US3619157A - Thermo recording - Google Patents
Thermo recording Download PDFInfo
- Publication number
- US3619157A US3619157A US677759A US3619157DA US3619157A US 3619157 A US3619157 A US 3619157A US 677759 A US677759 A US 677759A US 3619157D A US3619157D A US 3619157DA US 3619157 A US3619157 A US 3619157A
- Authority
- US
- United States
- Prior art keywords
- recording
- heat
- layer
- recording layer
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 97
- 239000011230 binding agent Substances 0.000 claims abstract description 33
- 239000006185 dispersion Substances 0.000 claims abstract description 28
- 239000000049 pigment Substances 0.000 claims abstract description 14
- 230000002209 hydrophobic effect Effects 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 29
- 239000006229 carbon black Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 14
- 230000005670 electromagnetic radiation Effects 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 81
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 45
- 239000000126 substance Substances 0.000 description 37
- 239000000203 mixture Substances 0.000 description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 33
- 230000005855 radiation Effects 0.000 description 27
- 239000001993 wax Substances 0.000 description 25
- -1 silver halide Chemical class 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 16
- 229920001577 copolymer Polymers 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 235000019441 ethanol Nutrition 0.000 description 13
- 238000007639 printing Methods 0.000 description 13
- 239000000975 dye Substances 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 230000004069 differentiation Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 239000001856 Ethyl cellulose Substances 0.000 description 8
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 229920001249 ethyl cellulose Polymers 0.000 description 8
- 235000019325 ethyl cellulose Nutrition 0.000 description 8
- 239000012170 montan wax Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 239000000084 colloidal system Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 229920002284 Cellulose triacetate Polymers 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 5
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000004203 carnauba wax Substances 0.000 description 5
- 235000013869 carnauba wax Nutrition 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 244000287680 Garcinia dulcis Species 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 235000021355 Stearic acid Nutrition 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 125000001301 ethoxy group Chemical class [H]C([H])([H])C([H])([H])O* 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000011344 liquid material Substances 0.000 description 4
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000008117 stearic acid Substances 0.000 description 4
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 235000013871 bee wax Nutrition 0.000 description 3
- 239000012166 beeswax Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000005662 Paraffin oil Substances 0.000 description 2
- 229920001800 Shellac Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920004463 Voltalef® Polymers 0.000 description 2
- 229920002494 Zein Polymers 0.000 description 2
- BHXLHEOPYTZRBQ-STWYSWDKSA-N acetic acid;(2e,4e)-hexa-2,4-dienoic acid Chemical compound CC(O)=O.C\C=C\C=C\C(O)=O BHXLHEOPYTZRBQ-STWYSWDKSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 239000000728 ammonium alginate Substances 0.000 description 2
- 235000010407 ammonium alginate Nutrition 0.000 description 2
- KPGABFJTMYCRHJ-YZOKENDUSA-N ammonium alginate Chemical compound [NH4+].[NH4+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O KPGABFJTMYCRHJ-YZOKENDUSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- BEWYHVAWEKZDPP-UHFFFAOYSA-N bornane Chemical compound C1CC2(C)CCC1C2(C)C BEWYHVAWEKZDPP-UHFFFAOYSA-N 0.000 description 2
- CRPUJAZIXJMDBK-UHFFFAOYSA-N camphene Chemical compound C1CC2C(=C)C(C)(C)C1C2 CRPUJAZIXJMDBK-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 2
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- OKJPEAGHQZHRQV-UHFFFAOYSA-N iodoform Chemical compound IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 239000012184 mineral wax Substances 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000004208 shellac Substances 0.000 description 2
