US3631504A - Parabolic antenna with wave absorber at circumferential edge - Google Patents

Parabolic antenna with wave absorber at circumferential edge Download PDF

Info

Publication number
US3631504A
US3631504A US884832A US3631504DA US3631504A US 3631504 A US3631504 A US 3631504A US 884832 A US884832 A US 884832A US 3631504D A US3631504D A US 3631504DA US 3631504 A US3631504 A US 3631504A
Authority
US
United States
Prior art keywords
antenna
edge
parabolic antenna
parabolic
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US884832A
Inventor
Kunihiro Suetaki
Yoshiyuki Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3631504A publication Critical patent/US3631504A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/022Means for reducing undesirable effects for reducing the edge scattering of reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/001Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems for modifying the directional characteristic of an aerial

Definitions

  • This invention relates generally to a parabolic antenna, and more particularly to a parabolic antenna which is subject to microwaves being received and transmitted from a common station.
  • each repeater station commonly contains a receiving antenna, an amplifier and a transmitting antenna. The weak incoming signals are received by the receiving antenna, amplified, and retransmitted as strong signals to the next repeater station.
  • each of the repeater stations the receiving and trans mitting antennas are usually arranged in close proximity. Since directional antennas and reflectors are generally used, the major part of the transmitted wave is received by the following station. However, a part of the wave is turned backwardly to be received by the receiving antenna of the transmitting station.
  • the term A is generally used to represent the front-to-back signal ratio of an antenna. This term represents the ratio of the energy of the wave which is transmitted by the antenna in the direction of propagation, to the energy of the wave received by the same antenna from the opposite direction. For good communications, it is desired to have the ration A greater than 60 db.
  • the antennas are of the conventional parabolic type constructed of metal, wherein the frontto-back ratio is represented by:
  • A G
  • G the gain of the antenna.
  • horn antennas rather than the conventional parabolic type, since horn antennas have better directivity and greater front-to-back ratios.
  • horn antennas are generally very heavy requiring large steel towers to support them.
  • Another object of this invention is to provide a transmitting antenna which can be used in a repeater station in conjunction with a receiving antenna.
  • a further object of this invention is to improve the front-toback ratio of a conventional parabolic antenna by placing a wave absorber at the circumferential edge of the parabola.
  • a still further object of this invention is to improve the parabolic antenna by absorbing the incident waves on a transmitting antenna.
  • FIG. 1 is a block diagram of a repeater system used in a long-distance microwave communication system as is shown in the prior art
  • FIG. 2 shows the general arrangement of the elements of the system of FIG. 1;
  • FIG. 3 (a) shows in a transverse section a prior art parabolic antenna dish
  • FIG. 3 (b) shows in a transverse section a prior art parabolic antenna dish having a metal ring in the circumference thereof;
  • FIG. 4 shows in a partial transverse section a parabolic antenna dish having a wave absorber at its circumferential edge
  • FIG. 5 shows in a partial transverse section a parabolic antenna in accordance with this invention
  • FIG. 6 (a) shows graphically the relationship between the standing wave ratio and frequency
  • FIG. 6 (b) shows in section the wave absorber of this invention.
  • a repeater station which comprises a receiving antenna 1, an amplifier 2, and a transmitting antenna 3.
  • the transmitting antenna is within close proximity of the receiving antenna, and as a result a part of the wave incident upon the system is not only received by the receiving antenna 1, but also by the transmitting antenna 3.
  • FIG. 3 (a) shows the conventional parabolic antenna without the metal ring
  • FIG. 3 (b) shows the same antenna equipped with a metal ring 5.
  • the metal ring 5, is generally placed as at the outer edge of the parabolic antenna 4 and extends the cone shape of the antenna in a substantially cylindrical direction.
  • the scheme as shown in FIG. 3 (b) does improve the frontto-back ratio, but only to a limited degree.
  • the metal ring does not improve the front-to-back ratio, but on the other hand, because of its metallic composition, degrades the value A
  • the electric current flowing on the back surface of the parabolic antenna turns at its circumference to flow into the front side whereby a radiation field is produced which degrades the front-to-back ratio.
  • the invention as hereinafter described provides a novel parabolic antenna having, instead of the metal ring of the prior art, a wave absorber covering the metallic circumference of the antenna.
  • the outer surface of the metallic parabolic antenna is shown at 4, the outer rim of the circumference is covered by a wave absorber.
  • the absorber can be of any known wave-absorbing material, it is shown as being composedof two such layers, 6 and 7, different from each other.
  • the absorber is generally composed of dielectric material which is designed to reduce the attenuation of the waves at specific frequency ranges.
  • the attenuation of the wave is no more than 20 db. after the wave has passed through the layers 6 and 7, a considerable electric current can flow on the metallic surface, and hence it is advisable to obtain more than 20 db. attenuation through the layers 6 and 7.
  • the electric current flowing in the neighborhood of the edge of the parabolic antenna is attenuated by the wave absorber 6 and 7 provided in the vicinity of the internal edge of the circumference of the parabolic antenna.
  • the wave absorber as shown in FIG. 4 attenuated the waves appearing at edge of the antenna, indicated by region A, frequently waves are incident upon the antenna which turn on to the inside surface from just beyond the antenna in the region indicated at B. In the later region, since there is no wave absorber, the front-to-back ratio will not be affected. This problem can be eliminated by extending the wave absorber beyond the end of the parabolic antenna as shown in FIG. 5.
  • the circumference of the parabolic antenna 4 is shown inserted into the wave absorber so that no wave can turn into the opposite surface from the region B.
  • the absorbing layers 8 and 9 are thick in the part A as shown in FIG. 5 and an absorbing layer 10 covers the opposite surfaces of the circumference part of the parabolic antenna 4.
  • the required thickness of wave absorber can be decreased by utilizing wave-absorbing magnetic materials such as ferrite. If the thickness is not a consideration, the wave absorber can be formed only of dielectric materials.
  • the layer 9 of the part A is designed such that the attenuation in this layer is more than db. as previously mentioned, and hence a metal plate on the back surface is not necessary. Moreover, the front-to-back ratio is still more improved because the wave turning into the back surface is attenuated by the wave absorber 10.
  • FIG. 6 (a) shows graphically experimental results of the wave absorber shown in FIG. 6 (b), wherein the voltage standing wave ratio is plotted against frequency.
  • the curve 1 is the characteristics of the wave absorber having the metal plate 13 while the curve 2 shows performance of the same wave absorber with the metal plate 13 removed.
  • the parabolic antenna 4 shown in FIGS. 4 and 5 can be regarded as equivalent to the metal plate 13 of FIG. 6 (b), hence the part A of FIGS. 4 and 5 corresponds to the curve 1 of FIG. 6 (a) while the part B corresponds to the curve 2.
  • a parabolic antenna including a reflector having wave absorbing means in the vicinity of the circumferential edge of the reflector, said means comprising a plurality of layers of absorbing material wherein said edge is inserted into one of said layers such that said means covers the front and back surfaces of said edge and wherein said means extend beyond said edge of the reflector.
  • a repeater station for a long range communication system including a transmitting antenna, an amplifier system and a receiving antenna, said antennas including parabolic reflectors having wave absorbing means in the vicinity of the circumferential edge of the reflectors, said means comprising a plurality of layers of absorbing material wherein said edge is inserted into one of said layers such that said means covers the front and back surfaces of said edge and, wherein said means extend beyond said edge of the reflectors.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

