US3623962A - Reducing electrolytic sludge formation - Google Patents

Reducing electrolytic sludge formation Download PDF

Info

Publication number
US3623962A
US3623962A US749017A US3623962DA US3623962A US 3623962 A US3623962 A US 3623962A US 749017 A US749017 A US 749017A US 3623962D A US3623962D A US 3623962DA US 3623962 A US3623962 A US 3623962A
Authority
US
United States
Prior art keywords
electrolytic solution
plating
deaerating
cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US749017A
Inventor
Louis C Beale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Steel Corp
Original Assignee
National Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Steel Corp filed Critical National Steel Corp
Application granted granted Critical
Publication of US3623962A publication Critical patent/US3623962A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence

Definitions

  • a barometric leg, or other suitable pressure isolation means is arranged to separate the path for continuous replenishment of electrolyte into an atmospheric pressure loop and a subatmospheric pressure loop.
  • Desorption performance and efficiency is increased by operation at or below the vapor pressure of the electrolyte at the operating temperature for the system and by use of a vapor condenser on the vacuum side of the deaeration means used.
  • Improved results are obtained by providing an inert gas shield during collection of electrolyte splashover and carryout from the plating cells and also by injection of an inert gas into the electrolyte after deaeration and prior to exposure of the electrolyte to ambient atmosphere, The inert gas steps operate to reduce the opportunity for oxygen absorption.
  • This invention is concerned with reducing sludge formation in the electrolyte used in a continuous electrolytic operation.
  • This invention provides a novel combination of apparatus and process steps which eliminate major causes and opportunities for sludging.
  • FIG. 1 is a schematic presentation of the prior art cycling of an electrolyte used in continuous-strip electroplating
  • FIG. 2 is a schematic presentation of apparatus for continuous-strip electroplating in accordance with the present invention.
  • a continuous strip 5 passes through a plating cell 7 in contact with the solution along the surface of the electrolyte in the plating cell. Electrolyte splash-over" and carryout from a cell is collected in tray 9. Electrolyte from the plurality of cells in the conventional electrotinplating art is stored in solution storage tank 11 which is exposed to the atmosphere. The desired level of electrolyting plating cells is maintained by pumping solution from storage tank 11 via return line 12 to plating cell 7, and similar cells in the line.
  • continuous strip 14 passes through plating cell 16. Electrolytic solution splashing over and carried from plating cell 16 by strip 14 is gathered at trough l8 and delivered through downcomer 20 for collection at sump 22. Pump 24 is controlled to transfer the electrolytic solution from sump 22.
  • a solution storage tank such as tank ll of FIG. I, provided one of the main opportunities for the above sludging reaction to take place.
  • An important teaching of the present invention is elimination of this opportunity for sludging by the novel step of immediate removal of oxygen from the electrolytic solution.
  • Vacuum pump 28 maintains deaeration chamber 26 substantially below atmospheric pressure. Prior to storage, this solution is deaerated rapidly utilizing a structure for increasing surface contact or exposure of the electrolytic solution to the vacuum.
  • a suitable type of desorption means is shown schematically in FIG. 2 as spray tower 27.
  • Solution collection means including trough l8, downcomer 20 and sump 22 form part of the atmospheric pressure loop used in the handling of the electrolyte.
  • This atmospheric pressure loop is pressure isolated from the subatmospheric pressure loop by isolation means located between the two loops.
  • the isolation means takes the form of a barometric leg 35 located between sump 22 and the deaerating chamber 26.
  • sump 22 is located approximately 34 feet, or a greater distance, below the level of deaerating chamber 26.
  • a level control means including sensor 30 can be used to control motor 32 driving pump 24 for transfer of electrolytic solution from the sump 22.
  • electrolytic solution from deaeration chamber 26 is returned to plating cell 16 by closed-circuit means including conduit 34 and 36 and cell entry means 38.
  • dissolved gases are removed by maintaining vacuum conditions in deaerating chamber 26.
  • This subatmospheric pressure can extend below the vapor pressureof water at the plating solution temperature, in which case, solution boil occurs at the existing operating temperature without the necessity of raising the solution to its normal boiling temperature at atmospheric pressure.
  • the corresponding water vapor pressure would be 200 mm.
  • condenser 42 Between deaerating chamber 26 and vacuum pump 28. This recovers the condensable vapors from the electrolytic solution which can be returned directly to the solution. Condenser 42 also reduces the pumping capacity required for vacuum pump 28 in a given system. Sensible heat extracted in condensing solution vapors can also be returned to the electrolyte. However, under normal conditions encountered in a commercial electrotinplating line, circulation of solution is of such a volume that heat losses encountered in vaporizing a portion of the solution during deaeration ordinarily need not be returned to the system.
  • the benefits of the present invention can be supplemented by introducing an inert gas, such as nitrogen from source 43 at pump 44, in the return means for electrolytic solution.
  • an inert gas such as nitrogen from source 43 at pump 44
  • an inert gas under pressure to the solution, oxygen pickup is reduced, that is this inert gas helps to delay oxygen pickup in the plating cell.
  • nitrogen is preferred; other suitable inert gases include argon and carbon dioxide.
  • an inert gas can be used effectively to eliminate a major opportunity for oxygen absorption.
