US3637486A - Steam distilling pyrolysis gasoline - Google Patents

Steam distilling pyrolysis gasoline Download PDF

Info

Publication number
US3637486A
US3637486A US806306A US3637486DA US3637486A US 3637486 A US3637486 A US 3637486A US 806306 A US806306 A US 806306A US 3637486D A US3637486D A US 3637486DA US 3637486 A US3637486 A US 3637486A
Authority
US
United States
Prior art keywords
steam
dripolene
column
pyrolysis gasoline
higher boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US806306A
Inventor
Martin P Grosboll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Atlantic Richfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Richfield Co filed Critical Atlantic Richfield Co
Application granted granted Critical
Publication of US3637486A publication Critical patent/US3637486A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for

Definitions

  • the present invention is directed to the separation of hydrocarbon fractions. More particularly, the invention is directed to the removal of higher boiling hydrocarbons, such as lubricants from a byproduct obtained in the pyrolysis of hydrocarbons such as ethane, propane and naphtha to produce ethylene.
  • the pyrolysis byproduct boiling up to and including the gasoline range is known in the art as dripolene or pyrolysis gasoline and has commercial value when boiling within the range of about 95 to 400 F.
  • dripolene must have an end boiling point of about 400 F. or less.
  • Higher boiling hydrocarbons, such as found in lube oil, when mixed with dripolene will raise the end boiling point above 400 F.
  • Lube oil becomes mixed with the dripolene in the process gas compressors when lube oil is injected to prevent fouling of the compressor internals.
  • an effective method of separating the dripolene and higher boiling oils is of value.
  • Systems such as flashing the dripolene are not effective since at low temperatures the recovery is poor and the dripolene fraction tends to polymerize at higher temperatures due to the presence of materials, such as diolefins and styrene.
  • the present invention avoids such problems by steam stripping the dripolene-higher boiling oil mixture with condensation of at least part of the steam.
  • Steam stripping lowers the hydrocarbon partial pressure so that the separation may be effected at a temperature where polymerization is reduced.
  • condensing part of the steam e.g., at least about 5, or even at least about weight percent say up to about 50 weight percent, introduced into the column used in the method of this invention, no feed preheating is required thereby eliminating a potential fouling problem through polymerization.
  • the total steam added is considerably reduced over that which would be required if the heat for dripolene vaporization were to come solely from the superheat of the steam.
  • the condensed steam can be easily separated from the unvaporized oil bottoms and uncondensed overhead steam is also easily separated from the distilled dripolene.
  • the process of this invention is characterized by feeding the dripolene-higher boiling oil mixture essentially as a liquid to a stripping column where steam is fed directly into contact with the mixture.
  • the stripping column may be of any vapor-liquid contacting type, as, for example, a packed column or a tray column. Where tray columns are utilized, it is preferable to introduce the steam immediately below the trays. A portion of the steam is condensed to provide heat for vaporization and driving off the dripolene which is taken overhead from the stripper, cooled, and condensed. Overhead steam is also separated in the cooling-condensing step to produce a saleable dripolene product. Condensed steam and unvaporized oil can be removed from the bottom of the column via separate line.
  • the dripolene-higher boiling oil mixture is fed directly into the steam stripper, without sufficient preheating, that is, at a temperature of up to about 190 F., e.g., from about ambient to about 190 F., preferably about 140 to 180 F. and even more preferably about 165 F., and contacted with steam in the column at a temperature sufficient to strip substantially all of the dripolene, but without substantial polymerization, e.g., about 200 to 235 F., preferably about 215 to 230 F., and at reduced, atmospheric, or slightly higher pressures, e.g., up to about 30 p.s.i.g., preferably up to about p.s.i.g.
  • the temperature difference between the dripolene-higher boiling oil feed and the steam can be small as long as sufficient heat is supplied by the steam to cause vaporization of the dripolene.
  • the steam can conveniently be introduced into the stripping column at up to about 150 or more p.s.i.g., e.g., at, for instance, temperatures of up to about 370 F.
  • the overhead fraction consisting of uncondensed steam and dripolene is cooled and condensed, e.g., at about 90 to 130 F., preferably at about to l 10 F., and at atmospheric pressure.
  • Condensed materials separate in a tank from which the waste water and dripolene product are withdrawn by separate lines.
  • Condensed steam and a material being substantially mixed higher boiling oils form two phases in the bottom of the stripper and can be withdrawn via separate lines from the bottom of the column.
  • the invention is further illustrated by the following example.
  • a method of separating pyrolysis gasoline from higher boiling hydrocarbons contained therein which comprises charging said pyrolysis gasoline in the liquid phase and at a temperature of up to about 190 F. to a stripping column, charging steam to said column to contact said pyrolysis gasoline containing higher boiling hydrocarbons and condensing at least about 5 weight percent of the steam charged to said column while maintaining said pyrolysis gasoline in the column at a temperature of about 200 to 235 F., said condensed steam and said higher boiling hydrocarbons in liquid phase forming in the lower portion of said column, withdrawing steam and pyrolysis gasoline as overhead from the column, and separately withdrawing said condensed steam and said higher boiling hydrocarbons from the lower portion of the column.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A method of separating dripolene from entrained higher boiling hydrocarbons using a steam stripper is disclosed. The stripper is operated without sufficient preheating of feed, with partial condensation of the steam, and at about 200* to 235* F.

