thereof engage spur gear 240, thus imparting clockwise rotation to feed roller I6. From FIG. I it is seen that such rotation advances a prefed sheet through corona charger 26 to the nip of feed rollers 28.
  • the length of gear segment [82a is such that feed roller 16 is rotated through slightly less than an angle 8 (FIG. 10) which, when added to angle A, constitutes a complete revolution of the feed roller necessary to reorient it to its angular position at the beginning of a sheet separation and prefeed operation. This angular position is determined by the engagement of pawl I60 with radial wall 52a of detent disc 52.
  • gear segment 182a disengages from spur gear 240 before the feed roller 16 has been rotated completely through angle 8.
  • the final increment of feed roller rotation to bring radial wall 524 of detent disc 52 into abutting engagement with pawl 160 is induced by a column spring 244 which is secured to a face of spur gear 208 as best seen in FIG. 11.
  • the free end of column spring 244 moves upwardly into engagement with a ledge 246 formed on the periphery of detent disc 52 as cam follower 200 rides off the termination 18012 of cam rise 180a formed in radial disc cam 180 near the conclusion of a complete rotation thereof.
  • Column spring 244 acts against ledge 246 to rotate feed roller 16 through a very small angle to the point where pawl I60 engages radial wall 52a, thereby finally positioning the feed roller for the next sheet separation and prefeed operation.
  • the prefed sheet feeding rotation of the feed roller I6 occurs within the first approximately 60 of rotation of the gear segment disc I82.
  • the sheets being separated, prefed and then fed are significantly longer in length than the circumference of feed roller 16, thus a complete revolution of the feed roller is not sufficient to clear the top sheet 100 from the sheet-handling apparatus I4.
  • a complete feed roller revolu tion is sufficient however to advance a copy sheet from its position on the sheet stack 10 to the nip of feed rollers 28.
  • feed rollers 28, in efi'ect act to pull the top sheet without further rotation of feed roller 16 as the sheet is cleared from the sheet-handling apparatus 14.
  • a Teflon pad 250 (FIG. 2) is embedded in each gripper ring 68 carried by feed roller 16.
  • the Teflon pads 250 are positioned such that they are aligned with idler feed roller I8 when the feed roller 16 is oriented for the beginning of a sheet separation and prefeed operation which is also its orientation during the time that a prefed sheet is being cleared from the sheet-handling apparatus 14 by feed rollers 28.
  • the Teflon pads 250 thus provide a relatively frictionless surface over which die sheets may be dragged, and thus damage to the sheet is avoided.
  • Switch 252 has a switchactuating arm 254 which is actuated by the raised cam surface 1840 of radial disc cam 184.
  • This switch serves as an interlock switch which is used to enable the actuation of solenoid to initiate a sheet separation and a prefeed operation. While the actuating arm 254 of switch 252 bears against the lower cam surface 184c of radial disc cam 184, solenoid 100 is disabled and a sheet separation and prefeed operation cannot be initiated.
  • the feed roller [6 remains in the orientation shown in FIGS. I and 7, while the sheet 100 is cleared from the sheet handling area by the feed rollers 28.
  • the actuating arm 254 of switch 252 rides up on the raised cam surface 184a thereof. This occurs just after the time that the sheet I04 has cleared the area of the sheet-handling apparatus I4 and the resulting actuation of switch 252 triggers the solenoid to initiate a sheet separation and prefeed operation.
  • switch 22 is connected in series with switch 252 so that solenoid 100 cannot be triggered by switch 252 if a prefed sheet 100 has not cleared the sheet handling apparatus.
  • the sheet separation and prefeed actuating means 88 then operates to separate and advance a top sheet [0a from the sheet stack 10 and advance it to the prefeed position shown in FIG. 9.
  • Switch 22 senses whether or not a sheet is in the prefeed position preparatory the initiation of the next copy cycle. If when the copier is turned on and switch 22 senses that no sheet is in the prefeed position, such as would occur alter the copy paper supply has been exhausted and the stack I0 is replenished, the control logic may be designed such that switch 22 initiates a succession of sheet separation and prefeed operations until a sheet 100 is successfully separated and prefed. It will be observed that whatever the initial orientation of feed roller 16, it will be indexed through an increment equal to angle A (FIG. 10) each time the sheet separation and prefeed actuating mechanism 88 is triggered by solenoid I00.
  • pawl I60 engages radial wall 520 to stop the feed roller 16 at the proper orientation for the initiation of a sheet separation and prefeed operation. This is permitted since gear segment will slip on ring after feed roller rotation has been inhibited by pawl 160. With the next pulsing of solenoid I00, a top sheet 10a is separated and prefed, whereupon switch 22 is tripped and the copier is then prepared for a normal copy cycle.
  • roller mounted for rotation said roller including:
  • copy cycle feed control means operating upon the initiation of a copy cycle to engage said second drive-engageble means and rotate said roller through a second increment of rotation to feed a prefed copy sheet from said prefeed position to the nip of said feed roller pair.
  • roller further includes detent means and said sheet separation and prefeed control means and said copy cycle feed control means act on said detent means to precisely define said first and second increments of roller rotation.
  • a. a first shaft adapted to execute a complete revolution to define an operating cycle thereof
  • said copy cycle control means includes:
  • a. a second shaft adapted to execute a complete revolu tion to define an operating cycle thereof
  • a third cam on said second shaft adapted to position said carriage to its first and second positions
  • said retaining means comprises negative pressure-generating means selfcontained within said roller for creating a suction at ports formed in the periphery of said roller.
  • the apparatus defined in claim I which further includes sensing means for detecting the presence of a sheet in the prefeed position.
  • Copy-sheet-handling apparatus for electrostatic copiers comprising, in combination:
  • suction-generating means for creating a suction force at a port formed in the peripheral surface thereof
  • D. sheet separation and prefeed control means operating said carriage and said suction generating means to retain the top sheet against said roller as said carriage is moved away from said roller to separate the top sheet from the sheet stack and engaging said first drive-engagable means to rotate said roller through a first predetermined increment of rotation and thereby advance the separated top sheet to a prefeed position;
  • E. copy cycle feed control means operating upon the initiation of a copy cycle to engage said second drive-engageble means and rotate said roller through a second increment of rotation to feed a prefed copy sheet beyond its prefeed position;
  • roller carries detent means acted upon by said sheet separation and prefeed control means and said copy cycle feed control means to define said first and second increments of roller rotation, said first and second increments of roller rotation totaling 360".
  • suctiongenerating means comprises a bellows, said sheet separation and prefeed control means acting on said bellows during the operating cycle thereof to expand and compress said bellows to create said suction force.
  • roller carries a resilient ring for coaction with an idler roller to feed a separated top sheet, said port opening at the periphery of said ring, the length of a copy sheet exceeding the circumference of said roller, is low-friction surface segment imbedded in said ring at an angular position to be juxtaposed with said idler roller when said roller concludes said second increment of rotation, whereby the trailing portion of the copy sheet may be readily drawn through the nip of said ring and said idler roller by said feed roller pair without rotation of said roller,
  • said copy cycle feed control means further includes signal means actu ated during the conclu;ing portion of the operating cycle thereof and after a copy sheet has been drawn completely through the nip of said roller ring and said idler roller to in itiate an operating cycle of said sheet separation and prefeed control means.

Abstract

A bellows, incorporated within a sheet feed roller, is actuated by external actuating apparatus to create a partial vacuum at suction ports in the feed roller periphery. A pivotal pressure pad assembly momentarily presses a sheet stack against the ports, leaving the top sheet adhered to the feed roller which is then rotated to advance the separated top sheet to a prefeed position. Additional actuating apparatus, operating on command, rotates the feed roller through the remainder of a complete revolution to feed the prefed sheet from the apparatus and to reorient the feed roller for the next sheet separation and prefeed cycle.

