US3629641A - Low-pressure mercury vapor discharge lamp containing amalgam - Google Patents

Low-pressure mercury vapor discharge lamp containing amalgam Download PDF

Info

Publication number
US3629641A
US3629641A US55396A US3629641DA US3629641A US 3629641 A US3629641 A US 3629641A US 55396 A US55396 A US 55396A US 3629641D A US3629641D A US 3629641DA US 3629641 A US3629641 A US 3629641A
Authority
US
United States
Prior art keywords
lamp
amalgam
indium
amalgams
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US55396A
Other languages
English (en)
Inventor
Dieter Hofmann
Bernhard Kuhl
Erhard Rasch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Application granted granted Critical
Publication of US3629641A publication Critical patent/US3629641A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury

Definitions

  • Neuhauser. Oscar B. Waddell and Joseph B. Forman ABSTRACT A low-pressure mercury vapor fluorescent lamp containing amalgams at three different locations in order to extend the temperature range of maximum light output.
  • the main amalgam is indium with a weight ratio of indium to mercury from 12:] to 3:] located at places within the lamp having temperatures from 80 to 1 10 C.
  • the two additional or runup amalgams are located at places within the lamp envelope which are much hotter than the main amalgam and which attain their operating temperature successively and earlier than the main amalgam, for instance on the electrode cap and on the stem press.
  • This invention relates to low-pressure mercury vapor discharge lamps, more particularly to fluorescent lamps containing amalgam.
  • the amalgam causes the mercury to have a vapor pressure which, at the same temperature, is lower than that of free mercury.
  • the location of the amalgam-forming metal or of the amalgam, respectively, is of importance for the action of the amalgam within the lamp both in respect of the chosen amalgam-forming metal, and, additionally, in respect of its quantitative proportion in the alloy; even the choice of the amalgam-forming metal(s) and the composition of the amalgam(s) to be utilized is influenced by the place of location (German Federal Republic Pat. No. 1,086,804).
  • the temperature prevailing in this place during operation of the lamp is decisive as regards the choice of the place of location within the lamp.
  • amalgam-forming metals particularly suitable for application within the lamp proved the amalgam-forming metals cadmium and/or indium, and/or tin, the geometrical structure within the lamp and the type of application of the amalgam-forming metals or of the amalgams being quite different depending upon the choice.
  • it is already well known to incorporate amalgams in already specified composition into the lamp and to either paste or roll them onto the inner wall of the discharge envelope in the form of a strip, a film or a pellet German Federal Republic Pat. Nos. 1,104,060; 1,140,286; 1,149,818; and 1,196,292).
  • amalgam-forming metal and the composition ratio of the amalgam are so chosen that the maximum of luminous flux of the lamp is reached approximately in the middle of the intended region.
  • Another object of the invention is to reduce the number of difierent lamp types. Another object of the invention is to provide an optimum lamp as regards dimensioning, filling, runup characteristics and simple manufacturing methods.
  • a low-pressure mercury vapor discharge lamp preferably a fluorescent lamp, containing amalgam
  • the main amalgam determining the condition of equilibrium of the operating vapor pressure is indium-amalgam with a weight ratio of indium to mercury of from 3:1 to 12:1
  • the main amalgam or the respective amalgam-forming metal is located in places within the lamp which have an operating temperature of from to 1 10 C.
  • the lamp contains at least two additional amalgams or amalgam-forming metals accelerating the runup of the lamp located in places which are much hotter than the place of the main amalgam.
  • the additional amalgams are desirably located in places of low-heat capacity closer to the electrodes and which attain their operating temperatures successively and earlier than the place of the main amalgam.
  • the invention is particularly useful in lamps having power inputs from 0.3 to 0.6 watts per centimeter of discharge path length, (0.75 to 1.5 w/in).
  • lt is advantageous if the place of location of the main amalgam or of the respective amalgam-forming metal has a temperature of 95 C. during lamp operation, and that the weight ratio of indium to mercury in the amalgam is 6: 1.
  • a broadening of the curve of luminous flux versus temperature by more than 50 percent offers obvious advantages both in respect of the utilization of the lamp in different ambient temperature ranges, and in respect of the utilization in lighting fittings as well. Since temperature occurring in commercially available lighting fittings such as, for example, open batten-type fittings, louvered fittings, trough-shaped, coffered, moistureproof fittings, are assuming values of between 30 and 75 C. with a constant room temperature, the lamp according to the invention is most prefectly suited for all lighting fittings applicable in interior lighting and is therefor a replacement for both the standard fluorescent lamp provided for open fittings, and for the various well-known former amalgam lamps adapted to the respective enclosed fittings.
  • the luminous flux decreases already within a temperature interval of 30 C. about 10 percent.