Description

United States Patent Grosboll [451 Jan. 25, 1972 [54] STEAM DISTILLING PYROLYSIS GASOLINE [72] Inventor: Martin P. Grosboll, Homewood, Ill.
[73] Assignee: Atlantic Richiield Company, New York,
[22] Filed: Mar.11,1969
[21] Appl.No.: 806,306
[52] US. Cl ..208/363, 208/102 [51] [58] 208/363, 102, 255,48
Primary ExaminerHerbert Levine AttorneyJ0hn W. Behringer, Eugene L. Bernard, Martin .1. Brown, James N. Dresser, W. Brown Morton, Jr., John T. Roberts, Malcolm L. Sutherland and Morton, Bernard, Brown, Roberts & Sutherland s7 ABSTRACT A method of separating dripolene from entrained higher boilin g hydrocarbons using a steam stripper is disclosed. The stripper is operated without sufficient preheating of feed, with partial condensation of the steam, and at about 200 to 235 F.
3 Claims, N0 Drawings STEAM DISTILLING PYROLYSIS GASOLINE The present invention is directed to the separation of hydrocarbon fractions. More particularly, the invention is directed to the removal of higher boiling hydrocarbons, such as lubricants from a byproduct obtained in the pyrolysis of hydrocarbons such as ethane, propane and naphtha to produce ethylene.
The pyrolysis byproduct boiling up to and including the gasoline range is known in the art as dripolene or pyrolysis gasoline and has commercial value when boiling within the range of about 95 to 400 F. However, for greater value dripolene must have an end boiling point of about 400 F. or less. Higher boiling hydrocarbons, such as found in lube oil, when mixed with dripolene will raise the end boiling point above 400 F. Lube oil becomes mixed with the dripolene in the process gas compressors when lube oil is injected to prevent fouling of the compressor internals. Thus an effective method of separating the dripolene and higher boiling oils is of value. Systems such as flashing the dripolene are not effective since at low temperatures the recovery is poor and the dripolene fraction tends to polymerize at higher temperatures due to the presence of materials, such as diolefins and styrene.
The present invention, however, avoids such problems by steam stripping the dripolene-higher boiling oil mixture with condensation of at least part of the steam. Steam stripping lowers the hydrocarbon partial pressure so that the separation may be effected at a temperature where polymerization is reduced. By purposely condensing part of the steam, e.g., at least about 5, or even at least about weight percent say up to about 50 weight percent, introduced into the column used in the method of this invention, no feed preheating is required thereby eliminating a potential fouling problem through polymerization. Also, by condensing part of the steam in the stripper, the total steam added is considerably reduced over that which would be required if the heat for dripolene vaporization were to come solely from the superheat of the steam. The condensed steam can be easily separated from the unvaporized oil bottoms and uncondensed overhead steam is also easily separated from the distilled dripolene.
In general the process of this invention is characterized by feeding the dripolene-higher boiling oil mixture essentially as a liquid to a stripping column where steam is fed directly into contact with the mixture. The stripping column may be of any vapor-liquid contacting type, as, for example, a packed column or a tray column. Where tray columns are utilized, it is preferable to introduce the steam immediately below the trays. A portion of the steam is condensed to provide heat for vaporization and driving off the dripolene which is taken overhead from the stripper, cooled, and condensed. Overhead steam is also separated in the cooling-condensing step to produce a saleable dripolene product. Condensed steam and unvaporized oil can be removed from the bottom of the column via separate line.
