US3630740A - Antistatic layers for polymeric photographic supports - Google Patents

Antistatic layers for polymeric photographic supports Download PDF

Info

Publication number
US3630740A
US3630740A US869086A US3630740DA US3630740A US 3630740 A US3630740 A US 3630740A US 869086 A US869086 A US 869086A US 3630740D A US3630740D A US 3630740DA US 3630740 A US3630740 A US 3630740A
Authority
US
United States
Prior art keywords
polyolefin
photographic
static
polyethylene
antistatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US869086A
Inventor
Douglas C Joseph
William C Kerr
Harold K Reed
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3630740A publication Critical patent/US3630740A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/85Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/775Photosensitive materials characterised by the base or auxiliary layers the base being of paper
    • G03C1/79Macromolecular coatings or impregnations therefor, e.g. varnishes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/85Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
    • G03C1/89Macromolecular substances therefor
    • G03C1/895Polyalkylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S260/00Chemistry of carbon compounds
    • Y10S260/15Antistatic agents not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S260/00Chemistry of carbon compounds
    • Y10S260/15Antistatic agents not otherwise provided for
    • Y10S260/19Non-high polymeric antistatic agents/n
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/151Matting or other surface reflectivity altering material

Definitions

  • paper for photographic use may be rendered substantially waterproof by application thereto of various hydrophobic polymeric materials such as styrene polymers, polyacrylates, polyethylene, etc.
  • various hydrophobic polymeric materials such as styrene polymers, polyacrylates, polyethylene, etc.
  • photographic papers show markedly improved water resistance, they have not proven entirely satisfactory because of their tendency to accumulate static electrical charges during manufacture, handling and use.
  • the static discharges cause irregular fog patterns in the photographic emulsion coated thereon.
  • the static charges are also undesirable because dirt, which the charges attract to the web, causes repellancy spots, desensitization, fog and physical defects.
  • polymer coated papers such as polyethylene coated papers this static problem is serious because of the nonconductive nature of the polymer coating.
  • the polyolefins have other outstanding properties as supports for photographic silver halide emulsion layers it has been desirable to find antistatic coatings which are as effective as possible.
  • silica-containing coatings are very effective in protecting silver halide emulsions of average light-sensitivity against static, but do not give the desired static protection for the higher speed silver halide emulsions where a surface resistivity of less than about log ohms is required.
  • the antistatic coatings we use for this purpose comprise an aqueous mixture of 1 a film-forming anionic polyelectrolyte such as a polymeric carboxylic acid, (2) a polyalkylene oxide and (3) colloidal silica.
  • a film-forming anionic polyelectrolyte such as a polymeric carboxylic acid
  • a polyalkylene oxide such as a polyalkylene oxide
  • colloidal silica a film-forming anionic polyelectrolyte
  • the proportions of the three components of the antistatic compositions should be carefully controlled for optimum results as the data below will show. Also, the data show that coatings of these three-component compositions are substantially more effective for static protection than coatings of any one of a mixture of any two of the three components.
  • the static charges under consideration in the present invention occur on photographic sensitizing machines or high speed slitting and spooling equipment in two types, namely, unwind static and transport static.
  • a corona forms at the unwind stand where the unwinding paper separates from the roll; this is called unwind static, and is affected by speed, the composition of the emulsion coating and the wire side coating.
  • Static discharges also occur throughout the machine as a result of contact and separation of the coatings with transport rollers; transport static is affected by speed, the composition of the rollers and wire side surface.
  • the internal conductivity and moisture content of the sheet and the atmospheric conditions of the room also affect static generation.
  • the generation of the static charge is a dynamic phenomena which is affected by the rate of contact electrification of the sheet by friction and the conductivity of the sheet (surface and internal) which controls the rate of dissipation of the charge.
  • the two factors, electrification and dissipation, must be correctly balanced or a corona forms at the unwind and spark discharges occur as transport static.
  • the dissipation rate must be greater than the electrification rate. This value is determined herein by measuring surface conductivity in terms of surface resistivity at specific conditions of temperature and humidity, namely, at 75 F. and 20 percent relative humidity, between two electrode plates and calculating the surface resistivity according to the formula:
  • the improved light-sensitive photographic papers or elements are prepared by applying a coating of a polyolefin such as polypropylene or polyethylene onto each side of the paper stock by solvent coating methods, by hot melt extrusion or by lamination of a preformed sheet of the polymer thereto, as is well known in the art.
  • a polyolefin such as polypropylene or polyethylene
  • solvent coating methods by hot melt extrusion or by lamination of a preformed sheet of the polymer thereto, as is well known in the art.
  • Different polyolefins may be coated on each surface.
  • Ordinary photographic paper stock can be employed for coating with the polyolefin, or the stock may be tub sized, as described by U.S. Pat. No. 3,253,922, with a solution ofa conducting salt, e.g. an alkali metal sulfate such as sodium sulfate, which acts as an internal antistat in direct contact with the paper (i.e.
  • the paper stock per se can be subjected to electron bombardment, i.e. corona discharge treatment, prior to the application of any of the polyolefin coatings to improve adhesion.
  • a primer or subcoating can be used to improve adhesion of the polyolefin to the paper stock.
  • the thickness of the paper stock can vary widely from thin to semin'gid sheets as desired.
  • the thickness of the polymer layers such as polyethylene layers can also vary over a wide range depending on the requirements of the final photographic product. Polyethylenes and polypropylenes capable of forming a continuous film can be used in the above procedure.
  • the polyolefins are extruded on paper so as to obtain about two to eight pounds per 1,000 sq. ft. on each surface.
  • the polyolefins used in the process are the aliphatic polyolefins, polyethylene, polypropylene and copolymers of ethylene and propylene.
  • Useful polyethylenes have a density range of about 0.910 to 0.980 g./cc., their viscosity measured by Melt lndex (ASTM D4238, condition E) can be about 2.0 to 20.0, preferably 3.0 to 12.0 decigrams per minute and they can be about 40 to 90 percent crystalline.
  • Useful polypropylenes have a density range of about 0.900 to 0.910, their viscosity measured by Melt Flow Rate (ASTM D-1238, condition L") can be about 10 to 90, preferably 40 to 90, decigrams per minute and they can be about 60 to percent crystalline.
  • the polyolefins are prepared by well-known methods of polymerization of ethylene and propylene using, for example, Zeigler catalyst. Blends of high density polyolefins and low density polyolefins (the latter originating from either initial polymerization of olefins to lower density, or by heat degradation of high density polymer) can be employed.
  • Other aliphatic polyolefins which are useful are the polyallomers, i.e.
  • copolymers of ethylene and propylene prepared, e.g., as described in the Hagemeyer U.S. Pat. applications Ser. Nos. 505,227 filed Oct. 26, 1965, 516,783, now U.S. Pat. No. 3,478,128 and 516,677, now abandoned filed Dec. 27, 1965.
  • the antistatic compositions are applied to clear or pigmented polyolefin sheeting or foils for static protection.