Description

Feb. 8, 1972 [54] COPY SHEET HANDLING APPARATUS FOR ELECTROSTATIC OFFICE COPIERS [72] Inventor: Chrbtian A. Beck, Ridgefield, Conn.
[73] Assignee: lltney-Bowes, lnc., Stamford, Conn.
[22] Filed: Sept. 22, 1970 [2]] Appl. No.: 74,349
[52] U.S.CL.. [51] Int. Cl ..B65h 3/10 I58] Field of Search ..27 H27, 28, 62, ll
[56] References Cited UNITED STATES PATENTS 2,184,229 l2/l939 Spiess ..27 1/27 3,265,383 8/l966 Shute.......................................27lI20 Primary Examiner-Joseph Wegbreit Attorneywilliam D. Soltow, Jr., Albert W. Scribner, Martin D. Wittstein and Louis A. Tirelli [57] ABSTRACT A bellows, incorporated within a sheet feed roller, is actuated by external actuating apparatus to create a partial vacuum at suction ports in the feed roller periphery. A pivotal pressure pad assembly momentarily presses a sheet stack against the ports, leaving the top sheet adhered to the feed roller which is then rotated to advance the separated top sheet to a prefeed position. Additional actuating apparatus, operating on command, rotates the feed roller through the remainder of a complete revolution to feed the prefed sheet from the apparatus and to reorient the feed roller for the next sheet separation and prefeed cycle.
17 Claims, 13 Drawing Figures mun. m
SHEET 1 BF 7 INVENTOQ CHRISTIAN A. BECK am: n aim ATTORNEY SHEET 2 OF 7 g INVENTOR CHRISTAN A. BECK Mu. (Mm;
ATTORNEY ans-v0.52?
SHEEI 3 BF 7 QGE M/VENTOQ CHRISTIAN A. BECK law 12 m ATTORNEY PATENTEDFEB 8|972 3.646.523"
saw u or 7 g 2 (D J) 3 g M/VENTOQ N CHRISTIAN A. BECK uma mm ATroa/vey PATENTED FEB 8 I 72 SHEET 5 OF 7 ATTORNEY Pmmmrsa a sun 3.640.523
sum 6 OF 7 INVENTOR CHFUSTIAN A. BECK 14w mm Arfqiusv COPY SIIEET HANDLING APPARATUS FOR ELECTROSTATIC OFFICE COPIERS REFERENCE TO RELATED APPLICATION Reference is hereby made to the commonly assigned, copending Schrempp and Beck application Ser. No. 74,364 entitled Sheet Separation and Pre-Feed Apparatus, filed Sept. 22, i970, wherein apparatus herein disclosed is claimed.
BACKGROUND AND OBJECTS OF THE INVENTION The current emphasis in office copier design is speed of operation. Quite naturally, the faster a copier can produce copies the more available it is to subsequent users. Also, a fast copier conserves the time of the operator, who in a small office situation is typically a secretary whose time is valuable. Not only is it important that a copier produce multiple copies rapidly but also that it be capable of producing a single copy without appreciable delay. In a small office situation, probably the most common copy run is that of a single copy.
An additional important design consideration is the size of the copier. With ofi'rce space so expensive, it is desirable that the copier be reasonably compact. So called "desk copiers are available, however, when placed on a desk top such copiers take up a considerable portion of the work surface.
One way in which to reduce the copier size is to go to precut copy paper in lieu of roll copy paper which must be withdrawn and cut to the size of the original sheet during each copy cycle. The precut copy sheets are stacked on a tray or the like and must be individually separated from the stack and fed seriatum through the copier. Reliable separation of a single paper sheet from a stack is not an easy task. If a single copy sheet is not successfully separated and fed, the ensuing copy cycle is a complete waste of time. Moreover, if separation and feeding is performed improperly, the copy sheet may jam up somewhere along its feed path. The copier must then be shut off and the jam cleared, which may require a service call.
Another problem with the use of precut copy sheets is synchronizing the sheet separation and feeding functions with the actual copying process repeated during each copy cycle. To achieve requisite synchronization, a prefeed" technique is typically resorted to. Generally, this involves separating a single sheet from a copy sheet stack and advancing it to a fixed prefeed position at the conclusion of each copy cycle. Thus, when a next copy cycle is called for a copy sheet is already separated from its stack and is fed through the various copy process station, starting from the prefeed position. This simplities the problem of synchronization and also significantly shortens the time required for single copy runs.
Accordingly, an object of the present invention is to provide improved apparatus for handling precut copy sheets in an electrostatic office copier.
A further object is to provide apparatus of the above character for separating a copy sheet from a sheet stack, feeding the separated copy sheet to a prefeed position, and thereafter, on command, feeding the prefed copy sheet along the initial portion of its feed path through the copier.
Yet another object is to provide apparatus of the above character wherein the various copy sheet handling functions are coordinated and controlled in an efficient and reliable manner.
An additional object is to provide apparatus of the above character which is compact, inexpensive to manufacture, reliable and fast in operation.
Other objects of the invention will in part be obvious and in part appear hereinafter.
The invention accordingly comprises the features of construction, combination of elements, and arrangement of parts which will be exemplified in the construction hereinafter set forth, and the scope of the invention will be indicated in the claims SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a self-contained feed roller structure which is externally actuated to effect separation of the top sheet of paper or the like from a sheet stack and to feed the separated sheet to a reference or prefeed position. The feed roller has incorporated therein a compressible bellows which is in communication with one or more suction ports in the feed roller surface. The bellows, by virtue of its inherent resiliency, normally assumes a distended condition and is compressed by external actuator means. While the bellows is compressed, the paper sheet stack is elevated so as to bring the top most sheet into sealed contacting engagement with the roller surface surrounding the suction ports. The compacting pressure on the bellows is then released, thereby creating a partial vacuum sufficient to hold the top sheet against the feed roller. The sheet stack is then lowered, thereby separating the stack from the top sheet which remains adhered to the feed roller. The feed roller is then rotated through a predetermined angle to advance the separated sheet to a desired prefeed position.
The actuator means includes a first cam which is rotated to compress and release the bellows within the feed roller. A second cam is rotated in coordination with the first cam to effect the raising and lowering of the sheet stack by a pivotal pressure pad assembly in timed relation with the actuation of the bellows. Drive means rotating in synchronism with the first and second cams selectively engages the feed roller to effect the requisite incremental rotation thereof for advancing the separated sheet to the prefeed position. In addition, cam actuated detent means insure that the feed roller is properly angularly oriented at the conclusion of a sheet separation and prefeed operation.
Once the separated sheet has arrived at the prefeed position, it must then be advanced or fed therefrom for processing. In the case of an electrostatic ofl'lce copier in which the apparatus of the present invention is imminently applicable, the prefed copy paper sheet is advanced through a charging station, an imaging station and a developing station pursuant to reproducing on the copy sheet the image borne by an original document sheet. The suction feed roller also participates in the feeding of a separated sheet beyond its prefed position. Separate drive means are provided for rotating the feed roller through an angle which would return it to its angular orientation at the beginning of a sheet separation and prefeed operation. Incident to this second increment of feed roller rotation, the previously prefed sheet is advanced by the feed roller to a point where it is engaged by secondary feed rollers operating to completely withdraw the sheet from the apparatus of the in vention. Cam means operating in synchronism with the second drive means controls the elevational position of the sheet stack in order that advancement of the prefed sheet beyond its prefeed position will not disturb the stack and also controls the detent means so as to insure that the feed roller is properly angularly oriented for the initiation of the next sheet separation and prefeed operation, which preferably occurs at the conclusion of a copy cycle.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:
FIG. 1 is a longitudinal sectional view of an electrostatic photocopier employing the apparatus of the present invention;
FIG. 2 is a perspective view of the sheet separation and prefeed apparatus of the invention;
FIG. 3 is a front elevational view, partially broken away, of the apparatus of FIG. 2;
FIG. 4 is a sectional view taken along line 44 of FIG. 3',
FIG. 5 is a longitudinal sectional view of the feed roller included in the apparatus of FIG. 2;
FIG. 6 is a side elevational view, partially broken away, of one of the pressure pads incorporated in the apparatus of FIG. 2;
HO. 7 is a sectional view taltert along line 7-4 of FIG. 3 showing the positions of the various parts at the beginning of a sheet separation and pret'eed operation;
FIG. 8 is a sectional view taken along line 7-7 of FIG. 3 showing the positions of the various parts upon achievement of separation of the top sheet from the sheet stack;
HO. 9 is a sectional view taken along line 7-7 of FIG. 3 showing the positions of the various parts after the separated sheet has been advanced to a prefeed position;
FIG. is a sectional view taken along line 10 ll] of FIG. 3 showing the detent means incorporated into the apparatus of the present invention;