- 235000013874 shellac Nutrition 0.000 description 2
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 2
- 229940113147 shellac Drugs 0.000 description 2
- 150000003378 silver Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000003232 water-soluble binding agent Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000005019 zein Substances 0.000 description 2
- 229940093612 zein Drugs 0.000 description 2
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 1
- OIAQMFOKAXHPNH-UHFFFAOYSA-N 1,2-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC=C1C1=CC=CC=C1 OIAQMFOKAXHPNH-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- UYHMQTNGMUDVIY-UHFFFAOYSA-M 1-(2,4-dinitrophenyl)pyridin-1-ium;chloride Chemical compound [Cl-].[O-][N+](=O)C1=CC([N+](=O)[O-])=CC=C1[N+]1=CC=CC=C1 UYHMQTNGMUDVIY-UHFFFAOYSA-M 0.000 description 1
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 1
- MHESOLAAORBNPM-UHFFFAOYSA-N 1-benzothiophene-2,3-dione Chemical compound C1=CC=C2C(=O)C(=O)SC2=C1 MHESOLAAORBNPM-UHFFFAOYSA-N 0.000 description 1
- WCOXQTXVACYMLM-UHFFFAOYSA-N 2,3-bis(12-hydroxyoctadecanoyloxy)propyl 12-hydroxyoctadecanoate Chemical compound CCCCCCC(O)CCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC(O)CCCCCC)COC(=O)CCCCCCCCCCC(O)CCCCCC WCOXQTXVACYMLM-UHFFFAOYSA-N 0.000 description 1
- PWVUXRBUUYZMKM-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOCCO PWVUXRBUUYZMKM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 235000007173 Abies balsamea Nutrition 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241001479434 Agfa Species 0.000 description 1
- 239000004857 Balsam Substances 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 239000004859 Copal Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000782205 Guibourtia conjugata Species 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 244000018716 Impatiens biflora Species 0.000 description 1
- XETQTCAMTVHYPO-UHFFFAOYSA-N Isocamphan von ungewisser Konfiguration Natural products C1CC2C(C)(C)C(C)C1C2 XETQTCAMTVHYPO-UHFFFAOYSA-N 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 241000283222 Physeter catodon Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- PXRCIOIWVGAZEP-UHFFFAOYSA-N Primaeres Camphenhydrat Natural products C1CC2C(O)(C)C(C)(C)C1C2 PXRCIOIWVGAZEP-UHFFFAOYSA-N 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- ZIJKGAXBCRWEOL-SAXBRCJISA-N Sucrose octaacetate Chemical compound CC(=O)O[C@H]1[C@H](OC(C)=O)[C@@H](COC(=O)C)O[C@@]1(COC(C)=O)O[C@@H]1[C@H](OC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1 ZIJKGAXBCRWEOL-SAXBRCJISA-N 0.000 description 1
- 206010057040 Temperature intolerance Diseases 0.000 description 1
- 241000736873 Tetraclinis articulata Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000001344 [(2S,3S,4R,5R)-4-acetyloxy-2,5-bis(acetyloxymethyl)-2-[(2R,3R,4S,5R,6R)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxyoxolan-3-yl] acetate Substances 0.000 description 1
- FOLJTMYCYXSPFQ-CJKAUBRRSA-N [(2r,3s,4s,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-(octadecanoyloxymethyl)oxolan-2-yl]oxy-3,4,5-trihydroxyoxan-2-yl]methyl octadecanoate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](COC(=O)CCCCCCCCCCCCCCCCC)O[C@@H]1O[C@@]1(COC(=O)CCCCCCCCCCCCCCCCC)[C@@H](O)[C@H](O)[C@@H](CO)O1 FOLJTMYCYXSPFQ-CJKAUBRRSA-N 0.000 description 1
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229940051881 anilide analgesics and antipyretics Drugs 0.000 description 1
- 150000003931 anilides Chemical class 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910001864 baryta Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229930006742 bornane Natural products 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229930006739 camphene Natural products 0.000 description 1
- ZYPYEBYNXWUCEA-UHFFFAOYSA-N camphenilone Natural products C1CC2C(=O)C(C)(C)C1C2 ZYPYEBYNXWUCEA-UHFFFAOYSA-N 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000008543 heat sensitivity Effects 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical group C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- VHHHONWQHHHLTI-UHFFFAOYSA-N hexachloroethane Chemical compound ClC(Cl)(Cl)C(Cl)(Cl)Cl VHHHONWQHHHLTI-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229920001480 hydrophilic copolymer Polymers 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- DNZMDASEFMLYBU-RNBXVSKKSA-N hydroxyethyl starch Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O.OCCOC[C@H]1O[C@H](OCCO)[C@H](OCCO)[C@@H](OCCO)[C@@H]1OCCO DNZMDASEFMLYBU-RNBXVSKKSA-N 0.000 description 1