  • the mentioned polyolefin coated papers or sheetings can be used not only as photographic emulsion supports but also in the other arts wherein static presents a problem.
  • the polyelectrolytes l) of the antistatic layers should be of the water-soluble anionic film-forming type.
  • the following are representative: alkali metal salts or ammonium salts of polymeric carboxylic acids, e.g. polymethacrylic acid sodium salt; such salts of cellulose sulfate; such salts of polyvinyl phosphate or such salts of a partially esterified lactone of a vinyl alcohol-a,fi-dicarboxylic acid copolymer.
  • the latter salts are prepared from lactones of resinous heteropolymers of vinyl alcohol and unsaturated a,,B-dicarboxylic acids, optionally esterified with monohydric alcohols and prepared as described by U.S. Pat. No.
  • the polyalkylene oxide component (2) of the antistatic coatings are critical particularly with respect to molecular weight, as data of the examples below will indicate. That is, while the alkylene units of the carbon chain may contain two to four carbon atoms as present in polyethylene, polypropylene and polybutylene oxides and blends thereof, the molecular weight is selected so optimum antistatic protection is obtained. For example, the molecular weight should be about 400 to 1,000 when polyethylene oxides are used, but the optimum molecular weight may be expected to vary somewhat above or below this range depending upon the particular oxide used.
  • the colloidal silica component (3) of the antistatic coatings is well known in the art and can be prepared as described in U.S. Pat. No. 2,701,218 or readily obtainable under the trade name Ludox AM (an aluminum modified colloidal silica) from the E. l. duPont de Nemours and Co.
  • Ludox AM an aluminum modified colloidal silica
  • the proportions of components (1), (2) and (3) of the antistatic coatings of the invention are critical to obtain the optimum level of surface resistivity, i.e. less than about 11 log ohms.
  • the antistatic coating applied to the polyolefin surface contains the ingredients (1), (2) and (3) above in proportions such that the optimum static protection is obtained and the coating is substantially free of tackiness.
  • the coatings should contain approximately the following proportions by weight:
  • (l) Polyelectrolytc (2) Polyalkylene oxide
  • the balance of the antistatic coating is essentially colloidal silica (3) which is used in an amount necessary to prevent tackiness of the coating and concomitant transfer to other surfaces.
  • the coatings contain about 50 to 80 percent of colloidal silica. While as much as 80 percent of component (3) can be used with 4 percent of (l) and 16 percent of (2), this coating gives less desirable static protection. Accordingly, it is preferred to use less silica and more of (l) and (2). Similarly, it is less desirable to use the lower levels of about 50 percent of colloidal silica with the higher level of about 30 to 35 percent of (2) since the coating tends to be tacky. Accordingly, a very useful antistatic composition contains about 4 percent polyelectrolyte such as polymethacrylic acid salt, about 30 percent polyalkylene oxide such as polyethylene oxide molecular weight 400 and about 66 percent colloidal silica.
  • the antistatic coatings containing materials l (2) and (3) above are preferably coated upon the polyolefin surface after activation of the surface with chemical agents such as acid dichromate solution, or after flaming, but preferably after ac tivating the polyolefin surface with corona discharge.
  • the corona applied to the polymer surfaces is supplied by wellknown power sources.
  • the spark gap type power source for the corona has current supplied to the electrodes by a spark gap excited oscillator in a well-known manner. Variation in fundamental frequency of the corona is obtained by changing the primary power frequency of the oscillator in a range up to 10,000 or more cycles per second.
  • a high-voltage corona is desirable, e.g., 25,000 to 50,000 peak volts or higher, to obtain adequate adhesion of the layers to the corona activated surface. Voltages of this range are adequate for corona activation of polymers at web speeds of about to 1,000 feet per minute or higher.
  • the corona can be applied to the polymeric surface, for example, by means of several metal electrodes positioned close to the polymeric surface at a point where the polymeric surface is passing over a grounded metal roll coated with a dielectric metal such as a linear polyester.
  • a metal roller may be used to support the web with the other electrode array being in planetary disposition equidistant from the surface of the metal roller and each being coated with a dielectric, at least on the surface nearest the metal roller.
  • the spacing of the electrodes to the polymer surface and ground roll should be adequate to produce the corona at the voltage used and yet allow for free passage of polymeric sheet through the activating zone. Corona supplied by AC current, or a combination of AC superimposed on DC can be used.
  • the accompanying drawing shows in greatly enlarged crosssectional view the appearance of a representative photographic element of our invention wherein the polyolefin layers 11 and 12 are adhered to the photographic base 10 and emulsion layer 14 such as gelatin-silver halide emulsion is adhered to polyolefin layer 11.
  • the polyolefin layer 12 is provided with a thin coating of the antistatic layer of the invention comprising components (1), (2) and (3), i.e. polyelectrolyte, polyalkylene oxide and colloidal silica.
  • Example 1 A photographic paper stock of about 22 pounds per 1,000 sq. ft. is supplied. Each side of the stock is activated with corona discharge and extrusion coated with polyethylene at about 8 pounds per 1,000 sq. ft. One polyethylene surface is then corona activated and coated in-line with the following composition so as to obtain 0.5 to 2.5 grams, preferably 1.5 grams, solids per square meter.
  • Colloidal silica (30% dispersion) 22.0 g Sodium cellulose sulfate 0.4 g Polyethylene oxide (mol. wt. 400) 3.0 g. Water 74.6 g.
  • This composition containing 66 percent colloidal silica, 4 percent sodium cellulose sulfate and 30 percent of the oxide (dry weight basis) represents a preferred proportion of the ingredients, sufficient silica being present to obtain a nontacky surface.
  • the surface resistivity of the coated paper measured at 70 F. and 20 percent RH is about 9.7 log ohms compared to 16 log ohms for the polyethylene coated paper free of the antistatic layer.
  • the other polyethylene surface of the paper is then corona activated and a high-speed gelatin-course-grained silver bromoiodide emulsion is coated. It is found that the emulsion is not affected by static charges due to handling on the emulsion coating machine, whereas the same paper free of the antistatic backing layer produced static discharge patterns in the emulsion layer.
  • Example 2 The process of example 1 is repeated except using the following polyalkylene oxides with the results shown. The coatings were dried at room temperature.
  • Sample (f) illustrates the unexpected effectiveness of the combination of colloidal silica, polyelectrolyte and polyalkylene oxide to reduce static and produce nontacky coatings.
  • polyolefin photographic supports carrying the antistatic layers of the invention primarily for protection of high-speed black-and-white photographic emulsions.
  • the same supports can be coated with a plurality of well-known differently sensitized color emulsion layers to provide products for color photography. Since these color emulsions have relatively low speeds the surface resistivity need not be as low and the polyolefins in the 400 to L000 molecular weight range become more generally useful.
  • a photographic support having a polyolefin surface and an antistatic coating thereon comprising a mixture of:
  • polyolefin surface comprises polyethylene or polypropylene or a blend thereof, or a copolymer of ethylene and propylene.
  • the photographic support according to claim 4 wherein the surface carrying the antistatic coating is polyethylene and the polyelectrolyte of the antistatic coating is an alkali metal or ammonium salt of either polymethacrylic acid, cellulose sulfate, polyvinyl phosphate or a partially esterified lactone of a vinyl alcohol-a,B-dicarboxylic acid copolymer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