  • Solution from plating cell 16 splashes into trough l8 and through downcomer 20. This provides increased surface exposure for absorbing oxygen. Oxygen absorption can also occur along the surface of the solution in sump 22.
  • the present invention teaches enclosure of sump 22 with venting to the atmosphere through downcomer 20 and trough 18.
  • An inert gas is flushed through the above enclosed solution collection means.
  • nitrogen from source 43 is added under pressure to the space above the solution in sump 22. Nitrogen above the solution in sump 22 and exhausting upwardly through downcomer 20 and trough 18 will purge these structures of oxygen and prevent pickup of oxygen by the solution.
  • structure for reducing sludging by reduction of gas dissolution in the electrolyte comprising plating-cell means for holding an electrolytic solution which is exposed to ambient atmosphere in the plating-cell means, the electrolytic solution being subject to sludge formation responsive to dissolved oxygen,
  • strip handling means for introduction of continuous strip to the plating-cell means and delivery from the plating-cell means
  • the means for replenishing electrolytic solution in the platingcell means including solution collection means for receiving electrolytic solution from the plating-cell means,
  • deaerating means at subatmospheric pressure for receiving electrolytic solution collected from the plating-cell means and for removing gas dissolved in such electrolytic solution
  • conduit means connecting the deaerating means to the plating-cell means for delivery of deaerated electrolytic solution to the plating-cell means and for preventing contact of the electrolytic solution with ambient atmosphere prior to entry into the plating-cell means.
  • the deaerating means comprises a deaerating chamber at subatmospheric pressure for receiving electrolytic solution from the plating-cell means and further including pressure isolating means located between the solution collection means and the deaerating chamber.
  • the apparatus of claim 2 including vacuum pump means communicating with the chamber.
  • the apparatus of claim 2 including means for increasing surface exposure of the electrolytic solution upon entry into the deaerating chamber.
  • the solution collection means includes sump means for receiving and accumulating electrolytic solution from the plating-cell means and further including transfer means for delivering electrolytic solution from the sump means to the deaerating means, such transfer means including a barometric leg located between the sump means and the deaerating means permitting the deaerating means to be operated under vacuum conditions and to be pressure isolated from the plating-cell means and sump means.
  • the apparatus of claim 5 including level control means for the sump means for controlling delivery of electrolytic solution from the sump means.
  • the apparatus of claim 7 including means for returning condensate to the deaerated electrolytic solution being returned to the plating-cell means.
  • the apparatus of claim 1 further including means for adding an inert gas to the solution collection means to at least partially shield electrolytic solution being collected from contact with oxygen.
  • the solution collection means includes trough means for receiving splashover and carryout of electrolytic from the plating-cell means, sump means for accumulating such electrolytic, and downcomer means interconnecting the trough means and sump means, with the sump means being enclosed and vented to the atmosphere through the downcomer means and the trough means.
  • the apparatus means of claim I including means for introducing an inert gas into the deaerated electrolytic solution, such means being located to introduce inert gas into the conduit means for returning electrolytic solution to the plating cell means between the deaerating means and the plating-cell means.
  • a process for reducing electrolytic sludging by reduction ofgas dissolution in the electrolyte comprising the steps of maintaining a deaerating means at subatmospheric pressure for receiving electrolytic solution after exposure to ambient atmosphere in plating-cell means,
  • deaerating electrolytic solution by circulating the electrolytic solution from the plating-cell means through the deaerating means, and retumlng the deaerated electrolytic solution to the platingcell while substantially preventing contact of the electrolytic solution with ambient atmosphere during and subsequent to deaeration prior to delivery into the plating-cell means.
  • the process of claim 12 further including the step of shielding the electrolytic solution after leaving the plating-cell means and before delivery to the deaerating chamber with an inert gas to substantially prevent contact of such solution with ambient atmosphere.
  • the process of claim 12 further including the step of injecting an inert gas under pressure into the electrolytic solution after exit from the deaerating chamber and before return to the plating-cell means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Method and apparatus for decreasing sludging in a stannous-tin electrolyte used in continuous-strip electroplating by continuous deaeration of the electrolyte which removes gases absorbed when the electrolyte is exposed to ambient atmosphere and by decreasing the opportunity for the electrolyte to absorb oxygen. A barometric leg, or other suitable pressure isolation means, is arranged to separate the path for continuous replenishment of electrolyte into an atmospheric pressure loop and a subatmospheric pressure loop. Desorption performance and efficiency is increased by operation at or below the vapor pressure of the electrolyte at the operating temperature for the system and by use of a vapor condenser on the vacuum side of the deaeration means used. Improved results are obtained by providing an inert gas shield during collection of electrolyte splash-over and carryout from the plating cells and also by injection of an inert gas into the electrolyte after deaeration and prior to exposure of the electrolyte to ambient atmosphere. The inert gas steps operate to reduce the opportunity for oxygen absorption.