- 229940050526 hydroxyethylstarch Drugs 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000012182 japan wax Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910052981 lead sulfide Inorganic materials 0.000 description 1
- 229940056932 lead sulfide Drugs 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002896 organic halogen compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012168 ouricury wax Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 125000001557 phthalyl group Chemical class C(=O)(O)C1=C(C(=O)*)C=CC=C1 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 229940013883 sucrose octaacetate Drugs 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- BLEUEDZLGUTZDW-UHFFFAOYSA-L zinc barium(2+) oxygen(2-) sulfate Chemical compound [O-2].[Zn+2].[Ba+2].[O-]S([O-])(=O)=O BLEUEDZLGUTZDW-UHFFFAOYSA-L 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/36—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties
- B41M5/366—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties using materials comprising a polymeric matrix containing a polymeric particulate material, e.g. hydrophobic heat coalescing particles
Definitions
- the present invention relates to a method for recording or reproducing information by means of electromagnetic radiation and to a heat-sensitive element containing substances wherein heat is produced by exposure to electromagnetic radiation.
- a preferred method of recording information according to the present invention essentially comprises he following features:
- a recording material is information-wise exposed to electromagnetic radiation preferably containing visible light;
- the said recording material comprising at least one recording layer containing a binder and a liquid material and/or solid material dispersed in said binder, the liquid and/or solid material being more hydrophobic than the binder and at leats partly forming a compatible mixture with the binder upon heating i.e. an an increase in homogeneity in the mixture consisting of the binder and the liquid and/or solid material is obtained upon heating, the light-transparency of said compatible mixture being higher than that of the dispersion before heat- 8;
- the said recording material also comprising a substance or substances, which is or are in heat-conductive relationship with said dispersion and absorb(s) at least part of the radiation that strikes said recording material, thereby causing heating of said recording material;
- the recording material may be composed of one single layer i.e. the recording material may be a self-sustaining layer or sheet. However, the recording material may also be composed of several layers including a support.
- the dispersed liquid material and/or solid material which is more hydrophobic than the binder, may be composed of one single substance or a mixture of substances. For convenience sake reference is made hereinafter to the hydrophobic material.” A dispersed material solid at room temperature C.) is preferred.
- the binder may consist of one single binding agent or of a mixture of different binding agents, examples of which are given further on. For convenience sake reference is made hereinafter to "the hydrophilic binder".
- a dispersion of said hydrophobic material in said binder is applied to a transparent support, e.g. a glass plate. At least part of the coated support is then heated to a temperature ranging between 20 to 250 C. beyond room temperature and finally is cooled back to room temperature. If the heat-sensitive layer after having been heated and cooled back transmits at least 10 percent more light than the nonheated material, the dispersion is suited for recording purposes. Preferably a heat-sensitive layer is used, transmitting at least 20 percent more light after heating in the temperature range between 50 and C.
- wetting agents which are solid at room temperature eg, polyoxyalkylene waxes.
- an amount of dispersing agent varying between 5 and 30 percent by weight based on the total weight of the recording layer may be present therein.
- the required ratio of hydrophobic material to hydrophilic binder in the recording layer depends on the degree of dissolution of the particular hydrophilic and hydrophobic ingredients into each other on heating as well as on the desired degree of differentiation.