Photographic elements having polyolefin supports coated with silver halide emulsions highly sensitive to static discharges, are protected against static by coating a polyolefin surface with a mixture of a polyelectrolyte, a polyalkylene oxide and colloidal silica. The static protection obtained is substantially better then obtained by coating the polyolefin surface with any one or two of the three materials.

Description

United States Patent Inventors Douglas C. Joseph Victor; William C. Kerr, Middlesex; Harold K. Reed, Rochester, all of N.Y. Appl. No. 869,086 Filed Oct. 24, 1969 Patented Dec. 28, 1971 Assignee Eastman Kodak Company Rochester, N.Y.
ANTISTATIC LAYERS FOR POLYMERIC PHOTOGRAPHIC SUPPORTS 7 Claims, 1 Drawing Fig.
U.S. 96/85, 96/87 A, 96/114.2, 117/76 F, 117176 P, 161/250, 161/252, 260/D1G. 15, 260/D1G. 19
1nt.C1 G03cl/82, G03c1/86 Field olSearch 96/85,87
A, 114.2; 260/D1G. 15,D1G. 19, 17 R, 18 R, 19 R, 20; 117/76 F, 76 P, 138.8 E; 162/250, 252
References Clted UNITED STATES PATENTS Myers Morey et Mackey et a1. Schleede et a1. Sterman et al Nadeau et a1.
Walker Magat et a1. Nadeau Miller FOREIGN PATENTS Canada Primary Examiner-John T. Goolkasian Assistant ExaminerGeorge W. Moxon, l1 Attorneys-Walter 0. l-lodsdon and Wendell H. McDowell ABSTRACT: Photographic elements having polyolefin supports coated with silver halide emulsions highly sensitive to static discharges, are protected against static by coating a polyolefin surface with a mixture of a polyelectrolyte, a polyalkylene oxide and colloidal silica. The static protection obtained is substantially better then obtained by coating the polyolefin surface with any one or two of the three materials.
EMULSION POL Y 0L E F //V PAPER POLYOLEF/IV ANT/STATIC LAYER 0F COLLO/DAL SILICA, POLYALKYLENE OXIDE AND ANION/C POLYE LE 6 TROLY TE iAIENH-Illum2ansn 31530,
POL r01. EF/N ANT/STATIC LAYER 0F COLLOID/1L SILICA, POLYALKYLE/VE OXIDE AND ANION/C POLYELECTROLYTE DOUGLAS 6. JOSEPH WILLIAM C KERR HAROLD K. REED INVENTORS WQW 1/ 6 Arron/95y a AGE/V7 ANTISTATIC LAYERS FOR POLYMERIC PHOTOGRAPHIC SUPPORTS This invention relates to the protection of photographic elements having polymeric supports against static.
lt is known that paper for photographic use may be rendered substantially waterproof by application thereto of various hydrophobic polymeric materials such as styrene polymers, polyacrylates, polyethylene, etc. Although such photographic papers show markedly improved water resistance, they have not proven entirely satisfactory because of their tendency to accumulate static electrical charges during manufacture, handling and use. The static discharges cause irregular fog patterns in the photographic emulsion coated thereon. The static charges are also undesirable because dirt, which the charges attract to the web, causes repellancy spots, desensitization, fog and physical defects. On polymer coated papers such as polyethylene coated papers this static problem is serious because of the nonconductive nature of the polymer coating. However, since the polyolefins have other outstanding properties as supports for photographic silver halide emulsion layers it has been desirable to find antistatic coatings which are as effective as possible.
A wide variety of materials have been recommended for use in antistatic coatings for photographic film supports. These materials have included inorganic salts and salts of polymers such as polymeric carboxylic acid salts. More recently, French Pat. No. 1,556,240, Dec. 30, 1968, recommended the use of antistatic coatings of a mixture of colloidal silica and salts of polymeric carboxylic acids for application to polyolefin surfaces. Thus, the surface resistivity of polyethylene surface is lowered from about 16 log ohms to about 12 log ohms (measured at 70 F. and 20 percent RH). These silica-containing coatings are very effective in protecting silver halide emulsions of average light-sensitivity against static, but do not give the desired static protection for the higher speed silver halide emulsions where a surface resistivity of less than about log ohms is required.
We have discovered that polyolefin photographic supports can be coated with certain compositions to reduce the surface resistivity sufficiently below 11 log ohms, that very high speed emulsions coated thereon are not affected by any low level static discharges occurring in handling the product. The antistatic coatings we use for this purpose comprise an aqueous mixture of 1 a film-forming anionic polyelectrolyte such as a polymeric carboxylic acid, (2) a polyalkylene oxide and (3) colloidal silica. The proportions of the three components of the antistatic compositions should be carefully controlled for optimum results as the data below will show. Also, the data show that coatings of these three-component compositions are substantially more effective for static protection than coatings of any one of a mixture of any two of the three components.
The static charges under consideration in the present invention occur on photographic sensitizing machines or high speed slitting and spooling equipment in two types, namely, unwind static and transport static. A corona forms at the unwind stand where the unwinding paper separates from the roll; this is called unwind static, and is affected by speed, the composition of the emulsion coating and the wire side coating. Static discharges also occur throughout the machine as a result of contact and separation of the coatings with transport rollers; transport static is affected by speed, the composition of the rollers and wire side surface. The internal conductivity and moisture content of the sheet and the atmospheric conditions of the room also affect static generation.
In other words, the generation of the static charge is a dynamic phenomena which is affected by the rate of contact electrification of the sheet by friction and the conductivity of the sheet (surface and internal) which controls the rate of dissipation of the charge. The two factors, electrification and dissipation, must be correctly balanced or a corona forms at the unwind and spark discharges occur as transport static. To avoid static the dissipation rate must be greater than the electrification rate. This value is determined herein by measuring surface conductivity in terms of surface resistivity at specific conditions of temperature and humidity, namely, at 75 F. and 20 percent relative humidity, between two electrode plates and calculating the surface resistivity according to the formula:
Resisitivity (ohms)=Resistance observed (ohms) Spacing between electrodes (ems) aenstks e w s (we? For further details of the above method for measuring surface resistivities, reference may be had to G. F. Nadeau et al., U.S. Pat. No. 2,801,191, issued July 30, 1957.