Description

nited States Patent Louis C. Beale [72] Inventor Grome lle, Mich. [2|] Appl. No. 749,017 [22] Filed July 31, 1968 [4S] Patented Nov. 30, 1971 [73] Assignee National Steel Corporation [54] REDUCING ELECTROLYTIC SLUDGE FORMATION 18 Claims, 2 Drawing Figs.
[52] US. Cl 204/28, 204/54, 204/206, 204/237 [51 Int. Cl C23b 5/58, C23b 5/68 [50] Field at Search 204/27, 28, 206, 234, 236, 237, 239, 232. 54
[56] References Cited UNITED STATES PATENTS 2,758,075 8/1956 Swalheim 204/28 2,853,442 9/1958 Swanton.... 204/28 3,051,637 8/1962 Judice et al 204/98 Primary Examiner- F. C. Edmundson AtmrneyShanley and O'Neil ABSTRACT: Method and apparatus for decreasing sludging in a stannous-tin electrolyte used in continuous-strip electroplating by continuous deaeration of the electrolyte which removes gases absorbed when the electrolyte is exposed to ambient atmosphere and by decreasing the opportunity for the electrolyte to absorb oxygen. A barometric leg, or other suitable pressure isolation means, is arranged to separate the path for continuous replenishment of electrolyte into an atmospheric pressure loop and a subatmospheric pressure loop. Desorption performance and efficiency is increased by operation at or below the vapor pressure of the electrolyte at the operating temperature for the system and by use of a vapor condenser on the vacuum side of the deaeration means used. Improved results are obtained by providing an inert gas shield during collection of electrolyte splashover and carryout from the plating cells and also by injection of an inert gas into the electrolyte after deaeration and prior to exposure of the electrolyte to ambient atmosphere, The inert gas steps operate to reduce the opportunity for oxygen absorption.
VACUUM PUMP BAROMETRIC LEG PATENTED NIB/3O ml SOLUTION. ENTRY T0 cm 8 5) 0 g HG.
sownou EXIT Em LT FROM CELL PLATING CELL 3B SOLUTION STORAGE TANK vacuum 28\ PUMP QSTORAGE TANK BAROMETRIC LEG ATTORNEYS.
REDUCING ELECTROLYTIC SLUDGE FORMATION This invention is concerned with reducing sludge formation in the electrolyte used in a continuous electrolytic operation.
Sludging in a stannous-tin electrolytic bath is deemed to be due to an oxidation reaction in which the stannous ion is converted to stannic ion:
Sludging and an accompanying decrease in cathode efficiency are considered directly related to the amount of oxygen dissolved in the electrolyte. The economic detriment of sludging is clear cut since an otherwise completely continuous operation must be stopped periodically to remove accumulated sludge. In addition, replacing tin in the electrolytic bath chemically, for example as stannous chloride, is considerably more expensive than metallic tin as reclaimed from accumulated sludge.
This invention provides a novel combination of apparatus and process steps which eliminate major causes and opportunities for sludging.
The accompanying drawing will be used in describing the invention. In these drawings:
FIG. 1 is a schematic presentation of the prior art cycling of an electrolyte used in continuous-strip electroplating, and
FIG. 2 is a schematic presentation of apparatus for continuous-strip electroplating in accordance with the present invention.
In the prior art as shown in FIG. 1, a continuous strip 5 passes through a plating cell 7 in contact with the solution along the surface of the electrolyte in the plating cell. Electrolyte splash-over" and carryout from a cell is collected in tray 9. Electrolyte from the plurality of cells in the conventional electrotinplating art is stored in solution storage tank 11 which is exposed to the atmosphere. The desired level of electrolyting plating cells is maintained by pumping solution from storage tank 11 via return line 12 to plating cell 7, and similar cells in the line.
Referring to FIG. 2, continuous strip 14 passes through plating cell 16. Electrolytic solution splashing over and carried from plating cell 16 by strip 14 is gathered at trough l8 and delivered through downcomer 20 for collection at sump 22. Pump 24 is controlled to transfer the electrolytic solution from sump 22.
In the prior art, a solution storage tank, such as tank ll of FIG. I, provided one of the main opportunities for the above sludging reaction to take place. An important teaching of the present invention is elimination of this opportunity for sludging by the novel step of immediate removal of oxygen from the electrolytic solution.
Referring to FIG. 2, removal of oxygen is carried out by deaeration of the solution in chamber 26. Vacuum pump 28 maintains deaeration chamber 26 substantially below atmospheric pressure. Prior to storage, this solution is deaerated rapidly utilizing a structure for increasing surface contact or exposure of the electrolytic solution to the vacuum. A suitable type of desorption means is shown schematically in FIG. 2 as spray tower 27. Thus oxygen is removed from the solution as soon as practicable after pickup, eliminating the storage tank sludging reaction of the prior art.