- the ratio by weight of dispersed hydrophobic material to hydrophilic binder is at least 1:4 and at most 25:1.
- hydrophobic material use is preferably made of a substance or substances that soften(s) or melt(s) between 20 and 250 C. beyond room temperature. In dispersed form the particles preferably size between 0.01 p. and 50 u.
- the substance or mixture of substances for yielding heat energy under the action of radiation is or are preferably provided in the recording layer in particle form. Finely divided blackor dark-colored pigments or dyes are very suitable.
- the said substance or mixture of substances is or are preferably provided in the recording layer, e.g. in the hydrophobic thermoplastic material itself, it may as an alternative be added to another composite layer of the recording material, e.g. to an interlayer between the recording layer and the support or to a surface layer covering the recording layer.
- the light-absorbing substance or substances may be used in an amount up to 30-50 percent by weight of the total weight of the recording layer, in such an amount that the optical density varies between 0.2 and 5.0, and preferably between 0.2 and 1.0 in the case of a reflectographic exposure. Recording may occur by direct exposure or, provided that the recording material is sufficiently transparent, by reflectographic exposure.
- the intensity of the exposure must be such in relation to the heat-sensitivity of the recording layer that the light-rays initially incident upon the recording layer, undifierentially over its whole area, do not in themselves suffice to cause heating sufficient to result in a significant reduction of the opacity of any part of the recording layer.
- the additional heating required for achieving a significant differentiation in transparency is due to the additional heating resulting from reflected radiation.
- the record in terms of a difference in transparency of different areas of the recording layer may constitute a laterally reversed or a legible record of the graphic original, depending on the orientation of the recording material relative to the original and the radiation source during the exposure.
- the intensity and duration of the radiation affecting the recording layer are also important factors influencing image quality.
- the exposure should be as short as possible.
- the exposure is not more than 10 second in duration and the best results are obtained with exposures of less than 10 second, e.g. between 10 and 10 second.
- the intensity of the radiation incident upon the recording material is at least 0.1 Watt. see/cm. 2.
- the radiation incident upon the recording material includes radiation first incident upon such material from the radiation source andradiation reflected onto such material from the original.
- Suitable radiation sources e.g. gas discharge lamps emitting radiation substantially in the wavelength range of 0.3 ,u. to 1.2 p..
- the radiation employed contains at least 30 percent of the energy in the wavelength range below 700 mp"
- the performance of the recording method according to the present invention gives in all cases a visible image or record in the form of an image-wise difference in transparency of the recording element, which becomes more transparent in the heated areas.
- the recording material can be applied in a considerable variety of reproduction techniques including e.g. chemical, physical and photomechanical reproduction techniques.
- the invention can be employed in the production of printing masters, such as a planographic printing master, a screen printing master, a hectographic printing master and a hydrotype master.
- the top layer must not prevent the subsequent development step.
- the top layer may be composed so, that it can easily be removed, e.g. with a solvent for its binder followin g the exposure step, leaving the recording layer in place.
- the incorporation of the pigment into a top layer, which is removed after the exposure step has definite advantages since the final image quality is improved by the absence of any overall grey tones due to the presence of dispersed pigment.
- top layer is itself permeable for the developer liquid, it can remain in place provided the development step does not result in overall coloration of this top layer.
- coloration can be avoided by using, e.g. a colorless developer liquid containing a color coupler for a component in the recording layer and/or subjacent layer, or a developer liquid containing an ingredient for initiating a color reaction between compounds present in the recording layer and/or subjacent layer.
- a third possibility consists in the incorporation of light-sensitive silver halide into a sublayer beneath the recording layer so that after exposure, liquid silver halide developer can reach this sublayer to bring about image-wise development via the permeable top layer and the still permeable areas of the recording layer.
- hydrophilic binding agent for the heat-sensitive layer hydrophilic natural colloids
- modified hydrophilic natural colloids and synthetic hydrophilic polymers can be used.