More specifically, the dripolene-higher boiling oil mixture is fed directly into the steam stripper, without sufficient preheating, that is, at a temperature of up to about 190 F., e.g., from about ambient to about 190 F., preferably about 140 to 180 F. and even more preferably about 165 F., and contacted with steam in the column at a temperature sufficient to strip substantially all of the dripolene, but without substantial polymerization, e.g., about 200 to 235 F., preferably about 215 to 230 F., and at reduced, atmospheric, or slightly higher pressures, e.g., up to about 30 p.s.i.g., preferably up to about p.s.i.g. The temperature difference between the dripolene-higher boiling oil feed and the steam can be small as long as sufficient heat is supplied by the steam to cause vaporization of the dripolene. The steam can conveniently be introduced into the stripping column at up to about 150 or more p.s.i.g., e.g., at, for instance, temperatures of up to about 370 F.
The overhead fraction, consisting of uncondensed steam and dripolene is cooled and condensed, e.g., at about 90 to 130 F., preferably at about to l 10 F., and at atmospheric pressure. These condensed materials separate in a tank from which the waste water and dripolene product are withdrawn by separate lines. Condensed steam and a material being substantially mixed higher boiling oils form two phases in the bottom of the stripper and can be withdrawn via separate lines from the bottom of the column.
The invention is further illustrated by the following example.
Sixteen and one half barrels per hour at 165 F. of higher boiling oil-containing dripolene is contacted with 3,938 lbs/hr. of p.s.i.g. steam in a six (6) tray (20-inch spacing) vapor-liquid contacting column which is operated at 218 F. at the top and 228 F. at the bottom. The steam enters the column just below the bottom tray. The overhead is cooled and condensed to 105 F. at atmospheric pressure and 11.5 bbls./hr. of dripolene product are separated as the upper phase in the condenser, water being removed as the lower phase. Five barrels per hour of substantially higher boiling oil are drawn from the upper liquid phase in the bottom of the column while water is taken from the lower phase as bottoms. The lube oil draw is taken below the steam inlet line.
The following table indicates the substantially complete separation of high-boiling lube oils from the dripolene product by the method of this invention.
(1) Steam to stripper (lb./hr.)
It is claimed:
1. A method of separating pyrolysis gasoline from higher boiling hydrocarbons contained therein which comprises charging said pyrolysis gasoline in the liquid phase and at a temperature of up to about 190 F. to a stripping column, charging steam to said column to contact said pyrolysis gasoline containing higher boiling hydrocarbons and condensing at least about 5 weight percent of the steam charged to said column while maintaining said pyrolysis gasoline in the column at a temperature of about 200 to 235 F., said condensed steam and said higher boiling hydrocarbons in liquid phase forming in the lower portion of said column, withdrawing steam and pyrolysis gasoline as overhead from the column, and separately withdrawing said condensed steam and said higher boiling hydrocarbons from the lower portion of the column.
2. The method of claim 1 wherein the temperature of the pyrolysis gasoline charged to the column is about to F. and the temperature of the pyrolysis gasoline in the column is about 215 to 230 F.
3. The method of claim 2 in which about 10 to 50 weight percent of the steam charged to the column is condensed therein.

