US3624268A - Jumper arrangement for overhead transmission lines - Google Patents

Jumper arrangement for overhead transmission lines Download PDF

Info

Publication number
US3624268A
US3624268A US64735A US3624268DA US3624268A US 3624268 A US3624268 A US 3624268A US 64735 A US64735 A US 64735A US 3624268D A US3624268D A US 3624268DA US 3624268 A US3624268 A US 3624268A
Authority
US
United States
Prior art keywords
jumper
rigid
rod
transmission line
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US64735A
Inventor
Akira Otsuki
Kimikazu Numata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Fujikura Cable Works Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8078269U external-priority patent/JPS4929027Y1/ja
Priority claimed from JP8122569U external-priority patent/JPS4836621Y1/ja
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Application granted granted Critical
Publication of US3624268A publication Critical patent/US3624268A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/20Spatial arrangements or dispositions of lines or cables on poles, posts or towers

Definitions

  • each fitting 3 is connected with an arm 7 secured to a tower 6 through a strain insulator string assembly 5 while the other end of the fitting 3 is connected with one end of main conductors ll successively through a yoke 8, sector shaped yoke plates 9 and anchor clamps 10. Further, each end of the jumper rod 1 is connected to the ends of the main conductors 11 through flexible connecting wires 12. The lower ends of flexible connecting wires 12 are connected to one end of the jumper rod 1 by connecting element 13 while the upper ends are connected to anchor clamps 10. Two connecting wires 12 are held spaced apart by means of a spacer 14.

Abstract

In a jumper arrangement for an overhead electric power transmission line wherein conductors of the transmission line are secured to a power transmission tower through strain insulator string assemblies and conductors on the opposite sides of the tower are electrically interconnected by a jumper conductor, main parts of the jumper conductor are formed by a rigid jumper rod and each end of the jumper rod is connected with a supporting fixture interposed between the conductor of the transmission line and the strain insulator string assembly through a pivotally connected supporting means. The jumper rod is further connected to the conductor of the transmission line through at least one electroconductive flexible connecting wire.