- the hydrophilic binding agent should not necessarily be watersoluble, so that use can be made of colloids or hydrophilic polymers such as, e.g., ethylcellulose and methylcellulose of low methoxy substitution degree.
- Suitable water-soluble binding agents are e.g. casein, zein, hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, carboxymethylhydroxyethyl-cellulose, starch derivatives such as hydroxyethylstarch, and hydroxypropylstarch, sucrose octaacetate, ammonium alginate and hydrophilic derivatives of such colloids, synthetic water-soluble hydrophilic polymers e.g., poly(N-vinyl pyrrolidone), polyvinylamine, polyethylene oxide, polyacrylic acid and hydrophilic copolymers and derivative of such polymers.
- synthetic water-soluble hydrophilic polymers e.g., poly(N-vinyl pyrrolidone), polyvinylamine, polyethylene oxide, polyacrylic acid and hydrophilic copolymers and derivative of such polymers.
- partly water-soluble or water-insoluble polymers are particularly mentioned the cellulose derivatives that contain an insufficient amount of water-solubilizing substituents, such as partly etherified or esterified cellulose e.g. belonging to the group of ethylcellulose, benzylcellulose, hydroxyethylcellulose acetate, cellulose acetate sorbate, cellulose acetate butyrate, and further vinyl polymers containing hydrophobic and hydrophilic recurring units (e.g., containing a carboxy, hydroxy or sulpho group), e.g.
- water-solubilizing substituents such as partly etherified or esterified cellulose e.g. belonging to the group of ethylcellulose, benzylcellulose, hydroxyethylcellulose acetate, cellulose acetate sorbate, cellulose acetate butyrate, and further vinyl polymers containing hydrophobic and hydrophilic recurring units (e.g., containing a carboxy, hydroxy or s
- copolymers of vinyl acetate and crotonic acid copolymers of ethylene and vinyl acetate, prepolymers of diallyl phthalate, poly(diallyl o-phthalate), copolymers of cumarone and indene, copolymers of styrene and allyl alcohol, polyvinylbutyral containing unacetalized hydroxyl groups, copolymers of vinyl chloride, vinyl acetate and maleic anhydride, copolymers of vinylidene chloride, acrylonitrile, copolymers of vinyl stearate and vinyl acetate, and copolymers of hydrophilic vinyl compounds, styrene and/or a-methylstyrene e.g. copolymers of methyl acrylate and styrene, and copolymers of styrene and acrylic acid.
- binding agents are e.g. sandarac, colophony, pyrogenated copal resin and shellac resin.
- the binding agent has to be more hydrophilic or more wettable with water than the said dispersed material.
- hydrophobic liquid or solid substances solid at room temperature
- hydrophobic dispersed phase use can be made of e.g. paraffins e.g. petrolatum, liquid or solid fatty acids e.g. oleic acid, stearic acid and adipic acid, alcohols e.g. lauryl alcohol and n-hexadecyl alcohol and waxlike substances, so waxes in the broadest sense of the word.
- waxes of the known six classes i.e. vegetable, mineral, insect, petroleum, animal and synthetic waxes can be used.
- Carnauba wax, ouricury wax, candellila wax, japan wax, and sugar cane wax which belong to the vegetable wax class
- beeswax and Chinese insect wax, which belong to the insect class
- paraffin wax which is a member of the petroleum class
- spermacetic wax from the sperm whale which wax is of the animal class, may be used.
- These waxes, e.g. ceresin can be mixed with oil.
- Vegetable, insect, and animal waxes are usually composed of a mixture of various high-melting fatty acids, alcohols, and esters.
- Chemically modified natural waxes such as the IG waxes made from the natural montan wax can also be used.
- Another modified natural wax is a partly oxidized paraffin that can be a substitute for camauba wax.
- Castor wax and Opalwax are waxes obtained from hydrogenated castor oil.