Solution collection means, including trough l8, downcomer 20 and sump 22 form part of the atmospheric pressure loop used in the handling of the electrolyte. This atmospheric pressure loop is pressure isolated from the subatmospheric pressure loop by isolation means located between the two loops. In FIG. 2, the isolation means takes the form of a barometric leg 35 located between sump 22 and the deaerating chamber 26. To form this barometric leg, sump 22 is located approximately 34 feet, or a greater distance, below the level of deaerating chamber 26. A level control means including sensor 30 can be used to control motor 32 driving pump 24 for transfer of electrolytic solution from the sump 22.
After deaeration, electrolytic solution from deaeration chamber 26 is returned to plating cell 16 by closed-circuit means including conduit 34 and 36 and cell entry means 38.
These cooperate to return solution to the plating cell while preventing contact of the deaerated solution with ambient atmosphere prior to delivery into the plating cell.
Considering the deaeration, dissolved gases are removed by maintaining vacuum conditions in deaerating chamber 26. This subatmospheric pressure can extend below the vapor pressureof water at the plating solution temperature, in which case, solution boil occurs at the existing operating temperature without the necessity of raising the solution to its normal boiling temperature at atmospheric pressure. At the normal operating temperature of l50 F., the corresponding water vapor pressure would be 200 mm. By operating a deaerating chamber at 200 mm. of pressure, or slightly lower, the dissolved oxygen is removed rapidly due in part to the assistance of the solution boil.
Operation at such low pressures without loss of solution condensables is made possible by the disclosed structure including a condenser 42 between deaerating chamber 26 and vacuum pump 28. This recovers the condensable vapors from the electrolytic solution which can be returned directly to the solution. Condenser 42 also reduces the pumping capacity required for vacuum pump 28 in a given system. Sensible heat extracted in condensing solution vapors can also be returned to the electrolyte. However, under normal conditions encountered in a commercial electrotinplating line, circulation of solution is of such a volume that heat losses encountered in vaporizing a portion of the solution during deaeration ordinarily need not be returned to the system.
The benefits of the present invention can be supplemented by introducing an inert gas, such as nitrogen from source 43 at pump 44, in the return means for electrolytic solution. By adding an inert gas under pressure to the solution, oxygen pickup is reduced, that is this inert gas helps to delay oxygen pickup in the plating cell. Commercially pure nitrogen is preferred; other suitable inert gases include argon and carbon dioxide.
In accordance with the teachings of the invention, an inert gas can be used effectively to eliminate a major opportunity for oxygen absorption. Solution from plating cell 16 splashes into trough l8 and through downcomer 20. This provides increased surface exposure for absorbing oxygen. Oxygen absorption can also occur along the surface of the solution in sump 22. The present invention teaches enclosure of sump 22 with venting to the atmosphere through downcomer 20 and trough 18.
An inert gas is flushed through the above enclosed solution collection means. For example, nitrogen from source 43 is added under pressure to the space above the solution in sump 22. Nitrogen above the solution in sump 22 and exhausting upwardly through downcomer 20 and trough 18 will purge these structures of oxygen and prevent pickup of oxygen by the solution.
Various combinations of the above steps and structures can be relied on to obtain varying degrees of success in carrying out the invention. Also modifications and/or substitution of parts or steps will be evident to those skilled in the art based on the above teachings. Therefore the scope of the invention is not to be limited to the specific embodiments disclosed, but is to be determined from the appended claims.
What is claimed is:
I. For use in a continuous-strip electrotinplating operation, structure for reducing sludging by reduction of gas dissolution in the electrolyte comprising plating-cell means for holding an electrolytic solution which is exposed to ambient atmosphere in the plating-cell means, the electrolytic solution being subject to sludge formation responsive to dissolved oxygen,
strip handling means for introduction of continuous strip to the plating-cell means and delivery from the plating-cell means,
means for replenishing electrolytic solution in the platingcell means including solution collection means for receiving electrolytic solution from the plating-cell means,
deaerating means at subatmospheric pressure for receiving electrolytic solution collected from the plating-cell means and for removing gas dissolved in such electrolytic solution, and