FIG. II is a fragmentary perspective view of the apparatus for advancing a pt'efed sheet beyond its prefeed position;
FIG. I2 is a side elevational view of the actuating means in corporated in the apparatus of FIG. I1; and
FIG. 13 is an end elevational view of the actuating means of FIG. I2.
Like reference numerals refer to corresponding parts throughout the several views of the drawings.
DETAILED DESCRIPTION Referring now to the drawings and first to FIG. I, the apparatus of the present invention is illustrated as being incorporated in an electrostatic photocopier of the direct imaging type which employs copy paper having a photoconductive coating thereon, such as Electrofax paper. It will be appreciated, however, that the apparatus of the present invention has application in other types of office copiers as well as to sheet handling apparatus generally.
As seen in FIG. I, a stack ID of precut copy sheets is supported on a tray l2 with the leading edges of the stacked sheets positioned adjacent the sheet-handling apparatus of the present invention, generally indicated at [4. The sheethan dling apparatus 14 includes a sheet separator and sheet feed roller I6 which, in a manner to be described, is employed to separate the top sheet from the copy sheet stack 10 and then advance the separated sheet to a prefeed position where its leading edge is engaged between feed roller I6 and an idler feed roller 18. As will be seen, separation of the top sheet from the sheet stack 10 is effected, in accordance with the invention, by adapting the feed roller [6 with means for creating a partial vacuum at suction ports formed in its peripheral sur face. A pressure pad assembly, generally indicated at 20, is actuated to lift the leading edges of the stack 10 so that the upper surface of the top sheet is pressed against the periphery of the feed roller l6 in sealing relation to the suction ports therein. A partial vacuum is then created at these ports to ad here the top sheet to the feed roller periphery which is then readily separated from the rest of the stack 10 merely by pivoting the pressure pad assembly away from the feed roller 16.
Once separation of the top sheet from the sheet stack 10 has been effected, feed roller 16 is then driven through an increment of rotation such that the leading edge of the separated sheet is advanced through the nip of feed roller 16 and idler roller 18 to a prefeed position. The presence of a prefed sheet is sensed by a switch 22.
As contemplated by the present invention, sheet separation and prefeed occurs at the conclusion of each copy cycle. Upon the initiation of the next copy cycle, the prefeed sheet is then advanced to and through the various copy processing stations. Thus, as seen in FIG. I, a prefed sheet, indicated at 24, is advanced from its prefeed position by rotation of feed roller 16 through a suitable corona charger 26. Rotation of feed roller l6 continues until the leading edge of copy sheet 24 is engaged between a set of feed rollers 28. During advancement of a prefcd sheet beyond its prefeed position, the sheet-handling apparatus I4 is controlled by actuating means, generally indicated at 30 To initiate operation of the actuating means 30, the copier is turned on to provide continuous drive to feed rollers 32 positioned in a document feed path. A document 36 to be copied is inserted into the nip of feed rollers 32 and the passage of its leading edge therebeyond trips a switch 34 which signals the actuating means 30 into operation. A preted copy sheet 24 is then advanced by rotation of the feed roller l6 through the corona charger 26 and its leading edge arrives at the nip of feed rollers 28 substantially at the same time as does the leading edge of the original document 36 being fed by feed rollers 32. The copy sheet 24 and the original document sheet 36 then pass through an imaging station, generally indicated at 38, where the copy sheet is selectively discharged by light to transform the image borne by the original document to a latent electrostatic image on the surface of copy sheet 24. From the imaging station 38, the juxtaposed docu' ment sheet and copy sheet are fed by feed rollers 40 to feed rollers 42 which are also adapted to separate the sheets such that they may thereafter follow separate paths. lmminently suitable juxtaposed sheet feeding and separating apparatus is disclosed in copending application of Beck and Tomasch entitled Separator for Juxtaposed Sheets, Ser. No. 23,215, filed Mar. 27, 1970 and assigned to the assignee of the present application. The copy sheet 24 and the document sheet 36 are selectively acted upon by operation of the separator feed rollers 42 to develop a separation therebetween, such that the document sheet passes over a separator guide plate 43 while the copy sheet passes under the separator guide plate. The document sheet 36 follows a path defined by guide plates 44 for return to the operator. The copy sheet 24 passes over a guide plate 45 to a development station, generally indicated at 46, where the latent electrostatic image carried thereby is developed into a visible image. The developed sheet precedes along a path defined by guide plates 48 for delivery to the operator.
The feed roller 16, as best seen in FIG. 5, consists of an elongated cylinder 50 with a detent disc 52 secured in its left end and an end cap 54 secured in its right end. A partition 56 is secured within cylinder 50 by screws 57. A bellows 58, formed of a suitable material such as metal, is mounted and hermetically sealed at its left end to one side of partition 56. The other end of bellows S8 is sealed off by an end plate 60. Bellows S8 is formed such that it normally assumes an extended condition as indicated in phantom.
A pair of tubular fittings 62 extend through partition 56 and communicate with the interior of bellows 58. A pair of fittings 64 are secured in the wall of cylinder 50 and are coupled to fittings 62 by separate lengths of flexible tubing 66. The fittings 64 thus provide ports 65 at axially aligned points in the periphery of cylinder 50 which are in pneumatic communica tion with the interior of bellows 58. It will be understood that while two ports 65 are shown in the illustrated embodiment, an additional number of ports may be provided. Also, a single port 65 may be sufficient for effecting sheet separation and prefeed in the manner to be described.
Still referring to FIG. 5, a rubber gripper ring 68 is carried by the feed roller cylinder 50 at the axial location of each port 65. In the vicinity of each fitting 64, the material of gripper ring 68 is removed and an insert 70 is substituted. Rubber gripper rings 68 are formed of a suitable durometer rubber or other elastomeric material for proper sheet feeding coaction with idler roller l8 (FIG. I). Insert 70 is preferably of a softer resilient material than gripper ring 68 so that, in the manner to be described, the top sheet of the sheet stack 10 is adequately sealed against the material surrounding the ports 65 by operation of the pressure pad assembly 20 (FIG. I) at the time a negative pressure or suction is created at the ports 65 by operation of the bellows 58. It will be appreciated that certain elastomen'c materials may be conducive to both functions, thus eliminating the need for inserts 70.
Still referring to FIG. 5, the inserts 70 are apertured so as to communicate with the ports 65 provided by fittings 64 and is also recessed to provide a suction cuplike shape for improved adherence of a paper sheet thereto upon actuation of the hellows S8.
As seen in FIGS. 3 and 5, a coaxial stub shaft 74, secured to detent disc 52, serves to mount the left end of feed roller I6; the shaft being journaled in an upright side frame 76 secured to a base 77. The other end of feed roller 16 is rotatably mounted by a sleeve 78 secured in a central bore through end cap 54 and joumaled by a bushing 80 mounted by side frame member 82, also secured to base 77 (FIG. 3). An elongated actuating pin 84 extends through sleeve 78 with its left end fastened to end plate 60 of bellows 58. Actuating pin 84 carries an integral cam follower disc 86 at a point beyond bushing 80; the cam follower disc being acted upon by a sheet separation and prefeed actuating mechanism to be described.
As previously noted, the bellows 58 is constructed such that its normal unconstrained condition is that indicated in phantom in FIG. 5. When the bellows 58 is so extended, pin 84 and cam follower disc 86 are pushed to the right, assuming the phantom position shown in FIG. 5. When the cam follower disc 86 is pushed to the left, pin 84 acts to compress the bellows 58. At this point, as will be seen, the top sheet of the stack I is brought into sealing engagement about ports 65, whereupon the bellows is released to assume its extended position. This is effective to create a negative pressure or suction at ports 65 sufficient to securely hold the paper sheet thereto.
Turning now to FIG. 2, the sheet separation and prefeed-actuating mechanism is generally indicated at 88. Mechanism 88 is powered from a drive train consisting, in part, of gears 89 and 90, shaft 91 and gears 92 and 93 (FIG. 3) which are all driven as long as the copier is turned on. A shaft 96 for gear 93 constitutes the input shaft to a one revolution clutch 98 which is engaged by actuation of a solenoid I00. Thus, each time the solenoid 100 is actuated, it causes the clutch 98 to couple its input shaft 96 to its output shaft I02 for one complete revolution, after which the two shafts are decoupled. Output shaft I02 carries a radial disc cam I04, a helical cam I06 and a disc I08 having a spur gear segment IIO formed in its periphery and an internal annular cam track 112 with a raised cam segment 114 formed therein. It is thus seen that upon engagement of clutch 9B, cam I04, cam I06 and disc I08 are driven through one complete revolution.