An antenna having a parabolic reflector including a wave absorber in the vicinity of the circumferential edge of the reflector. The absorber is composed of layers of different absorbing materials. The edge of the reflector is inserted into one of the layers. The absorber extends beyond the edge of the reflector, thereby providing an improved front-to-back ratio of wave transmission.

Description

ates Mei Inventors Kunihiro Suetaki 10-1 1 Minami 3 ehome, Mequro-ku, Tokyo; Yoshiyuki Naito, No. 261-44 Suenaga, Kawassaki-shi, both of Ja Appl. No. 884,832
Filed Dec. 15, 1969 Patented Dec. 28, 1971 PARABOLIC ANTENNA WITH WAVE ABSORBER AT CIRCUMFERENTIAL EDGE 5 Claims, 8 Drawing Figs.
US. Cl 343/840 Int. Cl ..i-101q 19/12 Field of Search 343/781, 834, 836, 840, 912, 909
[56] References Cited UNITED STATES PATENTS 2,276,497 3/1942 Kroger 343/836 2,281,196 4/1942 Lindenblad 343/836 2,460,869 2/1949 Braden 343/840 3,101,473 8/1963 Fenlon 343/840 3,314,071 4/1967 Lader et a1 343/840 FOREIGN PATENTS 1,048,298 1/1959 Germany 343/840 Primary ExaminerEli Lieberman Attorney-Leonard H. King ABSTRACT: An antenna having a parabolic reflector including a wave absorber in the vicinity of the circumferential edge of the reflector. The absorber is composed of layers of different absorbing materials. The edge of the reflector is inserted into one of the layers. The absorber extends beyond the edge of the reflector, thereby providing an improved front-toback ratio of wave transmission.
PATENIED IIEC28 IHTI 3 1531,- 504 SHEET 1 UF 3 Fig.
I 2 3 f receiving am fie transmitting antenna p r antenna receiving transmitting antenna antenna ig, 3 (b) YOSH/YUK/ /\//9/ r0 1/4 1 flaw) A ORNEY standing wave ratio PATENTED UEC28 197i SHEET 3 BF 3 for 2200 MHZ I800 lebo 2000 2| 0o 2200 f( M H,)
INVENTOR Kw/H/eo fair/m5 Yaw/rum Mum ATTORNEY PARABOLIC ANTENNA WITll-I WAVE ABSORBER AT CIRCUMFERENTIAL EUGE BACKGROUND OF THE INVENTION This invention relates generally to a parabolic antenna, and more particularly to a parabolic antenna which is subject to microwaves being received and transmitted from a common station.
In long distance microwave systems, there exists the problem of providing microwave signals with sufficient energy to travel over the entire propagation path. As a result of losses suffered along the transmission path, frequently there is not suflicient reserve energy for the amplifier connected to the receiving antenna to reconstruct the signals. Although the transmitting system can be made to provide the signals with additional energy, there are practical limitations to this. A more common method of insuring the sufficiency of energy is to provide repeater stations at predetermined terminal span positions in the path. Each repeater station commonly contains a receiving antenna, an amplifier and a transmitting antenna. The weak incoming signals are received by the receiving antenna, amplified, and retransmitted as strong signals to the next repeater station.
In each of the repeater stations the receiving and trans mitting antennas are usually arranged in close proximity. Since directional antennas and reflectors are generally used, the major part of the transmitted wave is received by the following station. However, a part of the wave is turned backwardly to be received by the receiving antenna of the transmitting station.
The term A,,, is generally used to represent the front-to-back signal ratio of an antenna. This term represents the ratio of the energy of the wave which is transmitted by the antenna in the direction of propagation, to the energy of the wave received by the same antenna from the opposite direction. For good communications, it is desired to have the ration A greater than 60 db.
In most repeater stations, the antennas are of the conventional parabolic type constructed of metal, wherein the frontto-back ratio is represented by:
A =G|-(l to 13) db. where G is the gain of the antenna.
It is therefore possible to obtain an A, of more than 60 db. by increasing the gain, G. This can be done by increasing the diameter of the parabolic antenna. However, by doing so, the weight of the antenna is also increased so that the steel tower required for supporting the system becomes inevitably larger and moreover, it is difficult to keep an accurate surface on the antenna when the diameter is large. Therefore, both technically and economically it is not feasible to enlarge the diameter of the antenna.