conduit means connecting the deaerating means to the plating-cell means for delivery of deaerated electrolytic solution to the plating-cell means and for preventing contact of the electrolytic solution with ambient atmosphere prior to entry into the plating-cell means.
2. The apparatus of claim 1 wherein the deaerating means comprises a deaerating chamber at subatmospheric pressure for receiving electrolytic solution from the plating-cell means and further including pressure isolating means located between the solution collection means and the deaerating chamber.
3. The apparatus of claim 2 including vacuum pump means communicating with the chamber.
4. The apparatus of claim 2 including means for increasing surface exposure of the electrolytic solution upon entry into the deaerating chamber.
5. The structure of claim 1 in which the solution collection means includes sump means for receiving and accumulating electrolytic solution from the plating-cell means and further including transfer means for delivering electrolytic solution from the sump means to the deaerating means, such transfer means including a barometric leg located between the sump means and the deaerating means permitting the deaerating means to be operated under vacuum conditions and to be pressure isolated from the plating-cell means and sump means.
6. The apparatus of claim 5 including level control means for the sump means for controlling delivery of electrolytic solution from the sump means.
7. The apparatus of claim 3 in which a condenser means is connected between the vacuum pump means and the deaerating chamber for condensing vapors from the electrolytic solution.
8. The apparatus of claim 7 including means for returning condensate to the deaerated electrolytic solution being returned to the plating-cell means.
9. The apparatus of claim 1 further including means for adding an inert gas to the solution collection means to at least partially shield electrolytic solution being collected from contact with oxygen.
10. The apparatus of claim 2 in which the solution collection means includes trough means for receiving splashover and carryout of electrolytic from the plating-cell means, sump means for accumulating such electrolytic, and downcomer means interconnecting the trough means and sump means, with the sump means being enclosed and vented to the atmosphere through the downcomer means and the trough means. and
means for adding an inert gas under pressure to the sump means.
11. The apparatus means of claim I including means for introducing an inert gas into the deaerated electrolytic solution, such means being located to introduce inert gas into the conduit means for returning electrolytic solution to the plating cell means between the deaerating means and the plating-cell means.
12. In a continuous-strip electrotinplating operation, utilizing an electrolyte subject to sludge formation responsive to oxygen dissolution, a process for reducing electrolytic sludging by reduction ofgas dissolution in the electrolyte comprising the steps of maintaining a deaerating means at subatmospheric pressure for receiving electrolytic solution after exposure to ambient atmosphere in plating-cell means,
deaerating electrolytic solution by circulating the electrolytic solution from the plating-cell means through the deaerating means, and retumlng the deaerated electrolytic solution to the platingcell while substantially preventing contact of the electrolytic solution with ambient atmosphere during and subsequent to deaeration prior to delivery into the plating-cell means.
13. The process of claim 12 in which deaeration of electrolytic solution is carried out by maintaining a deaerating chamber under vacuum conditions with the pressure range extending to below the vapor pressure of water at the temperature of the electrolytic solution, and
pressure isolating the deaerating chamber from the platingcell means.
14 The process of claim 12 in which deaeration of the electrolytic solution is carried out by maintaining a deaerating chamber under vacuum conditions with the pressure range extending below the vapor pressure of water at the temperature ofthe electrolytic solution and further including the step of condensing vapors from the electrolytic solution on the vacuum side of the deaerating chamber.
15. The process of claim 14 further including the step of returning condensate to the deaerated electrolytic solution.
16. The process of claim 12 further including the step of shielding the electrolytic solution after leaving the plating-cell means and before delivery to the deaerating chamber with an inert gas to substantially prevent contact of such solution with ambient atmosphere.
17. The process of claim 12 further including the step of injecting an inert gas under pressure into the electrolytic solution after exit from the deaerating chamber and before return to the plating-cell means.
18. The process of claim 13 including the step of increasing the surface area of the electrolytic solution exposed to the vacuum conditions upon entry into the deaerating chamber.
* at :r a: a