  • a low mercury content of the indium-amalgam in the lamps according to the invention has to be chosen in order to obtain the favorable temperature-dependence characteristic, it is suitable to provide an additive amalgam in a similar manner as with cadium-amalgam lamps in order to reduce the runup period of the lamp.
  • This runup amalgam preferably an indium alloy, is applied in a place which is quickly heated up after ignition of the lamp, for example, on the electrode cap. It proved however that the luminous flux of these lamps after rapid initial rise drops temporarily for a predetermined time because the still cold main indium-amalgam having a high affinity for mercury, absorbs the mercury and gives off defined amounts thereof only after a longer runup period.
  • amalgams within the lamp which are rated so, and the places of their location are chosen so that said amalgams are counterbalancing the temporary decrease of luminous flux.
  • place of location only a place of low heat capacity is suitable which is closer to the electrode than that of the main amalgam, for example, a place on the stem press, and the amalgamforming metal is suitably a spray-deposited spot of indium.
  • the stem press is heated up after energization of the lamp more slowly than the electrode cap, but more rapidly than the place of the main amalgam so that the second runup amalgam delivers mercury just during that period in which the first runup amalgam on the electrode cap has already completely given off its mercury, the main amalgam on the other hand is still too cold for the evaporation of a sufficient amount of mercury.
  • FIG. 1 is a side view, partly sectioned, of a fluorescent lamp embodying the invention with portions cut away to shorten the figure.
  • FIG. 2 shows curves of relative luminous flux plotted against ambient temperatures for various fluorescent lamps. Below the temperature scale, ranges are marked which are covered by the commercially available lighting fittings or fixtures, resulting from the type of fitting and the number of lamps operated within the fitting.
  • FIG. 3 shows the runup characteristic, that is luminous flux versus time, of 65 W. fluorescent lamps in a commercially available fitting having an internal temperature of 50 C. in an ambient temperature of 25 C.
  • electrode stems 3 are sealed to the end portions of lamp envelope 1 internally provided with a phosphor coating 2, said stems comprising stern flare 4, press 5 through which the lead-in wires 6 and 7 are passed, and exhaust tube 8.
  • the electrode coil 9 pasted with oxide is attached to the inner ends of lead-in wires 6 and 7 and surrounded by annular metal cap or shield 10 of sheet iron.
  • the cap 10 is carrying a first runup amalgam in the form of a strip 1! composed of an indium alloy, preferably with an indium-tin-lead ratio of 2:6:2.
  • the total amount of amalgam-forming metals in the strip-shaped coating 11 is approximately 5 to 10 mg.
  • indium metal 12 is spray-deposited in a quantity of 60 mg. as the amalgam-forming metal for the main amalgam, the indium component of the amalgam amounting .to 6: I.
  • An indium spot 13 of from 5 to 10 mg. is spray-deposited on press 5 for the second runup amalgam.
  • curve a shows the luminous flux of a standard fluorescent lamp without amalgam (maximum luminous flux at l8 C.)
  • curve b that of an indium-amalgam lamp according to the invention (maximum at 37 C.)
  • curve c that of a cadmium-amalgam lamp (maximum at 50 C.).
  • FIG. 3 shows in curve e the runup characteristic of a 65 W. fluorescent lamp with indium as the main amalgam and with two runup amalgams, by comparison with one runup amalgam in curve f, and without runup amalgam in curve 3.
  • Curve It shows by comparison a 65 W. fluorescent lamp without amalgam.
  • the relative luminous flux is plotted versus minutes of time elapsed since the lamp has been started, up to 8 minutes.
  • the curves show clearly that by means of the second runup amalgam in indium-amalgam lamps, the runup period is considerably reduced and the temporary decrease of luminous flux seen in curve f is almost fully compensated as seen in curve e.
  • the lamp according to the invention makes it possible to enlarge considerably the range of utilization of standard fluorescent lamps operated on a normal power input without need to efiect structural modifications.
  • the lamp according to the invention supplies a high luminous flux which drops in no case below 95 percent of the value obtained at optimum temperature. While optimum operation in respect of luminous flux of fluorescent lamps without amalgam can only be achieved in open fittings, and in respect of luminous flux of the former amalgam lamps rated for different temperature ranges can only be achieved in enclosed fittings, the operating ranges of all these lamps are united in the optimum range of operation of the indium-amalgam lamp so that the lamp according to the invention represents a universal lamp for interior lighting.
  • a low-pressure mercury vapor discharge lamp comprising an elongated vitreous envelope having electrodes sealed into its ends, said envelope containing indium-mercury amalgam as the main amalgam determining the condition of equilibrium of the operating vapor pressure, said main amalgam having a weight ratio of indium to mercury from 3:1 to 12:1, said main amalgam being located in places within the lamp having an operating temperature from to 110 C., said lamp containing at least two additional amalgams accelerating the runup of the lamp and located in places which are hotter than the place of the main amalgam, said additional amalgams attaining their operating temperatures successively and earlier than the main amalgam after the lamp is turned on.