In accordance with the invention, the improved light-sensitive photographic papers or elements are prepared by applying a coating of a polyolefin such as polypropylene or polyethylene onto each side of the paper stock by solvent coating methods, by hot melt extrusion or by lamination of a preformed sheet of the polymer thereto, as is well known in the art. Different polyolefins may be coated on each surface. Ordinary photographic paper stock can be employed for coating with the polyolefin, or the stock may be tub sized, as described by U.S. Pat. No. 3,253,922, with a solution ofa conducting salt, e.g. an alkali metal sulfate such as sodium sulfate, which acts as an internal antistat in direct contact with the paper (i.e. an antistatic agent between polyolefin layers 11 and 12 of FIG. 1) and provides useful antistatic properties for the final photographic product. However, there is evidence that when the internal antistat is present and corona activation of the surface of polyolefin layer 11 is used to effect the adhesion of emulsion layer 14, the internal antistat causes irregular activation of layer 11. When our antistatic layer 13 of components (l (2) and (3) is used, unexpectedly more satisfactory activation of the polyolefin is obtained.
If desired, the paper stock per se can be subjected to electron bombardment, i.e. corona discharge treatment, prior to the application of any of the polyolefin coatings to improve adhesion. In place of electron bombardment, a primer or subcoating can be used to improve adhesion of the polyolefin to the paper stock. The thickness of the paper stock can vary widely from thin to semin'gid sheets as desired. The thickness of the polymer layers such as polyethylene layers can also vary over a wide range depending on the requirements of the final photographic product. Polyethylenes and polypropylenes capable of forming a continuous film can be used in the above procedure.
The polyolefins are extruded on paper so as to obtain about two to eight pounds per 1,000 sq. ft. on each surface. The polyolefins used in the process are the aliphatic polyolefins, polyethylene, polypropylene and copolymers of ethylene and propylene. Useful polyethylenes have a density range of about 0.910 to 0.980 g./cc., their viscosity measured by Melt lndex (ASTM D4238, condition E) can be about 2.0 to 20.0, preferably 3.0 to 12.0 decigrams per minute and they can be about 40 to 90 percent crystalline. Useful polypropylenes have a density range of about 0.900 to 0.910, their viscosity measured by Melt Flow Rate (ASTM D-1238, condition L") can be about 10 to 90, preferably 40 to 90, decigrams per minute and they can be about 60 to percent crystalline. The polyolefins are prepared by well-known methods of polymerization of ethylene and propylene using, for example, Zeigler catalyst. Blends of high density polyolefins and low density polyolefins (the latter originating from either initial polymerization of olefins to lower density, or by heat degradation of high density polymer) can be employed. Other aliphatic polyolefins which are useful are the polyallomers, i.e. copolymers of ethylene and propylene prepared, e.g., as described in the Hagemeyer U.S. Pat. applications Ser. Nos. 505,227 filed Oct. 26, 1965, 516,783, now U.S. Pat. No. 3,478,128 and 516,677, now abandoned filed Dec. 27, 1965. Similarly, the antistatic compositions are applied to clear or pigmented polyolefin sheeting or foils for static protection.
The mentioned polyolefin coated papers or sheetings can be used not only as photographic emulsion supports but also in the other arts wherein static presents a problem.
The polyelectrolytes l) of the antistatic layers should be of the water-soluble anionic film-forming type. The following are representative: alkali metal salts or ammonium salts of polymeric carboxylic acids, e.g. polymethacrylic acid sodium salt; such salts of cellulose sulfate; such salts of polyvinyl phosphate or such salts of a partially esterified lactone of a vinyl alcohol-a,fi-dicarboxylic acid copolymer. The latter salts are prepared from lactones of resinous heteropolymers of vinyl alcohol and unsaturated a,,B-dicarboxylic acids, optionally esterified with monohydric alcohols and prepared as described by U.S. Pat. No. 3,260,706 and converted to the alkali metal salts as described in U.S. Pat. No. 3,169,946. Representative of these ester-lactone salts is the butyl lactone salt of example 1 of U.S. Pat. No. 3,260,706 converted to the sodium salt as described in example 17 of U.S. Pat. No. 3,169,946.
The polyalkylene oxide component (2) of the antistatic coatings are critical particularly with respect to molecular weight, as data of the examples below will indicate. That is, while the alkylene units of the carbon chain may contain two to four carbon atoms as present in polyethylene, polypropylene and polybutylene oxides and blends thereof, the molecular weight is selected so optimum antistatic protection is obtained. For example, the molecular weight should be about 400 to 1,000 when polyethylene oxides are used, but the optimum molecular weight may be expected to vary somewhat above or below this range depending upon the particular oxide used.
The colloidal silica component (3) of the antistatic coatings is well known in the art and can be prepared as described in U.S. Pat. No. 2,701,218 or readily obtainable under the trade name Ludox AM (an aluminum modified colloidal silica) from the E. l. duPont de Nemours and Co.
The proportions of components (1), (2) and (3) of the antistatic coatings of the invention are critical to obtain the optimum level of surface resistivity, i.e. less than about 11 log ohms.
The antistatic coating applied to the polyolefin surface contains the ingredients (1), (2) and (3) above in proportions such that the optimum static protection is obtained and the coating is substantially free of tackiness. For these purposes the coatings should contain approximately the following proportions by weight:
(l) Polyelectrolytc (2) Polyalkylene oxide The balance of the antistatic coating is essentially colloidal silica (3) which is used in an amount necessary to prevent tackiness of the coating and concomitant transfer to other surfaces. For this purpose, the coatings contain about 50 to 80 percent of colloidal silica. While as much as 80 percent of component (3) can be used with 4 percent of (l) and 16 percent of (2), this coating gives less desirable static protection. Accordingly, it is preferred to use less silica and more of (l) and (2). Similarly, it is less desirable to use the lower levels of about 50 percent of colloidal silica with the higher level of about 30 to 35 percent of (2) since the coating tends to be tacky. Accordingly, a very useful antistatic composition contains about 4 percent polyelectrolyte such as polymethacrylic acid salt, about 30 percent polyalkylene oxide such as polyethylene oxide molecular weight 400 and about 66 percent colloidal silica.
The antistatic coatings containing materials l (2) and (3) above are preferably coated upon the polyolefin surface after activation of the surface with chemical agents such as acid dichromate solution, or after flaming, but preferably after ac tivating the polyolefin surface with corona discharge. The corona applied to the polymer surfaces is supplied by wellknown power sources. The spark gap type power source for the corona has current supplied to the electrodes by a spark gap excited oscillator in a well-known manner. Variation in fundamental frequency of the corona is obtained by changing the primary power frequency of the oscillator in a range up to 10,000 or more cycles per second. A high-voltage corona is desirable, e.g., 25,000 to 50,000 peak volts or higher, to obtain adequate adhesion of the layers to the corona activated surface. Voltages of this range are adequate for corona activation of polymers at web speeds of about to 1,000 feet per minute or higher.