Claims (17)

  1. 2. The apparatus of claim 1 wherein the deaerating means comprises a deaerating chamber at subatmospheric pressure for receiving electrolytic solution from the plating-cell means and further including pressure isolating means located between the solution collection means and the deaerating chamber.
  2. 3. The apparatus of claim 2 including vacuum pump means communicating with the chamber.
  3. 4. The apparatus of claim 2 including means for increasing surface exposure of the electrolytic solution upon entry into the deaerating chamber.
  4. 5. The structure of claim 1 in which the solution collection means includes sump means for receiving and accumulating electrolytic solution from the plating-cell means and further including transfer means for delivering electrolytic solution from the sump means to the deaerating means, such transfer means including a barometric leg located between the sump means and the deaerating means permitting the deaerating means to be operated under vacuum conditions and to be pressure isolated from the plating-cell means and sump means.
  5. 6. The apparatus of claim 5 including level control means for the sump means for controlling delivery of electrolytic solution from the sump means.
  6. 7. The apparatus of claim 3 in which a condenser means is connected between the vacuum pump means and the deaerating chamber for condensing vapors from the electrolytic solution.
  7. 8. The apparatus of claim 7 including means for returning condensate to the deaerated electrolytic solution being returned to the plating-cell means.
  8. 9. The apparatus of claim 1 further including means for adding an inert gas to the solution collection means to at least partially shield electrolytic solution being collected from contact with oxygen.
  9. 10. The apparatus of claim 2 in which the solution collection means includes trough means for receiving splash-over and carryout of electrolytic from the plating-cell means, sump means for accumulating such electrolytic, and downcomer means interconnecting the trough means and sump means, with the sump means being enclosed and vented to the atmosphere through the downcomer means and the trough means, and means for adding an inert gas under pressure to the sump means.
  10. 11. The apparatus means of claim 1 including means for introducing an inert gas into the deaerated electrolytic solution, such means being located to introduce inert gas into the conduit means for returning electrolytic solution to the plating-cell means between the deaerating means and the plating-cell means.
  11. 12. In a continuous-strip electrotinplating operation, utilizing an electrolyte subject to sludge formation responsive to oxygen dissolution, a process for reducing electrolytic sludging by reduction of gas dissolution in the electrolyte comprising the steps of maintaining a deaerating means at subatmospheric pressure for receiving electrolytic solution after exposure to ambient atmosphere in plating-cell means, deaerating electrolytic solution by circulating the electrolytic solution from the plating-cell means through the deaerating means, and returning the deaerated electrolytic solution to the plating-cell while substantially preventing contact of the electrolytic solution with ambient atmosphere during and subsequent to deaeration prior to delivery into the plating-cell means.
  12. 13. The process of claim 12 in which deaeration of electrolytic solution is carried out by maintaining a deaerating chamber under vacuum conditions with the pressure range extending to below the vapor pressure of water at the temperature of the electrolytic solution, and pressure isolating the deaerating chamber from the plating-cell means.
  13. 14. The process of claim 12 in which deaeration of the electrolytic solution is carried out by maintaining a deaerating chamber under vacuum conditions with the pressure range extending below the vapor pressure of water at the temperature of the electrolytic solution and further including the step of condensing vapors from the electrolytic solution on the vacuum side of the deaerating chamber.
  14. 15. The process of claim 14 further including the step of returning condensate to the deaerated electrolytic solution.
  15. 16. The process of claim 12 further including the step of shielding the electrolytic solution after leaving the plating-cell means and before delivery to the deaerating chamber with an inert gas to substantially prevent contact of such solution with ambient atmosphere.
  16. 17. The process of claim 12 further including the step of injecting an inert gas under pressure into the electrolytic solution after exit from the deaerating chamber and before return to the plating-cell means.
  17. 18. The process of claim 13 including the step of increasing the surface area of the electrolytic solution exposed to the vacuum conditions upon entry into the deaerating chamber.
US749017A 1968-07-31 1968-07-31 Reducing electrolytic sludge formation Expired - Lifetime US3623962A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74901768A 1968-07-31 1968-07-31