Another solution is to use a horn antenna rather than the conventional parabolic type, since horn antennas have better directivity and greater front-to-back ratios. However, horn antennas are generally very heavy requiring large steel towers to support them.
Accordingly, it is an object of this invention to provide a parabolic antenna system having an improved front-to-back ratio.
Another object of this invention is to provide a transmitting antenna which can be used in a repeater station in conjunction with a receiving antenna.
A further object of this invention is to improve the front-toback ratio of a conventional parabolic antenna by placing a wave absorber at the circumferential edge of the parabola.
A still further object of this invention is to improve the parabolic antenna by absorbing the incident waves on a transmitting antenna.
BRIEF DESCRIPTION OF THE DRAWING This invention is described in greater detail in the following description when read in conjunction with the drawing in which:
FIG. 1 is a block diagram of a repeater system used in a long-distance microwave communication system as is shown in the prior art;
FIG. 2 shows the general arrangement of the elements of the system of FIG. 1;
FIG. 3 (a) shows in a transverse section a prior art parabolic antenna dish;
FIG. 3 (b) shows in a transverse section a prior art parabolic antenna dish having a metal ring in the circumference thereof;
FIG. 4 shows in a partial transverse section a parabolic antenna dish having a wave absorber at its circumferential edge;
FIG. 5 shows in a partial transverse section a parabolic antenna in accordance with this invention;
FIG. 6 (a) shows graphically the relationship between the standing wave ratio and frequency; and
FIG. 6 (b) shows in section the wave absorber of this invention.
Referring to FIGS. 1 and 2, a repeater station is shown which comprises a receiving antenna 1, an amplifier 2, and a transmitting antenna 3. As can be seen from FIG. 2, the transmitting antenna is within close proximity of the receiving antenna, and as a result a part of the wave incident upon the system is not only received by the receiving antenna 1, but also by the transmitting antenna 3.
In order to eliminate some of the microwaves incident on the receiving antenna, it has been known in the prior art to introduce a metal ring in the circumference of the outer surface of the parabolic antenna. FIG. 3 (a) shows the conventional parabolic antenna without the metal ring and FIG. 3 (b) shows the same antenna equipped with a metal ring 5. The metal ring 5, is generally placed as at the outer edge of the parabolic antenna 4 and extends the cone shape of the antenna in a substantially cylindrical direction.
The scheme as shown in FIG. 3 (b) does improve the frontto-back ratio, but only to a limited degree. For certain directions, the metal ring does prevent incident waves from arriving at the receiving antenna, Considering an angle 6, defined as the angle between the approaching waves and the axis of the parabolic surface, it can be seen that for waves approaching at an angle of 0=90, the metal ring will improve the front-to-back ratio A by interfering with the arriving incident waves. However, for waves approaching at an angle of 0=1 i.e., when the radiation field is in the back of the parabolic antenna, the metal ring does not improve the front-to-back ratio, but on the other hand, because of its metallic composition, degrades the value A The reason is that the electric current flowing on the back surface of the parabolic antenna turns at its circumference to flow into the front side whereby a radiation field is produced which degrades the front-to-back ratio.
The invention as hereinafter described provides a novel parabolic antenna having, instead of the metal ring of the prior art, a wave absorber covering the metallic circumference of the antenna.
Referring to FIG. 4, a portion of the outer surface of the metallic parabolic antenna is shown at 4, the outer rim of the circumference is covered by a wave absorber. Although the absorber can be of any known wave-absorbing material, it is shown as being composedof two such layers, 6 and 7, different from each other. The absorber is generally composed of dielectric material which is designed to reduce the attenuation of the waves at specific frequency ranges.
If the attenuation of the wave is no more than 20 db. after the wave has passed through the layers 6 and 7, a considerable electric current can flow on the metallic surface, and hence it is advisable to obtain more than 20 db. attenuation through the layers 6 and 7.