Description

United States Patent [72] Inventors Akira Otsuki;
Kimikazu Numata, both of Tokyo, Japan [21] Appl. No. 64,735 [22] Filed Aug. 18, 1970 [45] Patented Nov. 30, 1971 [73] Assignee The Fujikura Cable Works, Ltd. Tokyo, Japan [32] Priorities Aug. 27, 1969 [33] Japan [31] 44/80782;
Aug. 28, 1969, Japan, No. 44/81225 [54] JUMPER ARRANGEMENT FOR OVERHEAD TRANSMISSION LINES 10 Claims, I 1 Drawing Figs.
[52] US. Cl 174/43 [51] Int. Cl 02g 7/00 [50] Field of Search 174/40 R, 43,45 R, 126 CP, 131 R; 191/40, 41;248/58,63; 339/222 [56] References Cited UNITED STATES PATENTS Stone t.
Primary Examiner Laramie E. Askin AltomeyFlynn & F rishauf ABSTRACT: In a jumper arrangement for an overhead electric power transmission line wherein conductors of the transmission line are secured to a power transmission tower through strain insulator string assemblies and conductors on the opposite sides of the tower are electrically interconnected by a jumper conductor, main parts of the jumper conductor are formed by a rigid jumper rod and each end of the jumper rod is connected with a supporting fixture interposed between the conductor of the transmission line and the strain insulator string assembly through a pivotally connected supporting means. The jumper rod is further connected to the conductor of the transmission line through at least one electroconductive flexible connecting wire.
PATENTED "W30 [9" SHEET 1 BF 4 FIG.
FIG.
PATENTED nuvao i9?! SHEET 2 BF 4 F|G.4 FIGS FIG. 6
PATENTED NOV30 l97| SHEET 3 BF 4 FIG. 7
FIGiO FIGH JUMPER ARRANGEMENT FOR OVERHEAD TRANSMISSION LINES This invention relates to a jumper arrangement for overhead electric power transmission lines.
Prior jumper arrangements for a single or multibundle conductor overhead electric power transmission line are usually made of a wire of the same type as the conductors strung in spans and are mounted on a power transmission tower to have a desired insulation distance from the tower. For example, a predetermined length of a jumper wire is cut at the construction site, jumper sockets are fitted under pressure to the op posite ends of the jumper wire, and the jumper sockets are connected to anchor clamps secured to the ends of the line conductors. However, this method of mounting involves many problems regarding the workability, saving of the cost, accuracy of the dimension, etc.
Although the clearances or spaces between the jumper wire and the tower or its arms are determined by considering the sag length of the jumper wire, the swinging movement of the jumper wire or the other movements of the power transmission line, it is essential to decrease as far as possible these clearances in order to decrease the size of the jumper device and the tower itself.
To this end, it is desirable to firmly secure the jumper wire or to construct it as a perfectly rigid body so as to prevent swinging movement or other movements from occurring. However, it is not permissible to firmly secure the jumper wire to the conductors or to construct the jumper wire as the perfect rigid body merely for the purpose of preventing the swinging movement or other movements, because the jumper wire is required to move in response to the variation in the catenary angle of the conductor and insulator string caused by temperature variations and various movements of conductor and insulator strings such as sleet-jump and galloping.
For this reason, it has been considered to manufacture the jumper arrangement in a factory, thus eliminating the field work of cutting the jumper wire to desired length as well as securing the jumper sockets. Such a prefabricated jumper arrangement can be fitted to the transmission conductors supported by the tower by means of bolts and nuts. Furthennore, it is highly desirable to provide an economical but efficient jumper arrangement capable of efficiently preventing the swinging movement of the jumper wire as well as the movement thereof due to uplift wind load and which in addition is readily capable of following the variation in the catenary angle of the conductor and insulator string, while maintaining a small clearance between the jumper wire and the tower.
It is an object of this invention to provide an improved jumper arrangement including a rigid jumper rod which can be cut and manufactured in a factory to have a desired length determined by the line angle or catenary angle thus simplifying the mounting operation at the construction site.
Another object of this invention is to provide an improved jumper arrangement capable of withstanding swinging movement as well as the movement of the conductor of the transmission line caused by uplift wind load, icing and so on.
A further object of this invention is to provide an improved jumper arrangement capable of following variations in the catenary angle of the conductor and insulator string caused by temperature variations and various movements of the conductor and insulator strings.
Another object of this invention is to provide an improved jumper arrangement including means to adjust the length of the connecting wire thus facilitating the mounting work of the jumper arrangement.