Landscapes

  • Discharge Lamp (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
US55396A 1969-07-25 1970-07-16 Low-pressure mercury vapor discharge lamp containing amalgam Expired - Lifetime US3629641A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1937938A DE1937938C3 (de) 1969-07-25 1969-07-25 Quecksilberdampf niederdruckentladungslampe mit Haupt- und Nebenamalgam

Publications (1)

Publication Number Publication Date
US3629641A true US3629641A (en) 1971-12-21

Family

ID=5740925

Family Applications (1)

Application Number Title Priority Date Filing Date
US55396A Expired - Lifetime US3629641A (en) 1969-07-25 1970-07-16 Low-pressure mercury vapor discharge lamp containing amalgam

Country Status (8)

Country Link
US (1) US3629641A (de)
AT (1) AT300956B (de)
BE (1) BE753899A (de)
CH (1) CH508274A (de)
DE (1) DE1937938C3 (de)
FR (1) FR2055635A5 (de)
GB (1) GB1319105A (de)
SE (1) SE376683B (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890531A (en) * 1973-06-14 1975-06-17 Patent Treuhand Ges Fur Elekst Low pressure mercury vapor discharge lamp with amalgam
US3898720A (en) * 1972-09-28 1975-08-12 Westinghouse Electric Corp Method of providing a fluorescent lamp stem with an integral mercury-vapor pressure regulating means
US3906284A (en) * 1973-08-01 1975-09-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Low pressure mercury vapor discharge lamp with amalgam
US4015162A (en) * 1975-07-07 1977-03-29 Westinghouse Electric Corporation Fluorescent lamp having implanted amalgamative metal for mercury vapor regulation
US4047071A (en) * 1975-03-10 1977-09-06 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Lamp having amalgam contained in a porous silicate mass
US4105910A (en) * 1976-04-23 1978-08-08 Westinghouse Electric Corp. Fluorescent lamp with an integral fail-safe and auxiliary-amalgam component
US4528209A (en) * 1978-10-25 1985-07-09 General Electric Company Use of amalgams in solenoidal electric field lamps
US4698549A (en) * 1984-07-02 1987-10-06 General Electric Company D.C. lamp discharge gas pumping control
US5095336A (en) * 1990-11-08 1992-03-10 Xerox Corporation Temperature control of a fluorescent lamp having a central and two end amalgam patches
US5237240A (en) * 1991-12-04 1993-08-17 Gte Products Corporation Mercury vapor discharge lamp containing device for heating amalgam-forming material
EP0769803A3 (de) * 1995-10-18 1999-02-03 General Electric Company Elektrodenlose Leuchtstofflampe
US5907216A (en) * 1994-07-15 1999-05-25 U.S. Philips Corporation Low-pressure mercury vapour discharge lamp
US6304030B1 (en) * 1998-05-22 2001-10-16 U.S. Philips Corporation Low-pressure mercury vapor discharge lamp
WO2002080224A3 (en) * 2001-03-29 2003-06-05 Koninkl Philips Electronics Nv Low/pressure mercury vapor discharge lamp
US6707246B1 (en) * 1999-08-19 2004-03-16 Koninklijke Philips Electronics N.V. Low-pressure mercury vapor discharge lamp with improved auxiliary amalgam
WO2021185582A1 (de) * 2020-03-17 2021-09-23 Heraeus Noblelight Gmbh Niederdruck-quecksilberdampfentladungslampe und lampensystem