According to the fundamental feature of this invention, the electric current flowing in the neighborhood of the edge of the parabolic antenna is attenuated by the wave absorber 6 and 7 provided in the vicinity of the internal edge of the circumference of the parabolic antenna.
Although the wave absorber as shown in FIG. 4 attenuated the waves appearing at edge of the antenna, indicated by region A, frequently waves are incident upon the antenna which turn on to the inside surface from just beyond the antenna in the region indicated at B. In the later region, since there is no wave absorber, the front-to-back ratio will not be affected. This problem can be eliminated by extending the wave absorber beyond the end of the parabolic antenna as shown in FIG. 5.
In FIG. 5 the circumference of the parabolic antenna 4 is shown inserted into the wave absorber so that no wave can turn into the opposite surface from the region B. In other words, the absorbing layers 8 and 9 are thick in the part A as shown in FIG. 5 and an absorbing layer 10 covers the opposite surfaces of the circumference part of the parabolic antenna 4. The required thickness of wave absorber can be decreased by utilizing wave-absorbing magnetic materials such as ferrite. If the thickness is not a consideration, the wave absorber can be formed only of dielectric materials. The layer 9 of the part A is designed such that the attenuation in this layer is more than db. as previously mentioned, and hence a metal plate on the back surface is not necessary. Moreover, the front-to-back ratio is still more improved because the wave turning into the back surface is attenuated by the wave absorber 10.
FIG. 6 (a) shows graphically experimental results of the wave absorber shown in FIG. 6 (b), wherein the voltage standing wave ratio is plotted against frequency. In FIG. 6 (a) the curve 1 is the characteristics of the wave absorber having the metal plate 13 while the curve 2 shows performance of the same wave absorber with the metal plate 13 removed.
It is easily understood from these curves that the standing wave ratio less than 1.2 in high-frequency region (1,900 to 2,300 MHz.) is obtained by the above-mentioned wave absorber, regardless of the presence of the back plate 13.
The parabolic antenna 4 shown in FIGS. 4 and 5 can be regarded as equivalent to the metal plate 13 of FIG. 6 (b), hence the part A of FIGS. 4 and 5 corresponds to the curve 1 of FIG. 6 (a) while the part B corresponds to the curve 2.
Therefore, if the respective length of the parts A and B in FIGS. 4 and Sis about 5 cm., the property of the parabolic antenna can be much improved. And moreover, in FIG. 5, a part of the layer 8 corresponding to the part A is thicker than the other part of the layer 8 corresponding to the part B and covers the back surface of the parabolic antenna 4. so that the front-to-back ratio of the antenna can be improved.
There has been disclosed heretofore the best embodiment of the invention presently contemplated and it is to be understood that various changes and modifications may be made by those skilled in the art without departing from the spirit of the invention.
We claim:
1. A parabolic antenna including a reflector having wave absorbing means in the vicinity of the circumferential edge of the reflector, said means comprising a plurality of layers of absorbing material wherein said edge is inserted into one of said layers such that said means covers the front and back surfaces of said edge and wherein said means extend beyond said edge of the reflector.
2. A parabolic antenna as in claim 1 wherein said edge is inserted into the outermost layer of said means.
3. A parabolic antenna as in claim 1 wherein said material is of a dielectric type.
4. A parabolic antenna as in claim 1 wherein said material is of a ferrite type.
5. In a repeater station for a long range communication system including a transmitting antenna, an amplifier system and a receiving antenna, said antennas including parabolic reflectors having wave absorbing means in the vicinity of the circumferential edge of the reflectors, said means comprising a plurality of layers of absorbing material wherein said edge is inserted into one of said layers such that said means covers the front and back surfaces of said edge and, wherein said means extend beyond said edge of the reflectors.