As seen in FIGS. 2 and 3, radial disc cam I04 acts on a cam follower II6a carried by a cam follower arm I16 which is secured at its lower end on a shaft 118 rotatably mounted by brackets I19 (FIG. 3). A hookshaped actuator I20, secured on the left end of shaft 118, acts on an actuator pin I22 to downwardly pivot a carriage 124, included in the pressure pad assembly 20 (FIG. I). Carriage 124 is pivotally mounted on a fixed shaft I26, seen in FIGS. I and II. A spring I28 biases cam follower II6a against the periphery of radial disc cam I04.
Still referring principally to FIGS. 2 and 3, the carriage I24 supports a pair of brackets I30, secured thereto by bolts 131. The upper end of each bracket I30 is bent laterally outward so as to support a pressure pad 132. As seen in FIG. 6, each pressure pad, which is formed of a suitable material such as metal, has a threaded shaft I32a which extends through a hole in the lateral portion of bracket I30 and receives a nut I33 clamping the pressure pad thereto. The face of each prasure pad is formed on a radius corresponding to the radius of curvature of the gripper rings 68 (Fig. 2). A recess 132b is formed in the front surface of the pressure pads so as to leave a rim I32c which acts as the pressure transmitting surface for pressing the top sheet of the sheet stack I0 against the surface of insert 70 surrounding ports 65 (FIG. As is seen in FIGS. I and 7 through 9, the leading edges of the sheet stack I0 lie in the area between feed roller 16 and the pressure pads I32. The carriage 124 is normally urged toward the feed roller I6 by springs I36 (FIG. 3). Thus, the pressure pads I32 engage the undersurface of the bottom sheet of the sheet stack and lift the leading ends of the stacked sheets upwardly to bring the upper surface of the top sheet adjacent its leading edge into sealing engagement about the ports 65.
As is seen in FIG. 2, the carriage I24 carries lateral extensions which are bent upwardly and extend toward the feed roller and curve downwardly to provide outrigger elements 138 which act to support the lateral edge portions of the sheet stack as the lea-,ing edge portions therefore are lifted upwardly toward the feed roller 16 by clockwise pivotal movement of the carriage 124. Outrigger elements I38 also serve as supports for stop elements I which extend upwardly in abutting engagement with the leading edges of the sheet stack I0. These stop elements 140 serve to prevent forward movement of the underlying sheets in the sheet stack as the separated top sheet is advanced to its prefeed position and beyond by rotation of the feed roller I6.
Still referring principally to FIGS. 2 and 3, the helical cam I06 carried on shaft I02 acts on the cam follower disc 86 which was described in connection wiui FIG. 5. In the positions of the various parts shown in FIG. 2, which are their positions at the beginning of each sheet separation and prefeed operation, the trailing end [06a of helical cam I06, assuming counterclockwise rotation thereof, engages the cam follower disc 86 thereby compressing bellows 58 through actuating rod 84. This initial condition is also seen in FIG. 4. After the helical cam I06 is rotated through a small increment of counterclockwise rotation, cam follower 86 is released, permitting the bellows S8 to extend, thereby creating a suction at ports 65. It is seen that as helical cam 106 continues to rotate, the leading, laterally offset end I06b of the cam engages the cam follower disc 86 to cause the bellows 58 to be gradually compressed to the state shown in FIG. 5.
As is seen in FIG. 2, at the beginning of a sheet separation and prefeed operation and before the bellows 58 is released by helical cam I06, cam follower I I60 is riding in the valley 1040 of radial disc carn I04. Actuator I20 is thus located and held in its extreme clockwise position by spring I28, thereby permitting the carriage I24 to be positioned by spring 136 ad- 35 jacent the feed roller I6 and press the top sheet of the stack 10 into sealing relation with the ports 65. The actuator I20 is oriented on its shaft 118 such that the pressure pads 132 are always capable of pressing the top sheet against the ports 65 regardless of the number of sheets in the sheet stack 10. As cams I04 and I06 begin to rotate, the first thing that happens is that the cam I06 releases the bellows 58 which then creates the suction at ports 65. The suction or negative pressure at ports 65 is effective to hold the top sheet which is pressed thereagainst by the pressure pads I32 acting through the underlying sheets in the sheet stack. As the radial disc cam I04 continues to rotate, cam follower II6a rides out of valley 1040, thereby causing cam follower arm II6 to rock counterclockwise bringing actuator I20 into depressing engagement with the actuator rod 122. The carriage 124 is then rocked in the counterclockwise direction dropping the leading edges of the underlying sheets in the sheet stack 10 away from the feed roller 16. The top sheet thus becomes separated from the remainder of the stack by virtue of the suction created at ports 65.
Having separated the top sheet from the sheet stack, it remains to advance the separated sheet to a prefeed position. Prefeed is accomplished by rotation of the feed roller by engagement with the gear segment IIO formed on the periphery of disc 10!] rotating with cams I04 and I06 on shaft I02. Rather than have mating gear teeth formed on the feed roller 16, it is preferred to provide a ring of rubber or other suitable elastomeric material secured to end cap 54 (FIG. 5) which is engaged by the gear segment IIO.
As the disc I08 rotates counterclockwise, a cam follower I52 can'ied by a cam follower arm I54 is rocked downwardly by cam segment I14. The other end of cam follower arm I54 is secured on an elongated shaft 156 which is appropriately mounted by means not shown. The other end of shaft I56 carries a detent release arm I58 which supports at its free end a pawl I60 adapted to operate against detent disc 52 secured to the left end of feed roller I6. The detent disc 52, as best seen in FIG. 10, is formed having a pair of radial walls 52a and 52b.
Returning to FIG. 2 it is seen that as disc 108 rotates counterclockwise, cam follower arm I54 disengages the pawl I60 from the radial wall 52a of detent disc 52. This frees the feed roller I6 for clockwise rotation as the gear segment teeth I10 bite into the ring I50. Before the last tooth of gear segment IIO rotates out of driving engagement with the ring I50, cam segment I14 terminates, thereby permitting the pawl I60 to rise back into engagement with the periphery of detent disc 52 before it encounters radial wall 52b; this movement being induced by return spring I62. As radial wall 52!: encounters pawl 160 to terminate further rotation of feed roller I16, the last tooth of gear segment IIO still drivingly engages rubber ring I50. This insures that the feed roller 16 is angularly oriented at the tennination of the prefeed operation precisely at the point where radial wall 52b is engaged by pawl I60. It is for this reason that an elastomeric ring I50 is preferred over a gear ring as it would require stringent manufacturing tolerances to insure that the gears disengage precisely at the point where the pawl 160 engages the radial wall 52b of detent disc 52. It will be appreciated if the drive of feed roller I6 terminates short of the detent position determined by radial wall 52b, the separated sheet will not be prefed to the desired prefeed position. On the other hand, if the drive terminates after the tip 160 engages radial wall 52b, an interference situation is created which would result in damage to various parts of the apparatus. Rubber ring I50, however, yields to release the last gear tooth of segment 110 as the pawl I60 inhibits further feed roller rotation. This slippage insures proper angular orientation of the feed roller at the conclusion of the prefeed operation.
The positions of the various parts of the sheet handling apparatus I4 at various stages in the sheet separation and prefeed operation are shown in FIGS. 7 through 9. In FIG. 7 the parts are shown in their positions at the beginning of a sheet separation and prefeed operating cycle, which positions are also illustrated in the perspective view of FIG. 2. Thus, the pressure pads 132 are pressing the leading edge portions of the sheet stack 10 against the feed roller 16 under the force of the carriage springs 136 (FIG. 3). Solenoid 100 is pulsed and the one revolution clutch 98 is engaged to rotate its output shaft I02 through a complete revolution. The first event is the creation of a suction at each of the feed roller ports 65 caused by the disengagement of the helical cam trailing edge 106a from the cam follower disc 86. As previously noted, the bellows 58 springs to its extended condition, the resulting internal expansion of the bellows being effective to create the suction or negative pressure at ports 65. Thereafter, radial disc cam I04 operates through cam follower arm II6 and actuator 120 to pivot the carriage I24 downwardly to remove the underlying sheets of the stack from the feed roller I6. The top sheet la, however, is held against the feed roller ports 65 by the suction thereat. This condition is shown in FIG. 8.
Also at this time, the cam segment I carried by disc I08 acts through cam follower arm I54 and detent release arm I58 to remove pawl I60 from engagement with the radial wall 524 of detentdisc 52. The feed roller is thus free to be rotated by gear segment H0 in the clockwise direction through an angle A (FIG. I0) of approximately I00". As seen in FIG. 9, the separated top sheet We of the sheet stack 10 has been advanced through the nip of idler roller I8 and the gripper rings 68 on feed roller I6 to a prefeed position. During prefeed of the top sheet 100, stop elements I40 prevent the underlying sheets of the stack from being dragged forward by prefecding movement of top sheet I0a. Switch 22 is actuated by the top sheet as it is advanced to the prefeed position and thus senses that a sheet has been successfully prefed.