According to this invention there is provided a jumper arrangement for an overhead electric power transmission line of the type wherein conductors of the transmission line are secured to a power transmission tower through strain insulator string assemblies and the ends of the conductors on the opposite sides of the tower are electrically interconnected by a jumper conductor, said jumper arrangement being characterized in that the jumper conductor takes the form of a rigid jumper rod, and that each end of the jumper rod is connected with a supporting fixture interposed between the conductor of the transmission line and the strain insulator string assembly through a pivotally connected supporting means and to the conductor of the transmission line through at least one electroconductive flexible jointing wire.
In the drawings:
FIG. 1 is a side view of the jumper arrangement after it has been secured to a power transmission tower and conductors of an electric power transmission line;
FIG. 2 is an enlarged side view of a portion of the jumper arrangement shown in FIG. 1;
FIG. 3 shows a cross section of one example of a jumper rod utilized in the jumper arrangement;
FIG. 4 shows a cross section of a modified jumper rod;
FIG. 5 shows a cross section of another example of jumper rod;
FIG. 6 is a side view of a modified jumper arrangement after it has been secured in position;
FIG. 7 is an enlarged view to show the construction of the joints between the jumper rod, supporting means and connecting wires shown in FIG. 6;
FIG. 8 is a side view of another embodiment of this invention;
FIG. 9 is an enlarged side view of a portion of the embodiment shown in FIG. 8;
FIG. 10 is an enlarged side view, partly in section, of an adjusting fixture for adjusting the length of the supporting means adapted to support the jumper rod shown in FIG. 8; and
FIG. 11 is a sectional view taken along the line XI-XI in FIGS. 8 and 9 and viewed in the direction of arrows.
With reference now to the drawings, in the embodiment shown in FIGS. 1 and 2, there is provided a horizontal jumper rod 1 consisting of an aluminum pipe, for example. The jumper rod is cut into a predetermined length in a factory by taking into consideration various factors encountered in the construction site. The opposite ends of the jumper rod are supported by yoke plates or fittings 3 through supporting means 2. As best shown in FIG. 2, each end of the jumper rod 1 is connected with the lower end of a supporting means 2 through a link 4 pivotally connected to these means. One end of each fitting 3 is connected with an arm 7 secured to a tower 6 through a strain insulator string assembly 5 while the other end of the fitting 3 is connected with one end of main conductors ll successively through a yoke 8, sector shaped yoke plates 9 and anchor clamps 10. Further, each end of the jumper rod 1 is connected to the ends of the main conductors 11 through flexible connecting wires 12. The lower ends of flexible connecting wires 12 are connected to one end of the jumper rod 1 by connecting element 13 while the upper ends are connected to anchor clamps 10. Two connecting wires 12 are held spaced apart by means of a spacer 14.
As shown in FIG. 3, the jumper rod 1 may be comprised by a hollow tubular rod of rigid conductive material such as aluminum for example. Alternatively the jumper rod 1 may be comprised by a composite conductor including an outer aluminum pipe 1 and an inner iron pipe 40 as shown in FIG. 4 or a modified composite conductor including an aluminum pipe I, a helical core 30 of an iron strip contained in aluminum pipe 1 and an outer layer of stranded aluminum conductors 31.
Since the jumper rod 1 has sufficient rigidity it will not sag and can prevent swinging movement or other movements. For this reason, it is possible to always maintain constant clearances between the jumper rod and the tower as well as between said rod and the tower arm. In other words, even with a relatively small clearance between the jumper rod and the tower or its arm, there is no fear of shortening between the tower and the jumper rod thus enabling to reduce the size of the tower and jumper rod. Longitudinal movement of the jumper rod 1 permitted by the use of pivotally connected link 4 and flexible connecting wires 12 permits the connection between the jumper rod and main conductors to follow the variation in the catenary angle of the strain insulator string assembly 5 and main conductors 11 caused by temperature variation and the aforementioned movements of conductor and insulator strings such as sleet-jump and galloping, thus preventing excessive impulsive shock from being applied to the jumper rod 1.
Since connecting wires 12 connected between main conductors l1 and jumper rod 1 are flexible, a slight difference in the length of the jumper rod is permissible, thus enabling cutting of the jumper rod in the factory without regarding the accurate length of the jumper rod. This greatly saves work in the construction site.
FIG. 6 shows a modified embodiment of this invention wherein the length of the jumper rod is especially made small for the convenience of transportation. In this case supporting means are mounted at inclined positions, and two spacers 14 are used to reinforce connecting wires 12. Other component parts are designated by the same reference numerals as in FIG. I so that their description is believed unnecessary.