The corona can be applied to the polymeric surface, for example, by means of several metal electrodes positioned close to the polymeric surface at a point where the polymeric surface is passing over a grounded metal roll coated with a dielectric metal such as a linear polyester. Similarly, a metal roller may be used to support the web with the other electrode array being in planetary disposition equidistant from the surface of the metal roller and each being coated with a dielectric, at least on the surface nearest the metal roller. The spacing of the electrodes to the polymer surface and ground roll should be adequate to produce the corona at the voltage used and yet allow for free passage of polymeric sheet through the activating zone. Corona supplied by AC current, or a combination of AC superimposed on DC can be used.
The accompanying drawing shows in greatly enlarged crosssectional view the appearance of a representative photographic element of our invention wherein the polyolefin layers 11 and 12 are adhered to the photographic base 10 and emulsion layer 14 such as gelatin-silver halide emulsion is adhered to polyolefin layer 11. The polyolefin layer 12 is provided with a thin coating of the antistatic layer of the invention comprising components (1), (2) and (3), i.e. polyelectrolyte, polyalkylene oxide and colloidal silica.
The following examples are representative of the processes and materials useful for carrying out our invention.
Example 1 A photographic paper stock of about 22 pounds per 1,000 sq. ft. is supplied. Each side of the stock is activated with corona discharge and extrusion coated with polyethylene at about 8 pounds per 1,000 sq. ft. One polyethylene surface is then corona activated and coated in-line with the following composition so as to obtain 0.5 to 2.5 grams, preferably 1.5 grams, solids per square meter.
Colloidal silica (30% dispersion) 22.0 g Sodium cellulose sulfate 0.4 g Polyethylene oxide (mol. wt. 400) 3.0 g. Water 74.6 g.
containing approximately 2.5 sulfate units per anhydroglucose unit (sold as such by the Kelco Chemical Co.). Other water-soluble sodium cellulose sulfates known in the art can also be used.
This composition containing 66 percent colloidal silica, 4 percent sodium cellulose sulfate and 30 percent of the oxide (dry weight basis) represents a preferred proportion of the ingredients, sufficient silica being present to obtain a nontacky surface. The surface resistivity of the coated paper measured at 70 F. and 20 percent RH is about 9.7 log ohms compared to 16 log ohms for the polyethylene coated paper free of the antistatic layer.
The other polyethylene surface of the paper is then corona activated and a high-speed gelatin-course-grained silver bromoiodide emulsion is coated. It is found that the emulsion is not affected by static charges due to handling on the emulsion coating machine, whereas the same paper free of the antistatic backing layer produced static discharge patterns in the emulsion layer.
Similar surface resistivities are obtainable when polyethylene sheeting is used in place of the polyethylene coated paper stock.
Example 2 The process of example 1 is repeated except using the following polyalkylene oxides with the results shown. The coatings were dried at room temperature.
Molecular Weight Polyethylene oxide 200 5.8 Polyethylene oxide 400 9.1 Polyethylene oxide L000 l0.3 Polyethylene oxide 6,000 l2.5 Polypropylene oxide 400 I06 These data show that while polyalkylene oxides of 200 to 1,000 molecular weight provide substantial static protection, the 200 to 400 molecular weight range materials should be used where the emulsion requires a coating surface of resistivity less than 10 log ohms. 7
Similar tests using glycerine, triethylene glycol and diethylene glycol with cellulose sulfate and colloidal silica in place of the polyalkylene oxides show that while initially surface resistivities in the range of 8.8 to 12 log ohms areobtained on the room temperature dried samples, upon drying the paper at 200 F. to simulate conditions on emulsion coating machines, the resistivities were generally unsatisfactory. Under the same 200 F. drying conditions the resistivities of the 400 to 1,000 molecular weight polyethylene oxide samples were substantially unchanged. Example 3 The process of example 1 is carried out except that corona activated surface is coated with the same amounts (dry weight basis) of one or more of the three components of the composition with the results shown.
Coatings too tacky to be useful.
Sample (f) illustrates the unexpected effectiveness of the combination of colloidal silica, polyelectrolyte and polyalkylene oxide to reduce static and produce nontacky coatings.
The above examples illustrate polyolefin photographic supports carrying the antistatic layers of the invention primarily for protection of high-speed black-and-white photographic emulsions. The same supports can be coated with a plurality of well-known differently sensitized color emulsion layers to provide products for color photography. Since these color emulsions have relatively low speeds the surface resistivity need not be as low and the polyolefins in the 400 to L000 molecular weight range become more generally useful.
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
We claim:
1. A photographic support having a polyolefin surface and an antistatic coating thereon comprising a mixture of:
I. about 4 to 25 percent by weight of an anionic film-forming polyelectrolyte,
2. about 16 to 35 percent by weight ofa polyalkylene oxide of molecular weight of about 400 to l ,000, and
3. about 50-80 percent by weight of colloidal silica.
2. The support according to claim 1 wherein the polyolefin surface is modified by corona discharge for adhesion of the antistatic coating.
3. The photographic support according to claim 1 wherein the support is paper having polyolefin extrusion on each side and the antistatic coating is on one of the polyolefin surfaces.
4. The photographic support according to claim 2 wherein the polyolefin surface comprises polyethylene or polypropylene or a blend thereof, or a copolymer of ethylene and propylene.
5. The photographic support according to claim 4 wherein the polyalkylene oxide is a polyethylene oxide.
6. The photographic support according to claim 4 wherein the surface carrying the antistatic coating is polyethylene and the polyelectrolyte of the antistatic coating is an alkali metal or ammonium salt of either polymethacrylic acid, cellulose sulfate, polyvinyl phosphate or a partially esterified lactone of a vinyl alcohol-a,B-dicarboxylic acid copolymer.
7. The element of claim 1 coated with at least one light-sensitive photographic emulsion layer.

