US3628981A - Liquid toner development - Google Patents
Liquid toner development Download PDFInfo
- Publication number
- US3628981A US3628981A US43466A US3628981DA US3628981A US 3628981 A US3628981 A US 3628981A US 43466 A US43466 A US 43466A US 3628981D A US3628981D A US 3628981DA US 3628981 A US3628981 A US 3628981A
- Authority
- US
- United States
- Prior art keywords
- liquid
- developer
- highly volatile
- image
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000003384 imaging method Methods 0.000 claims description 24
- 238000009835 boiling Methods 0.000 claims description 9
- 238000004064 recycling Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 25
- 238000004140 cleaning Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000003405 preventing effect Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/10—Apparatus for electrographic processes using a charge pattern for developing using a liquid developer
- G03G15/11—Removing excess liquid developer, e.g. by heat
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/06—Apparatus for electrographic processes using a charge pattern for developing
- G03G15/10—Apparatus for electrographic processes using a charge pattern for developing using a liquid developer
Definitions
- Mahassel and Peter H. Kondo ABSTRACT In developing an electrostatic latent-imagebearing surface with a liquid developer containing a highly volatile liquid component, a thin layer of residual liquid developer is formed on the surface. This thin residual developer layer is substantially removed by subjecting the layer to a stream of gas containing a relatively large quantity of the vapor of the highly volatile liquid component. Toner background deposit and image quality is improved with this technique.
- the formation and development of images on a surface of photoconductive materials by electrostatic means is well known.
- One conventional process involves placing a uniform electrostatic charge on a photoconductive insulating layer comprising zinc oxide powder and a resinous binder carrier on a conductive paper substrate, exposing the layer to a lightand-shadow image to dissipate the charge on the areas of the layer exposed to the light and developing the resulting electrostatic latent image by depositing on the image a charged toner which is dispersed in an insulating carrier liquid.
- the charged toner may be suitably colored and may have a polarity of charge identical or opposite to that of the latent image to be developed. If the polarity of the charge of the toner is identical to that of the latent image, reversal development will occur whereas a toner having a charge opposite of that of the latent image will be attracted to the latent image.
- an imaging member having a recording surface bearing an electrostatic latent image
- developing the latent image with a liquid developer containing a highly volatile liquid component to form an imaged recording surface having a thin layer of developer liquid thereon
- directing a stream of gas containing a relatively large quantity of the vapor of the volatile liquid component against the imaged recording surface thereby removing the thin layer of developer liquid by a squeezing action.
- the vapor pressure of the vapor in the gas should be substantially equal to the saturated vapor pressure of the volatile liquid at the temperature at which the gas is employed.
- the high concentration of vapor in the gas stream permits removal of the thin layer of developer liquid on the imaged surface and return of this removed liquid developer to the developer bath without undue loss of the volatile liquid component of the liquid developer.
- the high vapor content of the stream of gas prevents fluctuations in the image density to occur on the imaged surface during the squeezing operation.
- the carrier liquids employed in the liquid developers of this invention comprise liquid components having low volatility mixed in suitable ratios with liquid components having high volatility to pennit normal handling in conventional liquid development electrostatographic machines.
- Any suitable highly volatile liquid may be employed as the highly volatile liquid component in the carrier liquid of this invention.
- Typical highly volatile liquids include cyclohexane, carbon tetrachloride, n-hexane, fluorinated hydrocarbons such as 1,1,2-trichloro-l,2,2trifluoroethylene, and the like.
- the expression "highly volatile is intended to include liquids having a boiling point between about and about 200 F.
- the liquid developer component having a high degree of volatility is used in the developer to dissolve the conventional resinous component of the liquid developer and to promote rapid drying of the imaged recording member.
- Any suitable low volatility liquid may be employed in the liquid developers of this invention.
- Typical low volatility liquids include high boiling point petroleum fractions such as kerosene, isoparaffins and the like.
- the expression low volatility is intended to include liquids having a boiling point greater than about 250 F.
- the high boiling point liquid is employed in liquid developers to facilitate handling and to insure stability for long periods of time.
- Liquid developers containing one or more of the above described components are well known in the prior art. Generally, for practical drying speeds, at least about 5 percent highly volatile liquid based on the total weight of carrier liquid is preferred.
- the vapor pressure of the highly volatile liquid component of the carrier liquid should be close to its saturated vapor pressure at the average operating temperature of the gas stream. Satisfactory results are achieved with gas-stream temperatures below about the boiling point of said highly volatile carrier liquid component.
