US3634532A - Process for the dealkylation of aromatic hydrocarbons - Google Patents
Process for the dealkylation of aromatic hydrocarbons Download PDFInfo
- Publication number
- US3634532A US3634532A US78234A US3634532DA US3634532A US 3634532 A US3634532 A US 3634532A US 78234 A US78234 A US 78234A US 3634532D A US3634532D A US 3634532DA US 3634532 A US3634532 A US 3634532A
- Authority
- US
- United States
- Prior art keywords
- dealkylation
- beryllium
- steam
- nickel
- aromatic hydrocarbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C4/00—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
- C07C4/08—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
- C07C4/12—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
- C07C4/14—Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
- C07C4/20—Hydrogen being formed in situ, e.g. from steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/755—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with alkali- or alkaline earth metals or beryllium
Definitions
- Aromatic hydrocarbons which are preferably used in the present invention include, for example, toluene, 0-, m-, and p-xylenes, ethyl-benzene, cumene and methylnaphthalen. These may be used either singly or in the form Sendai-shi, Japan, assignors t0 Idemitsu Kosan Co., 5 of fixtures- Ltd., and Mitsubishi Petrochemical Company Ltd.
- the Catalyst p y in the present invention is P No Prawing. Filed Oct. 5, 1970, Ser. No. 78,234 pared in such a manner that basic beryllium carbonate Clalms P a applicafioll p Apr.
- beryllium oxide or beryllium hydroxide may also be employed instead of APSTRACT OF THE DISCLOSURE basic beryllium carbonate, and the nickel source is not Aromatic hydrocarbons are dealkylated in the presence limit d t i k l i t only, steam and a nickel-beryllium Oxide catalyst having 3
- the catalyst used in the present invention is comnickel content of from 5 to 80 weight percent. The cataposed substanially of nickel and beryllium oxide.
- the Y 18 p p y lmpfegnatihg basic beryllium e b nickel content of the catalyst may range from 5 to 80 nate, beryllium oxide, or beryllium hydroxide with an w ight percent, aflueous Solution of a nickel compound Such as el 20
- the dealkylation reaction of the present invention is r rying the resulting P calcining it at about desirably effected at about 350 to 500 C. at atmospheric a stream of inert gas, then PellefiZing and pressure or under an increased pressure. In the reaction, reducing the resultant powder with hydrogen.
- the dethe space velocity is preferably about 1,500 to 6,000 alkylation is preferably carried out at a temperature of hr.
- the steam and aromatic hydrocarbon are and the starting aromatic hydrocarbon vapor, and the respectively employed in a molar ratio of about 3-19 to 1.
- the dealkylation is preferably carried out a space velocaromatic hydrocarbon is preferably about 0.8 to 4.3. ity of about 1500 to 6000 hr? based on the total volume Ordinarily, the molar ratio of the starting steam to the of steam and aromatic hydrocarbon vapor, and at a liquid starting aromatic hydrocarbon is about 3-19 to l. hourly space velocity of the aromatic hydrocarbon of The present invention is illustrated in further detail about 0.8 to 4.3. Surprisingly, dealkylation occurs with h reinb low with reference to examples. little disintegration of the benzene ring.
- EXAMPLES l-28 This invention relates to a process for the dealkylation Preparation of catalyst? of aromatic hydrocarbons. More particularly, the inven- A given amount of Powder of a desired Carbonate tion relates to a process for dealkylating aromatic hydrobasic carbonate) was addccl to an aqueous Solution c011- carbons by use of a nickel-beryllium oxide catalyst in the mining a given amount of mckel nitrate The mixture was presence of steam. heated gently on a water bath and evaporated to dryness.
- Example 26 beryllium oxide was used as the be yllium source; in Example 27, beryllium hydroxide was used as the beryllium source;
- Example 28 the calcination of catalyst was effected at 850 0.
- Example 26 beryllium oxide was used as the beryllium source.
- Example 27 beryllium hydroxide was used as the beryllium source.
- Example 28 the calcination of catalyst was effected at 850 C.
- a process for the dealkylation of an aromatic hydrocarbon characterized in that the dealkylation is effected by use of a nickel-beryllium oxide catalyst in the presence of steam.