As the clutch output shaft I02 continues to rotate through the remainder of its complete revolution, helical cam I06 reengages cam follower disc 86 with its leading edge I06b to gradually compress bellows 58. This action does not disturb the prefed top sheet Illa since it is engaged in the nip of feed roller I6 and idler roller I8. As radial disc cam I04 continues to rotate through to the conclusion of its complete revolution, cam follower ll6a again rides into valley 104a, whereupon the carriage springs I36 pivot the carriage I24 in the clockwise direction bringing the pressure pads I32 upwardly to press the underlying sheets of the sheet stack against the feed roller I6. Thus, the carriage I24 assumes the position shown in FIG. 7, while the feed roller I6 remains in the orientation shown in FIG. 9.
Having successfully prefed a top sheet 10a, it now remains to advance the prefed sheet on through the copier process stations and also to return the feed roller 16 to its proper angular orientation for the beginning of another sheet separation and prefeed operation. To this end, the actuating means 30 mentioned in connection with FIG. I and illustrated in detail in FIGS. II through I3 is uniquely adapted. As best seen in FIG. 13, the actuating means 30 includes a drive pulley I70 which is continuously rotated by a drive belt I72 for as long as the copier is turned on. Pulley I70 is mounted on a shaft 174 which serves as the input shaft to a one revolution clutch 176. The clutch output shaft I78 is adapted to rotate a radial disc cam I80, a disc 182 and a second radial disc cam I84. As seen in FIG. 13, a solenoid I86 is pulsed to pull down on a link 188 which is connected to the free end of a pivotally mounted arm I90. A spring I92 (FIG. I2) normally urges the arm 190 upwardly to engage a stop [a against a ledge 194 a formed in the periphery of a detent plate I94. It is thus seen that when solenoid 186 is pulsed, the free end of arm 190 is pulled downwardly to release the detent plate I94, thereby permitting the output shaft I78 to rotate in the counterclockwise direction as seen in FIG. 12 through a complete revolution, as driven by a clutch input shaft I74. At the completion of a revolution, detent ledge 194a again encounters the stop I900 in arm I90 to inhibit further counterclockwise rotation.
As seen in FIGS. II and I2, radial disc cam I80 acts on a cam follower 200 carried by a cam follower arm 202 which is secured at its other end on a shaft 204. The other end of shaft 204 carries a sector gear 206 which engages a spur gear 208 carried on a shaft 2I0 supported by a U-shaped bracket 2I2. The other end of shaft 210 carries an actuator arm 214 which is oriented in actuating relation to an actuator pin 2I6 carried by carriage I24. Cam follower 200 is urged against the periphery of radial disc cam I80 by a return spring 218 acting on a return spring arm 220 secured on shaft 204.
It is thus seen that when radial disc cam 180 is rotated in the counterclockwise direction, cam follower arm 202 is rocked downwardly as the cam follower 200 rides up on the rise I800. This results in clockwise rotation of actuator arm 214 and downward pivotal movement of carriage I24 to remove the pressure pads I32 from the vicinity of the feed roller I6. It will be recalled that the orientation of the radial disc cam I04 in FIG. 2 at the conclusion of a prefeed operation is such that the pressure pads are permitted to press the leading edges of the sheet stack against the feed roller periphery. Thus, as the prefed sheet is advanced beyond its prefeed position, the pressure pads I32 must again be removed from the periphery of the feed roller so as not to interfere with the feeding of the prefed sheet. Radial disc cam I80 serves this purpose.
Returning to FIGS. II and 12, radial disc cam I84 acts on a cam follower 224 carried by a cam follower arm 226 which is urged in the counterclockwise direction by return spring 227. Cam follower arm 226 is pivotally mounted on a shaft 228 and carries a pin 230 which is received in an elongated slot 232 formed in the free end of detent release arm I58. This lost motion connection permits the pawl I60 to be released from detent disc 52 by rotation of disc 108 (FIG. 2) or radial disc cam I84. Thus, to advance a prefed sheet I00 beyond its prefeed position, cam follower 224 rides up on cam rise I840 upon rotation of radial disc cam I84 to free pawl from radial wall 52b. Cam rise I84a terminates at [84b and the pawl is permitted to assume a position in intercepting relation to radial wall 520 as feed roller I6 is rotated in the clockwise direction.
To drivingly rotate feed roller I6, a spur gear 240 is secured on shaft 74 extending from the left end of the feed roller. As disc I82 is rotated through a complete revolution, gear segment teeth [82a formed in the periphery thereof engage spur gear 240, thus imparting clockwise rotation to feed roller I6. From FIG. I it is seen that such rotation advances a prefed sheet through corona charger 26 to the nip of feed rollers 28. The length of gear segment [82a is such that feed roller 16 is rotated through slightly less than an angle 8 (FIG. 10) which, when added to angle A, constitutes a complete revolution of the feed roller necessary to reorient it to its angular position at the beginning of a sheet separation and prefeed operation. This angular position is determined by the engagement of pawl I60 with radial wall 52a of detent disc 52.
To avoid an interference situation, gear segment 182a disengages from spur gear 240 before the feed roller 16 has been rotated completely through angle 8. The final increment of feed roller rotation to bring radial wall 524 of detent disc 52 into abutting engagement with pawl 160 is induced by a column spring 244 which is secured to a face of spur gear 208 as best seen in FIG. 11. The free end of column spring 244 moves upwardly into engagement with a ledge 246 formed on the periphery of detent disc 52 as cam follower 200 rides off the termination 18012 of cam rise 180a formed in radial disc cam 180 near the conclusion of a complete rotation thereof. Column spring 244 acts against ledge 246 to rotate feed roller 16 through a very small angle to the point where pawl I60 engages radial wall 52a, thereby finally positioning the feed roller for the next sheet separation and prefeed operation.
It will be noted particularly from FIG. 12, that the prefed sheet feeding rotation of the feed roller I6 occurs within the first approximately 60 of rotation of the gear segment disc I82. As seen from FIG. I, the sheets being separated, prefed and then fed are significantly longer in length than the circumference of feed roller 16, thus a complete revolution of the feed roller is not sufficient to clear the top sheet 100 from the sheet-handling apparatus I4. A complete feed roller revolu tion is sufficient however to advance a copy sheet from its position on the sheet stack 10 to the nip of feed rollers 28. At this point, feed rollers 28, in efi'ect, act to pull the top sheet without further rotation of feed roller 16 as the sheet is cleared from the sheet-handling apparatus 14. In order to facilitate this operation, a Teflon pad 250 (FIG. 2) is embedded in each gripper ring 68 carried by feed roller 16. The Teflon pads 250 are positioned such that they are aligned with idler feed roller I8 when the feed roller 16 is oriented for the beginning of a sheet separation and prefeed operation which is also its orientation during the time that a prefed sheet is being cleared from the sheet-handling apparatus 14 by feed rollers 28. The Teflon pads 250 thus provide a relatively frictionless surface over which die sheets may be dragged, and thus damage to the sheet is avoided.
An additional function of radial disc cam I84 is to actuate a switch 252 seen in FIGS. 11 and 12. Switch 252 has a switchactuating arm 254 which is actuated by the raised cam surface 1840 of radial disc cam 184. This switch serves as an interlock switch which is used to enable the actuation of solenoid to initiate a sheet separation and a prefeed operation. While the actuating arm 254 of switch 252 bears against the lower cam surface 184c of radial disc cam 184, solenoid 100 is disabled and a sheet separation and prefeed operation cannot be initiated.
From the foregoing description, it is seen that the operating sequence, in summary, is as follows. Assuming a separated sheet has been prefed to the prefeed position, preparatory to the next copy cycle, the copier is turned on and on original document 36 is inserted into the nip of feed rollers 32 (FIG. 1). Switch 34 is triggered by the passage of the leading edge of the document beyond feed rollers 32 and, as a result, solenoid 186 (FIG. I3) is energized to engage one revolution clutch I76. The prefed sheet a, which is in the position shown in FIG. 9, is then fed by rotation of feed roller I6 through the corona charger 26 and into the nip of feed rollers 28, arriving there at the same time as does the leading edge of document sheet 36. The feed roller [6 remains in the orientation shown in FIGS. I and 7, while the sheet 100 is cleared from the sheet handling area by the feed rollers 28. Near the completion of the full 360 rotation of radial disc cam 184, the actuating arm 254 of switch 252 rides up on the raised cam surface 184a thereof. This occurs just after the time that the sheet I04 has cleared the area of the sheet-handling apparatus I4 and the resulting actuation of switch 252 triggers the solenoid to initiate a sheet separation and prefeed operation. Preferably, switch 22 is connected in series with switch 252 so that solenoid 100 cannot be triggered by switch 252 if a prefed sheet 100 has not cleared the sheet handling apparatus. As previously described, the sheet separation and prefeed actuating means 88 then operates to separate and advance a top sheet [0a from the sheet stack 10 and advance it to the prefeed position shown in FIG. 9.