Publications (1)

Publication Number Publication Date
US3623962A true US3623962A (en) 1971-11-30

Family

ID=25011877

Family Applications (1)

Application Number Title Priority Date Filing Date
US749017A Expired - Lifetime US3623962A (en) 1968-07-31 1968-07-31 Reducing electrolytic sludge formation

Country Status (1)

Country Link
US (1) US3623962A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907653A (en) * 1975-02-06 1975-09-23 Pitt Metals And Chemicals Inc Process for recovering tin salts from a halogen tin plate sludge
EP0132719A1 (en) * 1983-07-30 1985-02-13 Instytut Mechaniki Precyzyjnej Method and device of conducting a closed cycle of the bath for plating of coatings
US5510014A (en) * 1994-09-07 1996-04-23 Mac Dermid, Incorporated Method for regenerating tin or tin alloy electroplating
US5628893A (en) * 1995-11-24 1997-05-13 Atotech Usa, Inc. Halogen tin composition and electrolytic plating process
EP1048757A1 (en) * 1998-11-09 2000-11-02 Ebara Corporation Plating method and apparatus
US6752855B2 (en) * 2001-06-01 2004-06-22 Tokyo Electron Limited Solution treatment system and solution treatment method
US20050082163A1 (en) * 2000-03-17 2005-04-21 Junichiro Yoshioka Plating apparatus and method
US7833393B2 (en) 1999-05-18 2010-11-16 Ebara Corporation Semiconductor wafer holder and electroplating system for plating a semiconductor wafer
US8967935B2 (en) 2011-07-06 2015-03-03 Tel Nexx, Inc. Substrate loader and unloader
US9421617B2 (en) 2011-06-22 2016-08-23 Tel Nexx, Inc. Substrate holder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758075A (en) * 1951-10-15 1956-08-07 Du Pont Electrodeposition of tin
US2853442A (en) * 1955-11-18 1958-09-23 Pfaudler Permutit Inc Method and means of electrolytic plating
US3051637A (en) * 1959-06-10 1962-08-28 Diamond Alkali Co Process for coordinated operation of diaphragm and mercury cathode electrolytic cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2758075A (en) * 1951-10-15 1956-08-07 Du Pont Electrodeposition of tin
US2853442A (en) * 1955-11-18 1958-09-23 Pfaudler Permutit Inc Method and means of electrolytic plating
US3051637A (en) * 1959-06-10 1962-08-28 Diamond Alkali Co Process for coordinated operation of diaphragm and mercury cathode electrolytic cells