- said nickelberyllium oxide catalyst is that which is obtained by impregnating a beryllium compound selected from the group consisting of beryllium basic carbonate, beryllium hydroxide and beryllium oxide with an aqueous solution of a water-soluble nickel compound, drying the impregnated mass and calcining it at about 500 C. in the-stream of an inert gas, forming the calcined product to suitable shape and then reducing it with hydrogen to have a catalyst substantially composed of nickel and beryllium oxide and having a nickel content of 5-80% by weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP45029777A JPS4934665B1 (fr) | 1970-04-09 | 1970-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3634532A true US3634532A (en) | 1972-01-11 |
Family
ID=12285438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US78234A Expired - Lifetime US3634532A (en) | 1970-04-09 | 1970-10-05 | Process for the dealkylation of aromatic hydrocarbons |
Country Status (5)
Country | Link |
---|---|
US (1) | US3634532A (fr) |
JP (1) | JPS4934665B1 (fr) |
DE (1) | DE2049151C3 (fr) |
FR (1) | FR2092252A5 (fr) |
GB (1) | GB1269925A (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268334A (en) * | 1991-11-25 | 1993-12-07 | Brush Wellman, Inc. | Production of beryllium oxide powders with controlled morphology and quality |
-
1970
- 1970-04-09 JP JP45029777A patent/JPS4934665B1/ja active Pending
- 1970-10-05 US US78234A patent/US3634532A/en not_active Expired - Lifetime
- 1970-10-07 DE DE2049151A patent/DE2049151C3/de not_active Expired
- 1970-10-16 FR FR7037515A patent/FR2092252A5/fr not_active Expired
- 1970-10-16 GB GB49332/70A patent/GB1269925A/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268334A (en) * | 1991-11-25 | 1993-12-07 | Brush Wellman, Inc. | Production of beryllium oxide powders with controlled morphology and quality |
Also Published As
Publication number | Publication date |
---|---|
GB1269925A (en) | 1972-04-06 |
JPS4934665B1 (fr) | 1974-09-17 |
FR2092252A5 (fr) | 1971-01-21 |
DE2049151A1 (fr) | 1971-10-21 |
DE2049151C3 (de) | 1975-10-30 |
DE2049151B2 (de) | 1975-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5210357A (en) | Composition of matter and method of oxidative conversion of organic compounds therewith | |
US2403757A (en) | Process of isomerizing dialkyl benzenes | |
US5160502A (en) | Composition of matter and method of oxidative conversion of organic compounds therewith | |
US2785209A (en) | Process for preparing aromatic hydrocarbons | |
CA1259301A (fr) | Composition et methode pour la conversion oxydative de composes organiques | |
Vaughan et al. | High-pressure oligomerization of propene over heteropoly acids | |
US2960545A (en) | Demethylation process for pseudocumene | |
US3204009A (en) | Process for the isomerization of olefins | |
US4177219A (en) | Process for selective ethyl scission of ethylaromatics to methylaromatics | |
US2375402A (en) | Method of reducing the carbonforming tendency of catalytic masses | |
US3109038A (en) | Catalytic alkylation of aromatics with paraffins | |
US2325287A (en) | Process for hydrocarbon conversion | |
US3634532A (en) | Process for the dealkylation of aromatic hydrocarbons | |
US3223743A (en) | Dehydrogenation of ethylbenzene | |
US2402740A (en) | Production of styrenes | |
US2377113A (en) | Dehydrogenation of hydrocarbons | |
US3691247A (en) | Selectively removing monoalkylbenzenes from mixtures thereof with dialkylbenzenes | |
US6437210B1 (en) | Mazzite supported catalyst | |
US4775654A (en) | Composition of matter | |
US2495700A (en) | Silica-alumina-nickel dehydrogenation catalyst | |
US2774801A (en) | Conversion of methylnaphthalenes | |
US3728410A (en) | Hydrocarbon conversion | |
US3299156A (en) | Dehydrocyclization catalyst and process | |
US3935126A (en) | Catalyst and method of oxydehydrogenation of alkyl aromatic compounds | |
US3767721A (en) | Process for isomerizing aromatic hydrocarbons |