Switch 22 senses whether or not a sheet is in the prefeed position preparatory the initiation of the next copy cycle. If when the copier is turned on and switch 22 senses that no sheet is in the prefeed position, such as would occur alter the copy paper supply has been exhausted and the stack I0 is replenished, the control logic may be designed such that switch 22 initiates a succession of sheet separation and prefeed operations until a sheet 100 is successfully separated and prefed. It will be observed that whatever the initial orientation of feed roller 16, it will be indexed through an increment equal to angle A (FIG. 10) each time the sheet separation and prefeed actuating mechanism 88 is triggered by solenoid I00. During one of these indexing steps, pawl I60 engages radial wall 520 to stop the feed roller 16 at the proper orientation for the initiation of a sheet separation and prefeed operation. This is permitted since gear segment will slip on ring after feed roller rotation has been inhibited by pawl 160. With the next pulsing of solenoid I00, a top sheet 10a is separated and prefed, whereupon switch 22 is tripped and the copier is then prepared for a normal copy cycle.
It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and, since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
Having described the invention, what is claimed as new and desire to secure by Letters Patent is:
l. Copy-sheet-handling apparatus for electrostatic copiers, said apparatus comprising, in combination:
A. a tray for supporting a stack of precut copy sheets;
B. a roller mounted for rotation, said roller including:
1. means for retaining a copy sheet against the periphery of said roller;
2. first and second drive-engagable means;
C. a carriage supporting the leading edge portions of the stacked sheets, said carriage I. adapted for movement from a first position remote from said roller to a second position adjacent said roller to lift the stack and press a surface portion of the top sheet thereof against said retaining means;
D. sheet separation and prefeed control means operating in sequence during each operating cycle to I. position said carriage to its second position,
2. actuate said retaining means to retain the top sheet against the periphery of said roller,
3. position said carriage to its first position to remove and separate the underlying sheets from the top sheet of the stack, and
4. engage said first drive-engagable means to rotate said roller through a first predetermined increment of rotation and thereby advance the separated top sheet to a prefeed position,
E. a pair of feed rollers stationed in the copy sheet feed beyond said prefeed position; and
F. copy cycle feed control means operating upon the initiation of a copy cycle to engage said second drive-engageble means and rotate said roller through a second increment of rotation to feed a prefed copy sheet from said prefeed position to the nip of said feed roller pair.
2. The apparatus defined in claim 1, wherein said first and second increments of roller rotation total 360".
3. The apparatus defined in claim 2, wherein said roller further includes detent means and said sheet separation and prefeed control means and said copy cycle feed control means act on said detent means to precisely define said first and second increments of roller rotation.
4. The apparatus defined in claim I, which further includes an idler roller positioned to coact with said roller to feed a copy sheet beyond said prefeed position.
5. The apparatus defined in claim 4, wherein the length of a copy sheet exceeds the circumference of said roller, and said roller includes a low friction surface segment angularly positioned to be juxtaposed to said idler roller when said roller concludes said second increment of rotation, whereby the trailing portion of the copy sheet may be drawn through the nip of said roller and said idler roller by said feed roller pair without rotating said roller.
6. The apparatus defined in claim 1, wherein the operating cycle of said sheet separation and prefeed control means is initiated during the concluding portion of the operating cycle of said copy cycle feed control means, said latter means including signal means for initiating an operating cycle of said sheet separation and prefeed control means.
7. The apparatus defined in claim I, wherein I. said sheet separation and prefeed control means in cludes:
a. a first shaft adapted to execute a complete revolution to define an operating cycle thereof,
b. a first cam on said first shaft adapted to position said carriage to its first and second positions,
c. a second cam on said first shaft adapted to actuate said retaining means, and
d. a first segment gear on said first shaft engaging said first drive-engagable means, and
2. said copy cycle control means includes:
a. a second shaft adapted to execute a complete revolu tion to define an operating cycle thereof b. a third cam on said second shaft adapted to position said carriage to its first and second positions,
c. a second segment gear on said second shaft engaging said second drive-engagable means,
d. signal means for initiating an operating cycle of said sheet separation and prefeed control means, and
e. a fourth cam on said second shaft adapted to actuate said signal means during the concluding portion of the operating cycle of said copy cycle feed control means.
8. The apparatus defined in claim 7, wherein said roller carries a detent disc having first and second detents for defining first and second angular detent positions for said roller, said apparatus further including:
A. a pawl carried by a detent release arm, said detent release arm I. being actuated by said sheet separation and prefeed control means to disengage said pawl from said first detent and release said roller for rotation from said first detent position through said first increment of rotation to said second detent position where said pawl engages said second detent, and
2. being actuated by said copy cycle feed control means to disengage said pawl from said second detent and release said roller for rotation from said second detent position through said second increment of rotation to said first detent position where said pawl engages said first detent.
9. The apparatus defined in claim 7, wherein said second segment gear disengagcs said second drive-engagable means before said roller reaches said first detent position and said copy cycle feed control means further includes resilient means engaging said detent disc to rotate said roller to said first detent position.
10. The apparatus defined in claim I, wherein said carriage includes a stop element engaging the leadin edges of the underlytng sheets of the stack during feeding o the separated top sheet.
It. The apparatus defined in claim 1, wherein said retaining means comprises negative pressure-generating means selfcontained within said roller for creating a suction at ports formed in the periphery of said roller.
12. The apparatus defined in claim I, which further includes sensing means for detecting the presence of a sheet in the prefeed position.
13. Copy-sheet-handling apparatus for electrostatic copiers, said apparatus comprising, in combination:
A. a roller mounted for rotation, said roller including:
1. self-contained suction-generating means for creating a suction force at a port formed in the peripheral surface thereof, and
2. first and second drive-engagable means;
B. a tray for supporting a stack of precut copy sheets;
C. a carriage movable toward and away from said roller and carrying a pressure pad aligned with said port for lifting the stack to press a surface portion of the top sheet into sealing relation with said port;
D. sheet separation and prefeed control means operating said carriage and said suction generating means to retain the top sheet against said roller as said carriage is moved away from said roller to separate the top sheet from the sheet stack and engaging said first drive-engagable means to rotate said roller through a first predetermined increment of rotation and thereby advance the separated top sheet to a prefeed position;
E. copy cycle feed control means operating upon the initiation of a copy cycle to engage said second drive-engageble means and rotate said roller through a second increment of rotation to feed a prefed copy sheet beyond its prefeed position; and
F. a pair of feed rollers engaging the leading edge of the prefed copy sheet shortly before the conclusion of said second increment of roller rotation.
14. The apparatus defined in claim l3, wherein said roller carries detent means acted upon by said sheet separation and prefeed control means and said copy cycle feed control means to define said first and second increments of roller rotation, said first and second increments of roller rotation totaling 360".
IS. The apparatus defined in claim 13, wherein said suctiongenerating means comprises a bellows, said sheet separation and prefeed control means acting on said bellows during the operating cycle thereof to expand and compress said bellows to create said suction force.
16. The apparatus defined in claim 14, wherein said roller carries a resilient ring for coaction with an idler roller to feed a separated top sheet, said port opening at the periphery of said ring, the length of a copy sheet exceeding the circumference of said roller, is low-friction surface segment imbedded in said ring at an angular position to be juxtaposed with said idler roller when said roller concludes said second increment of rotation, whereby the trailing portion of the copy sheet may be readily drawn through the nip of said ring and said idler roller by said feed roller pair without rotation of said roller,
17. The apparatus defined in claim 16, wherein said copy cycle feed control means further includes signal means actu ated during the conclu;ing portion of the operating cycle thereof and after a copy sheet has been drawn completely through the nip of said roller ring and said idler roller to in itiate an operating cycle of said sheet separation and prefeed control means.
0 e e a e