- the high concentration of vapor in the one or more streams of gas employed in this invention prevents abrupt evaporation of the highly volatile component of the liquid developer thereby preventing degradation of image quality.
- the high concentration of vapor in the gas stream also permits recovery and reuse of the liquid developer removed from the imaged surface without significant changes in the relative concentration of the highly volatile liquid in the recovered liquid developer.
- the concentration of the vapors should exceed the upper explosion limit. More preferably, the flammable vapor may be admixed with inert gases such as nitrogen, carbon dioxide or vapors of nonflammable solvents containing a halogen. Obviously, in continuous processes where air from the ambient atmosphere becomes admixed with the gas stream, continuous introduction of a predetermined amount of inert gases or vapors will reduce the danger of explosions.
- the apparatus employed to carry out the process of this invention may be airtight and the internal pressure may be maintained slightly higher than the external pressure. The velocity of the gas stream should be sufi'lcient to cause the: developer liquid in the thin residual layer to visibly flow away from the point of impact of the gas stream on the imaged recording surface.
- a recording element I carrying an electrostatic latent image on the upper surface is conveyed in the direction indicated by the arrow.
- a container 2 of developer liquid 3 is positioned below the path of travel of recording element l.
- the developer liquid 3 is fed by pump 4 into developing head 5.
- the developing liquid supplied by developing head .5 contacts and develops the electrostatic latent image carried on the upper surface of recording element 1 supported by an electrically grounded conductive support member 14. Although some of the excess developer liquid 3 flows over the edges of recording element 1 into container 2, some of the developer liquid remains deposited as a thin layer on the upper surface of recording element 1. This thin layer of developer liquid is subjected to at least one gas stream supplied by nozzle 6.
- the gas for the gas stream supplied by nozzle 6 is drawn into the ducts 7 and 7' from the area immediately adjacent to the exit opening of nozzle 6 and is delivered to 1101.118 6 by means of fan 8.
- Recording element 1 is supported by roller 9 positioned immediately below the exit opening of nozzle 6.
- the strong stream of gas emitted from nozzle 6 presses recording element 1 against roller 9 and removes the thin layer of liquid developer on the upper surface of recording element 1 by a squeezing action thereby causing the developer liquid to flow over both edges of recording element 1 back. into container 2.
- a portion of the highly volatile component of the carrier liquid is vaporized.
- recording element 1 is transported over a container 10 of cleaning liquid ll.
- Cleaning liquid 11 is pumped by means of pump 13 to cleaning head 12 located over the upper surface of recording element 1. The cleaning liquids supplied to the upper surface of the recording element l by cleaning head 12 reduces background toner deposits and decreases the tendency of the images to smear.
- the subsequent treatment of recording element 1 with cleaning liquid 11 is optional.
- the cleaning operation is employed where images or extremely high quality are required. It is apparent that the removal of the thin layer of liquid developer after development from the upper surface of the recording element 1 by the air squeezing treatment greatly reduces the rate of contamination of cleaning liquid 11 with liquid developer materials carried over on the surface of recording element 1 from the development operation. Thus, in automatic machines in which the cleaning liquid is recycled, the useful life of the cleaning liquid is lengthened considerably.
- An imaging process comprising providing an electrostatic latent-image-bearing surface, contacting said electrostatic latent-image-bearing surface with a liquid developer comprising toner particles and carrier liquid, said carrier liquid comprising at least one highly volatile liquid whereby a thin layer of residual liquid developer adheres to said electrostatic latent-image-bearing surface and at least a portion of said toner particles deposits on said electrostatic latent-imagebearing surface in image configuration, and directing a stream of gas against said thin layer to remove said residual liquid developer from said electrostatic latent-image-bearing surface, said gas comprising a vapor of said highly volatile liquid at a vapor pressure substantially equal to the saturated vapor pressure of said vapor at the average temperature of said gas stream.
- said carrier liquid comprises at least one highly volatile liquid and at least one liquid having low volatility.
- An imaging process including recycling said gas containing said vapor of said highly volatile liquid and removing residual liquid developer from additional image bearing surfaces.