Claims (8)

  1. 2. about 16 to 35 percent by weight of a polyalkylene oxide of molecular weight of about 400 to 1,000, and
  2. 2. The support according to claim 1 wherein the polyolefin surface is modified by corona discharge for adhesion of the antistatic coating.
  3. 3. about 50-80 percent by weight of colloidal silica.
  4. 3. The photographic support according to claim 1 wherein the support is paper having polyolefin extrusion on each side and the antistatic coating is on one of the polyolefin surfaces.
  5. 4. The photographic support according to claim 2 wherein the polyolefin surface comprises polyethylene or polypropylene or a blend thereof, or a copolymer of ethylene and propylene.
  6. 5. The photographic support according to claim 4 wherein the polyalkylene oxide is a polyethylene oxide.
  7. 6. The photographic support according to claim 4 wherein the surface carrying the antistatic coating is polyethylene and the polyelectrolyte of the antistatic coating is an alkali metal or ammonium salt of either polymethacrylic acid, cellulose sulfate, polyvinyl phosphate or a partially esterified lactone of a vinyl alcohol- Alpha , Beta -dicarboxylic acid copolymer.
  8. 7. The element of claim 1 coated with at least one light-sensitive photographic emulsion layer.
US869086A 1969-10-24 1969-10-24 Antistatic layers for polymeric photographic supports Expired - Lifetime US3630740A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86908669A 1969-10-24 1969-10-24

Publications (1)

Publication Number Publication Date
US3630740A true US3630740A (en) 1971-12-28

Family

ID=25352899

Family Applications (1)

Application Number Title Priority Date Filing Date
US869086A Expired - Lifetime US3630740A (en) 1969-10-24 1969-10-24 Antistatic layers for polymeric photographic supports

Country Status (6)