FIG. 7 illustrates a modified branched socket 13' including a socket arm 15 on one side for receiving the jumper rod 1 and a pair socket arms 16 on the opposite side for receiving connecting wires I2. The upper end of the socket 13' is pivotally connected to the lower end of the supporting means 2 through link 4.
FIGS. 8 and 9 show still another modification of this invention which is substantially identical to the previous embodiments except that a vernier-type length adjuster 17 is inserted at an intermediate point of each supporting means 2.
As shown in FIG. the length adjuster 17 comprises a strip-shaped connecting member 19 provided with a number of equally spaced-apart openings 18, a U-shaped connecting member 21 having two legs sandwiching the connecting member 19 and provided with a plurality of openings 20 of a pitch different from that of openings 18, a bolt 22 extending through a selected pair of openings 18 and 20 and a nut 23.
The jumper rod 1 and connecting wires 12 are interconnected in the following manner. A flange 25 with a plurality of openings 24, as shown in FIG. 11 is secured to one end of the jumper rod 1, and a cylindrical sleeve 26 is press-fitted about the gathered ends of two connecting wires 12. The sleeve 26 is integrally formed with flange 27 having a plurality of openings 28 aligned with openings 24 in flange 25, and these flanges 25 and 27 are connected by bolts 29 extending through aligned openings 24 and 28.
The embodiment shown in FIGS. 8 and 9 provides the same advantages as those of the embodiment shown in FIGS. 1 and 2. Further, according to the embodiment shown in FIGS. 8 and 9 it is possible to adjust the length of the supporting means so as to adjust the horizontality and the level of the jumper rod, thus correctly maintaining it in the desired position.
What we claim is:
I. In a jumper arrangement for an overhead electric power transmission line wherein conductors of the transmission line are secured to a power transmission tower through strain insulator string assemblies and the ends of said conductors on opposite sides of said tower are electrically interconnected by a jumper conductor, the improvement which comprises a rigid jumper rod forming said jumper conductor, supporting fixtures interposed between said conductors of the transmission line and said strain insulator string assemblies, a pair of supporting means, each including a rigid element connecting respective ends of said rigid jumper rod to one of said supporting fixtures for suspending said rigid jumper rod from said transmission line, and an electroconductive flexible connecting wire connecting each end of said rigid jumper rod to its respective conductor of the transmission line.
2. The jumper arrangement according to claim 1 wherein a link mechanism pivotally connects each end of said rigid jumper rod and said respective supporting means to enable said jumper rod to be displaced.
3. The jumper arrangement according to claim 2 wherein said rigid elements of said supporting means are arranged substantially vertical.
4. The umper arrangement according to claim 2 wherein said rigid elements of said supporting means are arranged on an inclined plane.
5. The jumper arrangement according to claim 1 wherein at least one of said supporting means includes adjusting means for adjusting the horizontality and the level of said rigid jumper rod.
6. The jumper arrangement according to claim 5 wherein said at least one supporting means includes a rigid member having an adjustable length for adjusting the horizontality and level of said rigid jumper rod.
7. The jumper arrangement according to claim 5 wherein said adjusting means comprises a strip-shaped connecting member having a number of equally spaced-apart openings therein, a U-shaped connecting member having two legs sand: wiching said strip-shaped connecting member and being provided with a plurality of openings spaced differently from said spaced openings in said strip-shaped connecting member, and a locking member for selectively locking one of said openings of said strip-shaped connecting member and one of said openings of said U-shaped connecting member.
8. The jumper arrangement according to claim 5 wherein a link mechanism pivotally connects each end of said rigid jumper rod and said respective supporting means to enable said jumper rod to be displaced.
9. The jumper arrangement according to claim 8 wherein said at least one supporting means includes a pair of rigid elements, each pivotally connected to an end of said rigid jumper rod and each pivotally connected to one of said supporting fixtures, each of said rigid supporting elements including means for adjusting the length thereof for adjusting the horizontality and level of said rigid jumper rod.
10. The jumper arrangement according to claim 1 wherein said supporting fixtures include means for pivotally connecting said conductors of said transmission line to said strain insulator string assemblies.