Claims (24)

1. Copy-sheet-handling apparatus for electrostatic copiers, said apparatus comprising, in combination: A. a tray for supporting a stack of precut copy sheets; B. a roller mounted for rotation, said roller including: 1. means for retaining a copy sheet against the periphery of said roller; 2. first and second drive-engagable means; C. a carriage supporting the leading edge portions of the stacked sheets, said carriage 1. adapted for movement from a first position remote from said roller to a second position adjacent said roller to lift the stack and press a surface portion of the top sheet thereof against said retaining means; D. sheet separation and prefeed control means operating in sequence during each operating cycle to 1. position said carriage to its second position, 2. actuate said retaining means to retain the top sheet against the periphery of said roller, 3. position said carriage to its first position to remove and separate the underlying sheets from the top sheet of the stack, and 4. engage said first drive-engagable means to rotate said roller through a first predetermined increment of rotation and thereby advance the separated top sheet to a prefeed position, E. a pair of feed rollers stationed in the copy sheet feed beyond said prefeed position; and F. copy cycle feed control means operating upon the initiation of a copy cycle to engage said second drive-engagable means and rotate said roller through a second increment of rotation to feed a prefed copy sheet from said prefeed position to the nip of said feed roller pair.
2. actuate said retaining means to retain the top sheet against the periphery of said roller,
2. first and second drive-engagable means; C. a carriage supporting the leading edge portions of the stacked sheets, said carriage
2. The apparatus defined in claim 1, wherein said first anD second increments of roller rotation total 360*.
2. being actuated by said copy cycle feed control means to disengage said pawl from said second detent and release said roller for rotation from said second detent position through said second increment of rotation to said first detent position where said pawl engages said first detent.
2. first and second drive-engagable means; B. a tray for supporting a stack of precut copy sheets; C. a carriage movable toward and away from said roller and carrying a pressure pad aligned with said port for lifting the stack to press a surface portion of the top sheet into sealing relation with said port; D. sheet separation and prefeed control means operating said carriage and said suction generating means to retain the top sheet against said roller as said carriage is moved away from said roller to separate the top sheet from the sheet stack and engaging said first drive-engagable means to rotate said roller through a first predetermined increment of rotation and thereby advance the separated top sheet to a prefeed position; E. copy cycle feed control means operating upon the initiation of a copy cycle to engage said second drive-engagable means and rotate said roller through a second increment of rotation to feed a prefed copy sheet beyond its prefeed position; and F. a pair of feed rollers engaging the leading edge of the prefed copy sheet shortly before the conclusion of said second increment of roller rotation.
2. said copy cycle control means includes: a. a second shaft adapted to execute a complete revolution to define an operating cycle thereof, b. a third cam on said second shaft adapted to position said carriage to its first and second positions, c. a second segment gear on said second shaft engaging said second drive-engagable means, d. signal means for initiating an operating cycle of said sheet separation and prefeed control means, and e. a fourth cam on said second shaft adapted to actuate said signal means during the concluding portion of the operating cycle of said copy cycle feed control means.
3. The apparatus defined in claim 2, wherein said roller further includes detent means and said sheet separation and prefeed control means and said copy cycle feed control means act on said detent means to precisely define said first and second increments of roller rotation.
3. position said carriage to its first position to remove and separate the underlying sheets from the top sheet of the stack, and
4. engage said first drive-engagable means to rotate said roller through a first predetermined increment of rotation and thereby advance the separated top sheet to a prefeed position, E. a pair of feed rollers stationed in the copy sheet feed beyond said prefeed position; and F. copy cycle feed control means operating upon the initiation of a copy cycle to engage said second drive-engagable means and rotate said roller through a second increment of rotation to feed a prefed copy sheet from said prefeed position to the nip of said feed roller pair.
4. The apparatus defined in claim 1, which further includes an idler roller positioned to coact with said roller to feed a copy sheet beyond said prefeed position.
5. The apparatus defined in claim 4, wherein the length of a copy sheet exceeds the circumference of said roller, and said roller includes a low friction surface segment angularly positioned to be juxtaposed to said idler roller when said roller concludes said second increment of rotation, whereby the trailing portion of the copy sheet may be drawn through the nip of said roller and said idler roller by said feed roller pair without rotating said roller.
6. The apparatus defined in claim 1, wherein the operating cycle of said sheet separation and prefeed control means is initiated during the concluding portion of the operating cycle of said copy cycle feed control means, said latter means including signal means for initiating an operating cycle of said sheet separation and prefeed control means.
7. The apparatus defined in claim 1, wherein
8. The apparatus defined in claim 7, wherein said roller carries a detent disc having first and second detents for defining first and second angular detent positions for said roller, said apparatus further including: A. a pawl carried by a detent release arm, said detent release arm
9. The apparatus defined in claim 7, wherein said second segment gear disengages said second drive-engagable means before said roller reaches said first detent position and said copy cycle feed control means further includes resilient means engaging said detent disc to rotate said roller to said first detent position.
10. The apparatus defined in claim 1, wherein said carriage includes a stop element engaging the leading edges of the underlying sheets of the stack during feeding of the separated top sheet.
11. The apparatus defined in claim 1, wherein said retaining means comprises negative pressure-generating means self-contained within said roller for creating a suction at pOrts formed in the periphery of said roller.
12. The apparatus defined in claim 1, which further includes sensing means for detecting the presence of a sheet in the prefeed position.
13. Copy-sheet-handling apparatus for electrostatic copiers, said apparatus comprising, in combination: A. a roller mounted for rotation, said roller including:
14. The apparatus defined in claim 13, wherein said roller carries detent means acted upon by said sheet separation and prefeed control means and said copy cycle feed control means to define said first and second increments of roller rotation, said first and second increments of roller rotation totaling 360*.
15. The apparatus defined in claim 13, wherein said suction-generating means comprises a bellows, said sheet separation and prefeed control means acting on said bellows during the operating cycle thereof to expand and compress said bellows to create said suction force.
16. The apparatus defined in claim 14, wherein said roller carries a resilient ring for coaction with an idler roller to feed a separated top sheet, said port opening at the periphery of said ring, the length of a copy sheet exceeding the circumference of said roller, a low-friction surface segment imbedded in said ring at an angular position to be juxtaposed with said idler roller when said roller concludes said second increment of rotation, whereby the trailing portion of the copy sheet may be readily drawn through the nip of said ring and said idler roller by said feed roller pair without rotation of said roller.
17. The apparatus defined in claim 16, wherein said copy cycle feed control means further includes signal means actuated during the concluding portion of the operating cycle thereof and after a copy sheet has been drawn completely through the nip of said roller ring and said idler roller to initiate an operating cycle of said sheet separation and prefeed control means.
US74349A 1970-09-22 1970-09-22 Copy sheet handling apparatus for electrostatic office copiers Expired - Lifetime US3640523A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7434970A 1970-09-22 1970-09-22