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907653A (en) * 1975-02-06 1975-09-23 Pitt Metals And Chemicals Inc Process for recovering tin salts from a halogen tin plate sludge
EP0132719A1 (en) * 1983-07-30 1985-02-13 Instytut Mechaniki Precyzyjnej Method and device of conducting a closed cycle of the bath for plating of coatings
US5510014A (en) * 1994-09-07 1996-04-23 Mac Dermid, Incorporated Method for regenerating tin or tin alloy electroplating
US5628893A (en) * 1995-11-24 1997-05-13 Atotech Usa, Inc. Halogen tin composition and electrolytic plating process
US7118664B2 (en) 1998-11-09 2006-10-10 Ebara Corporation Plating method and apparatus
EP1048757A4 (en) * 1998-11-09 2006-06-14 Ebara Corp Plating method and apparatus
EP1048757A1 (en) * 1998-11-09 2000-11-02 Ebara Corporation Plating method and apparatus
US7833393B2 (en) 1999-05-18 2010-11-16 Ebara Corporation Semiconductor wafer holder and electroplating system for plating a semiconductor wafer
US20110036722A1 (en) * 1999-05-18 2011-02-17 Junichiro Yoshioka Semiconductor wafer holder and electroplating system for plating a semiconductor wafer
US8075756B2 (en) 1999-05-18 2011-12-13 Ebara Corporation Semiconductor wafer holder and electroplating system for plating a semiconductor wafer
US8961755B2 (en) 1999-05-18 2015-02-24 Ebara Corporation Semiconductor wafer holder and electroplating system for plating a semiconductor wafer
US9714476B2 (en) 1999-05-18 2017-07-25 Ebara Corporation Semiconductor wafer holder and electroplating system for plating a semiconductor wafer
US20050082163A1 (en) * 2000-03-17 2005-04-21 Junichiro Yoshioka Plating apparatus and method
US7402227B2 (en) 2000-03-17 2008-07-22 Ebara Corporation Plating apparatus and method
US6752855B2 (en) * 2001-06-01 2004-06-22 Tokyo Electron Limited Solution treatment system and solution treatment method
US9421617B2 (en) 2011-06-22 2016-08-23 Tel Nexx, Inc. Substrate holder
US8967935B2 (en) 2011-07-06 2015-03-03 Tel Nexx, Inc. Substrate loader and unloader

Similar Documents

Publication Publication Date Title
US3623962A (en) Reducing electrolytic sludge formation
MX9604680A (en) Electrode cap with integral tank cover for acid mist collection.
JPS59170675A (en) Method and device for manufacturing gas of high purity by evaporation of freezing mixture liquid
TW201237032A (en) Distillation device for N-methylpyrrolidone (NMP)
FR2567328B1 (en) METHOD FOR STABILIZING PRIMARY ELECTROCHEMICAL GENERATORS WITH REACTIVE ZINC, ALUMINUM OR MAGNESIUM ANODES AND ANODE FOR SUCH A GENERATOR STABILIZED BY THIS PROCESS
US2879212A (en) Electrolytic fluorine manufacture
US4176169A (en) Method of extracting iodine from liquid mixtures of iodine, water and hydrogen iodide
US4276145A (en) Electrolytic anolyte dehydration of castner cells
JPS54109076A (en) Electrolyzing method for brine using cation exchange membrane
EP0608087B1 (en) Process for dehydration of fluoride mixtures
KR20040047633A (en) Method and apparatus for treatment of hydrofluoric acid drainage
US4090932A (en) Method for concentrating aqueous caustic alkali solution
JP2019035735A (en) Processing method of tritium-water including contaminated water
US3479224A (en) Valve for continuous removal of reaction water from a fuel cell
JP6898567B2 (en) NMP distillation equipment
US3616611A (en) Apparatus for the continuous recovery of acids from inert organic media
US2065660A (en) Liquid cooled vacuum vessel
US1965813A (en) Method and apparatus fob the puri
GB1465431A (en) Electrolytic treatment of elongate articles such as bars tubes or strips
GB988103A (en) A method of removing the reaction water from fuel cells
CN110785397B (en) Process for producing acetic acid
JPS552763A (en) Electrolysis method of chlorine compound etching solution
US1441408A (en) Method of and apparatus for electrolyzing liquid
US2044704A (en) Electrolysis of water
JPH0724213A (en) Vacuum degassing tower