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9521375D0 (en) * 1995-10-18 1995-12-20 Gen Electric Electrodeless fluorescent lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1005446A (en) * 1961-04-07 1965-09-22 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh An electric heavy-duty low-pressure mercury discharge lamp
US3227907A (en) * 1962-12-31 1966-01-04 Sylvania Electric Prod Electric discharge lamp with integral pressure regulator
US3392298A (en) * 1962-08-31 1968-07-09 Sylvania Electric Prod Fluorescent lamp using an indiummercury amalgam band for pressure control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1005446A (en) * 1961-04-07 1965-09-22 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh An electric heavy-duty low-pressure mercury discharge lamp
US3392298A (en) * 1962-08-31 1968-07-09 Sylvania Electric Prod Fluorescent lamp using an indiummercury amalgam band for pressure control
US3227907A (en) * 1962-12-31 1966-01-04 Sylvania Electric Prod Electric discharge lamp with integral pressure regulator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898720A (en) * 1972-09-28 1975-08-12 Westinghouse Electric Corp Method of providing a fluorescent lamp stem with an integral mercury-vapor pressure regulating means
US3890531A (en) * 1973-06-14 1975-06-17 Patent Treuhand Ges Fur Elekst Low pressure mercury vapor discharge lamp with amalgam
US3906284A (en) * 1973-08-01 1975-09-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Low pressure mercury vapor discharge lamp with amalgam
US4047071A (en) * 1975-03-10 1977-09-06 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh Lamp having amalgam contained in a porous silicate mass
US4015162A (en) * 1975-07-07 1977-03-29 Westinghouse Electric Corporation Fluorescent lamp having implanted amalgamative metal for mercury vapor regulation
US4071288A (en) * 1975-07-07 1978-01-31 Westinghouse Electric Corporation Method of implanting an amalgamative metal in a fluorescent lamp during manufacture
US4105910A (en) * 1976-04-23 1978-08-08 Westinghouse Electric Corp. Fluorescent lamp with an integral fail-safe and auxiliary-amalgam component
US4528209A (en) * 1978-10-25 1985-07-09 General Electric Company Use of amalgams in solenoidal electric field lamps
US4698549A (en) * 1984-07-02 1987-10-06 General Electric Company D.C. lamp discharge gas pumping control
US5095336A (en) * 1990-11-08 1992-03-10 Xerox Corporation Temperature control of a fluorescent lamp having a central and two end amalgam patches
US5237240A (en) * 1991-12-04 1993-08-17 Gte Products Corporation Mercury vapor discharge lamp containing device for heating amalgam-forming material
US5907216A (en) * 1994-07-15 1999-05-25 U.S. Philips Corporation Low-pressure mercury vapour discharge lamp
EP0769803A3 (de) * 1995-10-18 1999-02-03 General Electric Company Elektrodenlose Leuchtstofflampe
US6304030B1 (en) * 1998-05-22 2001-10-16 U.S. Philips Corporation Low-pressure mercury vapor discharge lamp
US6707246B1 (en) * 1999-08-19 2004-03-16 Koninklijke Philips Electronics N.V. Low-pressure mercury vapor discharge lamp with improved auxiliary amalgam
WO2002080224A3 (en) * 2001-03-29 2003-06-05 Koninkl Philips Electronics Nv Low/pressure mercury vapor discharge lamp
WO2021185582A1 (de) * 2020-03-17 2021-09-23 Heraeus Noblelight Gmbh Niederdruck-quecksilberdampfentladungslampe und lampensystem
CN115152003A (zh) * 2020-03-17 2022-10-04 贺利氏特种光源有限公司 低压汞蒸气放电灯和灯系统

Also Published As

Publication number Publication date
DE1937938C3 (de) 1980-10-09
CH508274A (de) 1971-05-31
AT300956B (de) 1972-07-15
DE1937938A1 (de) 1971-02-04
SE376683B (de) 1975-06-02
GB1319105A (en) 1973-06-06
FR2055635A5 (de) 1971-05-07
DE1937938B2 (de) 1980-01-31
BE753899A (fr) 1970-12-31

Similar Documents

Publication Publication Date Title
US3629641A (en) Low-pressure mercury vapor discharge lamp containing amalgam
US4157485A (en) Low-pressure mercury vapor discharge lamp with indium-bismuth-mercury amalgam
US4105910A (en) Fluorescent lamp with an integral fail-safe and auxiliary-amalgam component
US3534212A (en) Fluorescent lamp having an integral mercury-vapor pressure control assembly with segmented amalgam-forming metal
US4972118A (en) Amalgam having extended stable mercury vapor pressure range and low mercury vapor pressure discharge lamp using the same
US2477279A (en) Electrical discharge device
GB811281A (en) A low pressure fluorescent electric discharge lamp
US2724070A (en) Cathode coating for electrical discharge devices and method for making the same
US3227907A (en) Electric discharge lamp with integral pressure regulator
US2896107A (en) Gaseous electric discharge lamp
US3392298A (en) Fluorescent lamp using an indiummercury amalgam band for pressure control
US3562571A (en) Mercury-vapor discharge lamp with amalgam-type vapor-pressure regualtor and integral fail-safe and fast warmup compone
US1981878A (en) Lamp, filament, and process of making the same
US2438181A (en) Fluorescent and/or cathode glow lamp and method
US2141905A (en) Fluorescent lamp and fluorescent material therefor
US3860852A (en) Fluorescent lamp containing amalgam-forming material
US3325662A (en) Metal vapor lamp having a heat reflecting coating of calcium pyrophosphate
US3048737A (en) Gaseous discharge device and method
US2185025A (en) Electric lamp
JP3269127B2 (ja) 低圧水銀蒸気放電ランプ
US3549936A (en) Low pressure mercury vapor discharge lamps including an alloy type getter coating
US2930872A (en) Glow switch
US2061892A (en) Electric discharge lamp
US2027241A (en) Thermionic discharge device
USRE21823E (en) Electric discharge lamp