Country Link
US (1) US3630740A (en)
JP (1) JPS4923887B1 (en)
BE (1) BE757878A (en)
CA (1) CA939958A (en)
FR (1) FR2066421A5 (en)
GB (1) GB1326030A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775126A (en) * 1972-02-29 1973-11-27 Eastman Kodak Co Light-sensitive element comprising a coating layer containing a mixture of a cationic perfluorinated alkyl and an alkylphenoxypoly(propylene oxide)
US3850641A (en) * 1971-07-15 1974-11-26 Konishiroku Photo Ind Antistatic light-sensitive photographic material
US4069053A (en) * 1971-03-18 1978-01-17 Konishiroku Photo Industry Co., Ltd. Photographic films
US4209584A (en) * 1979-06-15 1980-06-24 Eastman Kodak Company Manufacture of photographic elements having anticurl and antistatic layers
US4311774A (en) * 1980-03-19 1982-01-19 Polaroid Corporation Irradiation treatment of polymeric photographic film supports
WO1982001945A1 (en) * 1980-11-24 1982-06-10 Kodak Co Eastman Photographic antistatic compositions and elements coated therewith
US4570197A (en) * 1983-01-03 1986-02-11 Minnesota Mining & Manufacturing Company Static reduction in magnetic recording cassettes
US4814254A (en) * 1985-03-08 1989-03-21 Fuji Photo Film Co., Ltd. Heat developable photographic element with conductive layer
US5047310A (en) * 1984-12-19 1991-09-10 Hiroyuki Ozaki Photographic process of heating during development after image exposure with a conductive layer containing carbon black
US5156707A (en) * 1989-10-03 1992-10-20 Fuji Photo Film Co., Ltd. Support for photographic printing paper
US5221598A (en) * 1992-11-23 1993-06-22 Eastman Kodak Company Photographic support material comprising an antistatic layer and a heat-thickening barrier layer
US5360706A (en) * 1993-11-23 1994-11-01 Eastman Kodak Company Imaging element
US5683862A (en) * 1996-10-31 1997-11-04 Eastman Kodak Company Poly(ethylene oxide) and alkali metal salt antistatic backing layer for photographic paper coated with polyolefin layer
US5700623A (en) * 1997-01-21 1997-12-23 Eastman Kodak Company Thermally stable photographic bar code label containing an antistatic layer
US5723273A (en) * 1996-09-11 1998-03-03 Eastman Kodak Company Protective overcoat for antistatic layer
EP0829758A2 (en) * 1996-09-11 1998-03-18 Eastman Kodak Company Photographic paper having a backing layer comprising colloidal inorganic oxide particles, antistatic agent and film forming acrylic binder
US5747232A (en) * 1997-02-27 1998-05-05 Eastman Kodak Company Motion imaging film comprising a carbon black-containing backing and a process surviving conductive subbing layer
US6048679A (en) * 1998-12-28 2000-04-11 Eastman Kodak Company Antistatic layer coating compositions
EP1050779A1 (en) * 1999-05-06 2000-11-08 Eastman Kodak Company Antistatic backing for photographic paper
US6872501B2 (en) * 2001-05-11 2005-03-29 Eastman Kodak Company Antistat of onium salt and polyether polymer
US20140134365A1 (en) * 2011-06-14 2014-05-15 Denki Kagaku Kogyo Kabushiki Kaisha Cover tape
US20210061964A1 (en) * 2019-09-02 2021-03-04 Xyzprinting, Inc. Stereolithography elastic film with adjustable peeling force

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542095A (en) * 1984-07-25 1985-09-17 Eastman Kodak Company Antistatic compositions comprising polymerized alkylene oxide and alkali metal salts and elements thereof
GB2246870A (en) * 1990-07-31 1992-02-12 Ilford Ltd Photographic materials with anti-static coatings

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2393863A (en) * 1942-03-26 1946-01-29 Bakelite Corp Antistatic composition
US2639234A (en) * 1950-09-22 1953-05-19 Eastman Kodak Co Antistatic photographic film
CA602795A (en) * 1960-08-02 R. Harriman Benjamin Static resistance of photographic film
US3053662A (en) * 1958-09-25 1962-09-11 Gen Aniline & Film Corp Anti-static photographic film
US3190763A (en) * 1960-12-17 1965-06-22 Hoechst Ag Process for the anti-static finishing of high molecular weight compounds
US3206312A (en) * 1962-06-12 1965-09-14 Eastman Kodak Co Photographic film having antistatic agent therein
US3222178A (en) * 1961-10-09 1965-12-07 Eastman Kodak Co Composite film element
US3226178A (en) * 1962-10-31 1965-12-28 Du Pont Process for dyeing and aftertreating polyethylene oxide modified nylon fibers
US3329557A (en) * 1955-04-06 1967-07-04 Du Pont Static resistant filament and process therefor
US3437484A (en) * 1965-07-26 1969-04-08 Eastman Kodak Co Antistatic film compositions and elements
US3525621A (en) * 1968-02-12 1970-08-25 Eastman Kodak Co Antistatic photographic elements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE618832A (en) * 1961-06-14

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA602795A (en) * 1960-08-02 R. Harriman Benjamin Static resistance of photographic film
US2393863A (en) * 1942-03-26 1946-01-29 Bakelite Corp Antistatic composition
US2639234A (en) * 1950-09-22 1953-05-19 Eastman Kodak Co Antistatic photographic film
US3329557A (en) * 1955-04-06 1967-07-04 Du Pont Static resistant filament and process therefor
US3053662A (en) * 1958-09-25 1962-09-11 Gen Aniline & Film Corp Anti-static photographic film
US3190763A (en) * 1960-12-17 1965-06-22 Hoechst Ag Process for the anti-static finishing of high molecular weight compounds
US3222178A (en) * 1961-10-09 1965-12-07 Eastman Kodak Co Composite film element
US3206312A (en) * 1962-06-12 1965-09-14 Eastman Kodak Co Photographic film having antistatic agent therein
US3226178A (en) * 1962-10-31 1965-12-28 Du Pont Process for dyeing and aftertreating polyethylene oxide modified nylon fibers
US3437484A (en) * 1965-07-26 1969-04-08 Eastman Kodak Co Antistatic film compositions and elements
US3525621A (en) * 1968-02-12 1970-08-25 Eastman Kodak Co Antistatic photographic elements