Claims (2)

  1. 2. The method of claim 1 wherein the temperature of the pyrolysis gasoline charged to the column is about 140* to 180* F. and the temperature of the pyrolysis gasoline in the column is about 215* to 230* F.
  2. 3. The method of claim 2 in which about 10 to 50 weight percent of the steam charged to the column is condensed therein.
US806306A 1969-03-11 1969-03-11 Steam distilling pyrolysis gasoline Expired - Lifetime US3637486A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80630669A 1969-03-11 1969-03-11

Publications (1)

Publication Number Publication Date
US3637486A true US3637486A (en) 1972-01-25

Family

ID=25193766

Family Applications (1)

Application Number Title Priority Date Filing Date
US806306A Expired - Lifetime US3637486A (en) 1969-03-11 1969-03-11 Steam distilling pyrolysis gasoline

Country Status (1)

Country Link
US (1) US3637486A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038614A (en) * 1930-05-03 1936-04-28 Gulf Oil Corp Of Pennsylvania Degumming gasoline and the like
US2056978A (en) * 1930-04-26 1936-10-13 Pure Oil Co Polymerization of hydrocarbon oils
US3481859A (en) * 1966-04-13 1969-12-02 Universal Oil Prod Co Separation of a reaction effluent containing constituents subject to thermal degradation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2056978A (en) * 1930-04-26 1936-10-13 Pure Oil Co Polymerization of hydrocarbon oils
US2038614A (en) * 1930-05-03 1936-04-28 Gulf Oil Corp Of Pennsylvania Degumming gasoline and the like
US3481859A (en) * 1966-04-13 1969-12-02 Universal Oil Prod Co Separation of a reaction effluent containing constituents subject to thermal degradation

Similar Documents

Publication Publication Date Title
US2437649A (en) Separation of phenols from hydrocarbon distillates by steam distillation
US2324955A (en) Process for removing water from hydrocarbon vapors
US2265220A (en) Process for recovering toluene
US2679472A (en) Separation of hydrocarbons by azeotropic distillation
US2555939A (en) Distillation of styrene from polymers
EP0462734B1 (en) Azeotropic distillation process for recovery of diamondoid compounds from hydrocarbon streams
US2487147A (en) Fractionating methane and ethane from hydrocarbon mixtures
US3320158A (en) Crude oil fractionation method
US2459403A (en) Segregation of c5 hydrocarbons by extractive and azeotropic distillation
US2379518A (en) Recovery of valuable hydrocarbons
US2322881A (en) Solvent treating
US3084108A (en) Method of separating ethylbenzene from styrene by low pressure drop distillation
US2172560A (en) Manufacture of motor fuels
US3761402A (en) Process for the separation of aromatic hydrocarbons from a mixed hydrocarbon feedstock
US3575818A (en) Manufacture of absolute ethanol using pentane as azeotroping agent
US3725254A (en) Process for the separation of aromatic hydrocarbons from a mixed hydrocarbon feedstock
US3637486A (en) Steam distilling pyrolysis gasoline
US2461346A (en) Separation of hydrocarbons
US2296992A (en) Separating hydrocarbon fluids
US3065167A (en) Process for separating aromatic hydrocarbons
US2335162A (en) Process for the separation of hydrocarbon gases
US2057004A (en) Method and apparatus for distillation of hydrocarbons
US2366901A (en) Chemical process
US2871275A (en) Separation of selected components from hydrocarbon mixtures
US2411808A (en) Separation of hydrocarbons from water miscible liquids by distillation and washing