- An imaging process including collecting said residual liquid developer removed by said gas stream and reusing said residual liquid developer to develop additional electrostatic latent-image-bearing surfaces.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Cleaning In Electrography (AREA)
- Wet Developing In Electrophotography (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4526969A JPS4818859B1 (enrdf_load_stackoverflow) | 1969-06-09 | 1969-06-09 | |
GB4526969 | 1969-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3628981A true US3628981A (en) | 1971-12-21 |
Family
ID=26265549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US43466A Expired - Lifetime US3628981A (en) | 1969-06-09 | 1970-06-04 | Liquid toner development |
Country Status (4)
Country | Link |
---|---|
US (1) | US3628981A (enrdf_load_stackoverflow) |
DE (1) | DE2028388A1 (enrdf_load_stackoverflow) |
FR (1) | FR2050118A5 (enrdf_load_stackoverflow) |
NL (1) | NL7008259A (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3802388A (en) * | 1973-01-05 | 1974-04-09 | Poma V | Photocopy liquid developing apparatus |
US5643707A (en) * | 1995-07-31 | 1997-07-01 | Xerox Corporation | Liquid developer compositions |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3811765A (en) * | 1972-01-21 | 1974-05-21 | Electroprint Inc | Contact-transfer electrostatic printing system |
JPS5393842A (en) * | 1977-01-28 | 1978-08-17 | Canon Inc | Method and apparatus for developing electrostatic latent image |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356498A (en) * | 1964-11-09 | 1967-12-05 | Dow Chemical Co | Electrophotographic method comprising rinsing the imaged plate |
US3382763A (en) * | 1965-05-21 | 1968-05-14 | Addressograph Multigraph | Photoelectrostatic copying machine |
US3498917A (en) * | 1965-10-23 | 1970-03-03 | Philips Corp | Liquid developer for electrostatic images |
-
1970
- 1970-06-04 US US43466A patent/US3628981A/en not_active Expired - Lifetime
- 1970-06-05 NL NL7008259A patent/NL7008259A/xx unknown
- 1970-06-09 DE DE19702028388 patent/DE2028388A1/de active Pending
- 1970-06-09 FR FR7021033A patent/FR2050118A5/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3356498A (en) * | 1964-11-09 | 1967-12-05 | Dow Chemical Co | Electrophotographic method comprising rinsing the imaged plate |
US3382763A (en) * | 1965-05-21 | 1968-05-14 | Addressograph Multigraph | Photoelectrostatic copying machine |
US3498917A (en) * | 1965-10-23 | 1970-03-03 | Philips Corp | Liquid developer for electrostatic images |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3802388A (en) * | 1973-01-05 | 1974-04-09 | Poma V | Photocopy liquid developing apparatus |
US5643707A (en) * | 1995-07-31 | 1997-07-01 | Xerox Corporation | Liquid developer compositions |
Also Published As
Publication number | Publication date |
---|---|
DE2028388A1 (de) | 1970-12-17 |
NL7008259A (enrdf_load_stackoverflow) | 1970-12-11 |
FR2050118A5 (enrdf_load_stackoverflow) | 1971-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3169887A (en) | Electrophotographic developing apparatus | |
US3501294A (en) | Method of treating the surface of a xerographic plate with a metal salt of a fatty acid to improve image transfer | |
US3010842A (en) | Development of electrostatic images | |
US4413048A (en) | Developing composition for a latent electrostatic image for transfer of the developed image across a gap to a carrier sheet | |
US4727394A (en) | Roll fusing for liquid images | |
US3005726A (en) | Process of developing electrostatic images | |
US3195430A (en) | Electrostatic printing apparatus | |
US4311723A (en) | Method of vapor fixing a toner | |
US3628981A (en) | Liquid toner development | |
US20020197087A1 (en) | Liquid developer system employing a pretransfer station | |
US3894512A (en) | Electrostatic developing apparatus | |
US4147541A (en) | Electrostatic imaging member with acid lubricant | |
US3124484A (en) | magnusson | |
US3849171A (en) | Method for cleaning background areas from developed recording surfaces | |
US4373016A (en) | Process of transferring monocomponent developing powder with a volatile, dielectric liquid | |
US3893417A (en) | Apparatus for liquid development of electrostatic images | |
JP3377843B2 (ja) | 静電潜像の液体現像方法及び液体現像装置 | |
US3336906A (en) | Apparatus for immersion development | |
US3972305A (en) | Imaging system | |
US4270485A (en) | Liquid developing apparatus | |
US3856519A (en) | Transfer of tower using a volatile insulating liquid | |
US5655192A (en) | Method and apparatus for compaction of a liquid ink developed image in a liquid ink type electrostatographic system | |
US3943268A (en) | Liquid development process and apparatus for electrostatography | |
US3592678A (en) | Liquid donor development with electrophoretic cleaning | |
US3664300A (en) | Apparatus for treating the surface of an electrostatographic imaging |