Publications (1)

Publication Number Publication Date
US3640523A true US3640523A (en) 1972-02-08

Family

ID=22119088

Family Applications (1)

Application Number Title Priority Date Filing Date
US74349A Expired - Lifetime US3640523A (en) 1970-09-22 1970-09-22 Copy sheet handling apparatus for electrostatic office copiers

Country Status (1)

Country Link
US (1) US3640523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921523A (en) * 1972-09-28 1975-11-25 Jahme Hans Joachim Sheet take off device for printing or duplicating machines
US4452440A (en) * 1981-08-28 1984-06-05 Emf Corporation Paper feeding apparatus and cart
US6164043A (en) * 1999-09-29 2000-12-26 Pitney Bowes Inc. Method and apparatus for opening an envelope in an inserting machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2184229A (en) * 1936-12-24 1939-12-19 Spiess Georg Control device for sheet feeding apparatus
US3265383A (en) * 1965-04-22 1966-08-09 Eastman Kodak Co Film sheet feeder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2184229A (en) * 1936-12-24 1939-12-19 Spiess Georg Control device for sheet feeding apparatus
US3265383A (en) * 1965-04-22 1966-08-09 Eastman Kodak Co Film sheet feeder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921523A (en) * 1972-09-28 1975-11-25 Jahme Hans Joachim Sheet take off device for printing or duplicating machines
US4452440A (en) * 1981-08-28 1984-06-05 Emf Corporation Paper feeding apparatus and cart
US6164043A (en) * 1999-09-29 2000-12-26 Pitney Bowes Inc. Method and apparatus for opening an envelope in an inserting machine

Similar Documents

Publication Publication Date Title
US4169674A (en) Recirculating sheet feeder
US3936041A (en) Automatic original supply device for electronic copying apparatus
JPS61226424A (en) Sheet feeder
US3866901A (en) Reverse buckle feeder
US3640523A (en) Copy sheet handling apparatus for electrostatic office copiers
US4632376A (en) Drive mechanism for document copier
GB1229323A (en)
US3637201A (en) Sheet separation and prefeed apparatus
US5022639A (en) Document feeder with improved recyclable document control
JPS597102B2 (en) Automatic document feeder
JPH0238506B2 (en) FUKUSHAKINOYOSHI KYOKYUSOCHI
JPH0117547Y2 (en)
JPS5517151A (en) Original feeder of copying machine
JPH0541539B2 (en)
JPH0797078A (en) Paper feeder
JPS59116666A (en) Automatic original supply device
JPS5934897Y2 (en) Original detection control device
JPH0221470Y2 (en)
US4674738A (en) Stop-mechanism for document copier
US4936563A (en) Document feeder with improved adjustable support control panels
JPS6151454A (en) Paper feeder
US4925175A (en) Apparatus for feeding sheets to a copying machine
JPH0628510Y2 (en) Paper feeder
GB1257994A (en)
EP0224171B1 (en) Automatic document feeder for copying machines