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069053A (en) * 1971-03-18 1978-01-17 Konishiroku Photo Industry Co., Ltd. Photographic films
US3850641A (en) * 1971-07-15 1974-11-26 Konishiroku Photo Ind Antistatic light-sensitive photographic material
US3775126A (en) * 1972-02-29 1973-11-27 Eastman Kodak Co Light-sensitive element comprising a coating layer containing a mixture of a cationic perfluorinated alkyl and an alkylphenoxypoly(propylene oxide)
US4209584A (en) * 1979-06-15 1980-06-24 Eastman Kodak Company Manufacture of photographic elements having anticurl and antistatic layers
US4311774A (en) * 1980-03-19 1982-01-19 Polaroid Corporation Irradiation treatment of polymeric photographic film supports
WO1982001945A1 (en) * 1980-11-24 1982-06-10 Kodak Co Eastman Photographic antistatic compositions and elements coated therewith
US4335201A (en) * 1980-11-24 1982-06-15 Eastman Kodak Company Antistatic compositions and elements containing same
US4570197A (en) * 1983-01-03 1986-02-11 Minnesota Mining & Manufacturing Company Static reduction in magnetic recording cassettes
US5047310A (en) * 1984-12-19 1991-09-10 Hiroyuki Ozaki Photographic process of heating during development after image exposure with a conductive layer containing carbon black
US4814254A (en) * 1985-03-08 1989-03-21 Fuji Photo Film Co., Ltd. Heat developable photographic element with conductive layer
US5156707A (en) * 1989-10-03 1992-10-20 Fuji Photo Film Co., Ltd. Support for photographic printing paper
US5284714A (en) * 1992-11-23 1994-02-08 Eastman Kodak Company Photographic support material comprising an antistatic layer and a heat-thickening barrier layer
US5221598A (en) * 1992-11-23 1993-06-22 Eastman Kodak Company Photographic support material comprising an antistatic layer and a heat-thickening barrier layer
US5360706A (en) * 1993-11-23 1994-11-01 Eastman Kodak Company Imaging element
EP0829758A3 (en) * 1996-09-11 1998-10-21 Eastman Kodak Company Photographic paper having a backing layer comprising colloidal inorganic oxide particles, antistatic agent and film forming acrylic binder
US5723273A (en) * 1996-09-11 1998-03-03 Eastman Kodak Company Protective overcoat for antistatic layer
EP0829758A2 (en) * 1996-09-11 1998-03-18 Eastman Kodak Company Photographic paper having a backing layer comprising colloidal inorganic oxide particles, antistatic agent and film forming acrylic binder
US5683862A (en) * 1996-10-31 1997-11-04 Eastman Kodak Company Poly(ethylene oxide) and alkali metal salt antistatic backing layer for photographic paper coated with polyolefin layer
US5700623A (en) * 1997-01-21 1997-12-23 Eastman Kodak Company Thermally stable photographic bar code label containing an antistatic layer
US5747232A (en) * 1997-02-27 1998-05-05 Eastman Kodak Company Motion imaging film comprising a carbon black-containing backing and a process surviving conductive subbing layer
US6048679A (en) * 1998-12-28 2000-04-11 Eastman Kodak Company Antistatic layer coating compositions
EP1050779A1 (en) * 1999-05-06 2000-11-08 Eastman Kodak Company Antistatic backing for photographic paper
US6346370B1 (en) 1999-05-06 2002-02-12 Eastman Kodak Company Antistatic layer for a photographic element
US6872501B2 (en) * 2001-05-11 2005-03-29 Eastman Kodak Company Antistat of onium salt and polyether polymer
US20140134365A1 (en) * 2011-06-14 2014-05-15 Denki Kagaku Kogyo Kabushiki Kaisha Cover tape
US9681595B2 (en) * 2011-06-14 2017-06-13 Denka Company Limited Cover tape
US20210061964A1 (en) * 2019-09-02 2021-03-04 Xyzprinting, Inc. Stereolithography elastic film with adjustable peeling force

Also Published As

Publication number Publication date
FR2066421A5 (en) 1971-08-06
CA939958A (en) 1974-01-15
BE757878A (en) 1971-04-01
DE2050288A1 (en) 1971-05-06
GB1326030A (en) 1973-08-08
DE2050288B2 (en) 1975-09-11
JPS4923887B1 (en) 1974-06-19

Similar Documents

Publication Publication Date Title
US3630740A (en) Antistatic layers for polymeric photographic supports
US4089997A (en) Process of applying antistatic coating compositions to polyester films
US3525621A (en) Antistatic photographic elements
EP0494414B1 (en) Roll film assembly
US4701403A (en) Two-layer process for applying antistatic compositions to polyester supports
US4542095A (en) Antistatic compositions comprising polymerized alkylene oxide and alkali metal salts and elements thereof
US3437484A (en) Antistatic film compositions and elements
US4327174A (en) Method of preparing a carrier material for photography
US3262807A (en) Articles resistant to static buildup
DE3889475T2 (en) Silver halide photographic materials and methods for their treatment.
EP0030352B1 (en) Unsubbed organic film coated with an opaque antistatic backing layer, and method of manufacturing
US3359107A (en) Photographic element
US4135932A (en) Process for preparation of photographic film involving corona treatment of polystyrene containing subbing layers and product
KR100186870B1 (en) N-substituted acrylamide copolymer
CA1054463A (en) Antistatic coating composition containing an electroconductive polymer, stretch improving agent and filler
US3856530A (en) Photographic polyester film material comprising antistatic layer
US3674711A (en) Electrically conductive transparent plastic material
US4123278A (en) Polyester film coated with adhesive polymer composition
US3053661A (en) Polyester film elements and subbing compositions therefor
GB2085756A (en) Coated paper supports for photographic printing paper
US3753765A (en) Conductive carbon antistatic backing for photographic film
US2865753A (en) Photographic emulsions containing a styrene-butadiene latex and photographic paper made therewith
US4009037A (en) Coated synthetic film materials
US3607286A (en) Photographic material comprising an antistatic coating
US3852249A (en) Antistatic agent for polymeric materials