Claims (10)

1. In a jumper arrangement for an overhead electric power transmission line wherein conductors of the transmission line are secured to a power transmission tower through strain insulator string assemblies and the ends of said conductors on opposite sides of said tower are electrically interconnected by a jumper conductor, the improvement which comprises a rigid jumper rod forming said jumper conductor, supporting fixtures interposed between said conductors of the transmission line and said strain insulator string assemblies, a pair of supporting means, each including a rigid element connecting respective ends of said rigid jumper rod to one of said supporting fixtures for suspending said rigid jumper rod from said transmission line, and an electroconductive flexible connecting wire connecting each end of said rigid jumper rod to its respective conductor of the transmission line.
2. The jumper arrangement according to claim 1 wherein a link mechanism pivotally connects each end of said rigid jumper rod and said respective supporting means to enable said jumper rod to be displaced.
3. The jumper arrangement according to claim 2 wherein said rigid elements of said supporting means are arranged substantially vertical.
4. The jumper arrangement according to claim 2 wherein said rigid elements of said supporting means are arranged on an inclined plane.
5. The jumper arrangement according to claim 1 wherein at least one of said supporting means includes adjusting means for adjusting the horizontality and the level of said rigid jumper rod.
6. The jumper arrangement according to claim 5 wherein said at least one supporting means includes a rigid member having an adjustable length for adjusting the horizontality and level of said rigid jumper rod.
7. The jumper arrangement according to claim 5 wherein said adjusting means comprises a strip-shaped connecting member having a number of equally spaced-apart openings therein, a U-shaped connecting member having two legs sandwiching said strip-shaped connecting member and being provided with a plurality of openings spaced differently from said spaced openings in said strip-shaped connecting member, and a locking member for selectively locking one of said openings of said strip-shaped connecting member and one of said openings of said U-shaped connecting member.
8. The jumper arrangement according to claim 5 wherein a link mechanism pivotally connects each end of said rigid jumper rod and said respective supporting means to enable said jumper rod to be displaced.
9. The jumper arrangement according to claim 8 wherein said at least one supporting means includes a pair of rigid elements, each pivotally connected to an end of said rigid jumper rod and each pivotally connected to one of said supporting fixtures, each of said rigid supporting elements including means for adjusting the length thereof for adjusting the horizontality and level of said rigid jumper rod.
10. The jumper arrangement according to claim 1 wherein said supporting fixtures include means for pivotally connecting said conductors of said transmission line to said strain insulator string assemblies.
US64735A 1969-08-27 1970-08-18 Jumper arrangement for overhead transmission lines Expired - Lifetime US3624268A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8078269U JPS4929027Y1 (en) 1969-08-27 1969-08-27
JP8122569U JPS4836621Y1 (en) 1969-08-28 1969-08-28

Publications (1)

Publication Number Publication Date
US3624268A true US3624268A (en) 1971-11-30

Family

ID=26421756

Family Applications (1)

Application Number Title Priority Date Filing Date
US64735A Expired - Lifetime US3624268A (en) 1969-08-27 1970-08-18 Jumper arrangement for overhead transmission lines

Country Status (2)

Country Link
US (1) US3624268A (en)
GB (1) GB1268147A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323722A (en) * 1980-09-24 1982-04-06 The United States Of America As Represented By The United States Department Of Energy Overhead electric power transmission line jumpering system for bundles of five or more subconductors
US20100276172A1 (en) * 2009-04-30 2010-11-04 Lapp Insulators Gmbh Holding device for an overhead line and overhead line configuration
CN101976809A (en) * 2010-05-18 2011-02-16 浙江省电力设计院 Strain iron tower drainage system for power transmission line
US20120124918A1 (en) * 2010-05-18 2012-05-24 William Bing Zimmerman Parapet protector
US20180025808A1 (en) * 2013-05-01 2018-01-25 Sumitomo Electric Industries, Ltd. Insulated electric cable
CN107780695A (en) * 2017-09-13 2018-03-09 国核电力规划设计研究院有限公司 A kind of double loop transposition tower and interchanging method
US20180090245A1 (en) * 2016-09-23 2018-03-29 Maclean Power, L.L.C. Fitting with a collar for a power transmission system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474932A (en) * 2013-10-10 2013-12-25 江苏天南电力器材有限公司 Universal adjustable squirrel cage jumper regulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU219650A1 (en) * CURRENT TRIMMER
US675116A (en) * 1898-07-12 1901-05-28 James B Stone Wire cable.
US1780533A (en) * 1927-04-02 1930-11-04 American Brass Co Electrical conductor
AT177823B (en) * 1950-12-30 1954-03-10 Wilhelm Hofmann K G J Clamp for bundle conductors
DE1490388A1 (en) * 1963-03-26 1968-12-05 Siemens Ag Loop connection at the support point of high-voltage overhead lines
DE1540630A1 (en) * 1965-12-24 1970-01-08 Siemens Ag Loop connection on guy masts with rigid arched profile bars