Claims (5)

1. A parabolic antenna including a reflector having wave absorbing means in the vicinity of the circumferential edge of The reflector, said means comprising a plurality of layers of absorbing material wherein said edge is inserted into one of said layers such that said means covers the front and back surfaces of said edge and wherein said means extend beyond said edge of the reflector.
2. A parabolic antenna as in claim 1 wherein said edge is inserted into the outermost layer of said means.
3. A parabolic antenna as in claim 1 wherein said material is of a dielectric type.
4. A parabolic antenna as in claim 1 wherein said material is of a ferrite type.
5. In a repeater station for a long range communication system including a transmitting antenna, an amplifier system and a receiving antenna, said antennas including parabolic reflectors having wave absorbing means in the vicinity of the circumferential edge of the reflectors, said means comprising a plurality of layers of absorbing material wherein said edge is inserted into one of said layers such that said means covers the front and back surfaces of said edge and, wherein said means extend beyond said edge of the reflectors.
US884832A 1969-12-15 1969-12-15 Parabolic antenna with wave absorber at circumferential edge Expired - Lifetime US3631504A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88483269A 1969-12-15 1969-12-15

Publications (1)

Publication Number Publication Date
US3631504A true US3631504A (en) 1971-12-28

Family

ID=25385510

Family Applications (1)

Application Number Title Priority Date Filing Date
US884832A Expired - Lifetime US3631504A (en) 1969-12-15 1969-12-15 Parabolic antenna with wave absorber at circumferential edge

Country Status (1)