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU219650A1 (en) * CURRENT TRIMMER
US675116A (en) * 1898-07-12 1901-05-28 James B Stone Wire cable.
US1780533A (en) * 1927-04-02 1930-11-04 American Brass Co Electrical conductor
AT177823B (en) * 1950-12-30 1954-03-10 Wilhelm Hofmann K G J Clamp for bundle conductors
DE1490388A1 (en) * 1963-03-26 1968-12-05 Siemens Ag Loop connection at the support point of high-voltage overhead lines
DE1540630A1 (en) * 1965-12-24 1970-01-08 Siemens Ag Loop connection on guy masts with rigid arched profile bars

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323722A (en) * 1980-09-24 1982-04-06 The United States Of America As Represented By The United States Department Of Energy Overhead electric power transmission line jumpering system for bundles of five or more subconductors
US20100276172A1 (en) * 2009-04-30 2010-11-04 Lapp Insulators Gmbh Holding device for an overhead line and overhead line configuration
US8618414B2 (en) * 2009-04-30 2013-12-31 Lapp Insulators Gmbh Holding device for an overhead line and overhead line configuration
CN101976809A (en) * 2010-05-18 2011-02-16 浙江省电力设计院 Strain iron tower drainage system for power transmission line
US20120124918A1 (en) * 2010-05-18 2012-05-24 William Bing Zimmerman Parapet protector
CN101976809B (en) * 2010-05-18 2012-05-30 浙江省电力设计院 Strain iron tower drainage system for power transmission line
US20180025808A1 (en) * 2013-05-01 2018-01-25 Sumitomo Electric Industries, Ltd. Insulated electric cable
US10262774B2 (en) * 2013-05-01 2019-04-16 Sumitomo Electric Industries, Ltd. Insulated electric cable
US20180090245A1 (en) * 2016-09-23 2018-03-29 Maclean Power, L.L.C. Fitting with a collar for a power transmission system
US10170222B2 (en) * 2016-09-23 2019-01-01 Maclean Power, L.L.C. Fitting with a collar for a power transmission system
CN107780695A (en) * 2017-09-13 2018-03-09 国核电力规划设计研究院有限公司 A kind of double loop transposition tower and interchanging method

Also Published As

Publication number Publication date
GB1268147A (en) 1972-03-22

Similar Documents

Publication Publication Date Title
CN107706871B (en) Overhead distribution line
US3002043A (en) Electrical transmission system
US3624268A (en) Jumper arrangement for overhead transmission lines
EP3492674B1 (en) Cross arm for angle towers
US1786631A (en) Supporting pole for electrical conductors
RU2524377C2 (en) Supporting device for overhead transmission line, and arrangement assembly of wire of overhead transmission line
CN209250182U (en) A kind of 10kV frame-type single loop triangle arrangement insulator crossarm
US2877289A (en) Enclosed bus sector
US2640114A (en) Shockproof conductor for electrified material handling apparatus
KR100988893B1 (en) Bundle type phase to phase polymer spacer for 345? power transmission line
US3684221A (en) Helical suspension clamp assembly
US2531017A (en) Bus structure
KR20150138741A (en) Steel crossarm for power distribution
US2469073A (en) Electrical bus
RU2690700C1 (en) Phase-to-phase remote strut of overhead transmission lines
CA1290830C (en) Electric line with bundle conductors associated to metal or dielectriccables incorporating optic fibres for telecommunication
US1319374A (en) The mechanical tension of electric line conductors
US1743168A (en) Cross-arm support for safety coils
CN217469409U (en) Phase-to-phase spacer
CN106049959B (en) Cross arm and strain tower
US1869877A (en) Pole fitting
US1717885A (en) Mounting for electric conductors
JPH058757Y2 (en)
US3344224A (en) Hold-down weight for conductor supporting clamps
SU1121732A1 (en) Two-circuit aerial power line with branching