Country Link
US (1) US3631504A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056846A (en) * 1973-09-14 1975-05-17
US4965869A (en) * 1987-06-23 1990-10-23 Brunswick Corporation Aperture antenna having nonuniform resistivity
US6215453B1 (en) 1999-03-17 2001-04-10 Burt Baskette Grenell Satellite antenna enhancer and method and system for using an existing satellite dish for aiming replacement dish
EP1094546A2 (en) * 1999-10-19 2001-04-25 Nec Corporation Sector beam antenna with scattering component
US6331839B1 (en) 1999-03-17 2001-12-18 Burt Baskette Grenell Satellite antenna enhancer and method and system for using an existing satellite dish for aiming replacement dish
US20120012655A1 (en) * 2010-07-14 2012-01-19 Fujitsu Limited Antenna device and rfid system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276497A (en) * 1939-01-31 1942-03-17 Rca Corp Ultra high frequency antenna feedback balancer
US2281196A (en) * 1939-06-30 1942-04-28 Rca Corp Radio relay repeater
US2460869A (en) * 1946-03-14 1949-02-08 Rca Corp Antenna
DE1048298B (en) * 1957-03-20 1959-01-08 Deutsche Bundespost Antenna arrangement with a parabolic mirror fed in via a hollow pipe
US3101473A (en) * 1960-04-14 1963-08-20 Mcdonnell Aircraft Corp Parabolic reflector with rim of absorbing material to attenuate side lobes
US3314071A (en) * 1965-07-12 1967-04-11 Gen Dynamics Corp Device for control of antenna illumination tapers comprising a tapered surface of rf absorption material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2276497A (en) * 1939-01-31 1942-03-17 Rca Corp Ultra high frequency antenna feedback balancer
US2281196A (en) * 1939-06-30 1942-04-28 Rca Corp Radio relay repeater
US2460869A (en) * 1946-03-14 1949-02-08 Rca Corp Antenna
DE1048298B (en) * 1957-03-20 1959-01-08 Deutsche Bundespost Antenna arrangement with a parabolic mirror fed in via a hollow pipe
US3101473A (en) * 1960-04-14 1963-08-20 Mcdonnell Aircraft Corp Parabolic reflector with rim of absorbing material to attenuate side lobes
US3314071A (en) * 1965-07-12 1967-04-11 Gen Dynamics Corp Device for control of antenna illumination tapers comprising a tapered surface of rf absorption material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056846A (en) * 1973-09-14 1975-05-17
JPS5513162B2 (en) * 1973-09-14 1980-04-07
US4965869A (en) * 1987-06-23 1990-10-23 Brunswick Corporation Aperture antenna having nonuniform resistivity
US6215453B1 (en) 1999-03-17 2001-04-10 Burt Baskette Grenell Satellite antenna enhancer and method and system for using an existing satellite dish for aiming replacement dish
US6331839B1 (en) 1999-03-17 2001-12-18 Burt Baskette Grenell Satellite antenna enhancer and method and system for using an existing satellite dish for aiming replacement dish
EP1094546A2 (en) * 1999-10-19 2001-04-25 Nec Corporation Sector beam antenna with scattering component
EP1094546A3 (en) * 1999-10-19 2002-10-09 Nec Corporation Sector beam antenna with scattering component
US20120012655A1 (en) * 2010-07-14 2012-01-19 Fujitsu Limited Antenna device and rfid system
US9000992B2 (en) * 2010-07-14 2015-04-07 Fujitsu Limited Antenna device and RFID system

Similar Documents

Publication Publication Date Title
US4673943A (en) Integrated defense communications system antijamming antenna system
US3162858A (en) Ring focus antenna feed
US5959590A (en) Low sidelobe reflector antenna system employing a corrugated subreflector
US10389038B2 (en) Subreflector of a dual-reflector antenna
US5922081A (en) Excitation system for an antenna with a parabolic reflector and a dielectric radiator
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
CN106785469B (en) Double-frequency coaxial feed source and antenna with same
US20160087345A1 (en) Radome for an antenna with a concave-reflector
GB1190888A (en) Improvements in or relating to Radio Antennas
US2460869A (en) Antenna
GB1370669A (en) Antennae
US4263599A (en) Parabolic reflector antenna for telecommunication system
Sushko et al. Symmetrically fed 1–10 GHz log-periodic dipole antenna array feed for reflector antennas
US3274603A (en) Wide angle horn feed closely spaced to main reflector
US20210376480A1 (en) Parabolic reflector antennas with improved cylindrically-shaped shields
US2603749A (en) Directive antenna system
US3631504A (en) Parabolic antenna with wave absorber at circumferential edge
US4853702A (en) Radio wave receiving system
US3044063A (en) Directional antenna system
US3133284A (en) Paraboloidal antenna with compensating elements to reduce back radiation into feed
EP3673537A2 (en) Parabolic reflector antennas that support low side lobe radiation patterns
US3413641A (en) Dual mode antenna
US3216018A (en) Wide angle horn feed closely spaced to main reflector
US3696436A (en) Cassegrain antenna with absorber to reduce back radiation
US3990080A (en) Antenna with echo cancelling elements