- Acrawax is a registered trade name of Glyco Chemicals, New York, NY. U.S.A.) for complex nitrogen derivatives of the higher fatty acids.
- ARMID is a registered trademark of Armor Industrial Chemical Company, Chicago, Ill, U.S.A. for a waxlike material containing fatty acid amides.
- Voltalef is a registered trade mark of PechineySt. GobainParis-France for chlorineand fluorine-substituted hydrocarbons.
- Carlisle is a registered trade mark of Carlisle Chemical Works, U.S.A. for synthetic waxes, the physical constants of which are mentioned in Bennett I-I., Industrial waxes, Vol. I Natural & Synthetic waxes (1963) Chemical Publishing Corp., New York, U.S.A.
- Use can also be made of monomeric organic hydrophobic substances, e.g. aromatic compounds which are sparingly or not soluble in water eg biphenyl, o-terphenyl, naphthalene, anthracene, terpene compounds and derivatives thereof, e.g., camphene, camphane, and camphor.
- aromatic compounds which are sparingly or not soluble in water eg biphenyl, o-terphenyl, naphthalene, anthracene, terpene compounds and derivatives thereof, e.g., camphene, camphane, and camphor.
- Higher aliphatic aldehydes, ketones, ethers, esters e.g., sucrose distearate, sorbitol tristearate; ehtylene glycol monohydroxystearate, glycerol monostearate and diethylene glycol stearate, nitrogen containing hydrophobic organic compounds of the class of the amides, anilides, and thio compounds, e.g., biphenylsulphone and thionaphthenequinone.
- Halogenated organic compounds such as a-bromocamphor, carbon tetrabromide, trichlorobenzene, hexachloroethane, and iodoform.
- the hydrophobic material which has proved to form a useful combination with a selected more hydrophilic binder, is dispersed in a solvent for said binder preferably together with the radiation-absorbing substances converting radiation into heat.
- the binder may be dissolved in the dispersing liquid after or before the hydrophobic material is dispersed therein.
- solvents can be mentioned, e.g., water, methanol, ethanol, acetone, methylene chloride, diethyl ether, cyclohexane, cyclohexanone, dioxane, toluene, and mixtures of these solvents.
- the hydrophobic particles in dispersion may size from 0.0lp. to 5011., However, the larger the particles, the less the resolving power on recording. Very good results are obtained with dispersions, the dispersed hydrophobic particles of which size form 0.05 p, to 2,1,. Dispersions wherein the dispersed particles size from 1/1. to Imp. are considered as colloidal systems, which can be obtained in a colloid mill or by means of an ultrasonic wave generator.
- Particularly suitable substances for use according to the present invention and which convert radiation, e.g., visible light into heat are, e.g., carbon black, graphite, oxides or sulfides of heavy metals, particularly of those heavy metals having an atomic weight between 45 and 210, such as iron oxides, manganese or lead sulfide, or these heavy metals themselves in finely divided state e.g., silver, bismuth, lead, iron, cobalt, or nickel.
- Carbon black is preferred because of its high radiationabsorptive character, heating power, and low cost.
- the substances converting absorbed radiation into heat may be present in the hydrophilic binder and/or in the hydrophobic material.
- the coating composition for forming the recording layer may also contain other ingredients, e.g., dyes, reaction components for the formation of dyes, catalysts for color reactions, metal particles that can be dissolved or etched away, development nuclei, light-sensitive substances, e.g., light-sensitive silver halide, developing agents for exposed silver halide, hardening agents, softening agents, fluorescent compounds, and fillers, e.g., hydrophilic fillers such as silica, zinc oxide barium sulfate and other substances suited for filling purposes.
- other ingredients e.g., dyes, reaction components for the formation of dyes, catalysts for color reactions, metal particles that can be dissolved or etched away, development nuclei, light-sensitive substances, e.g., light-sensitive silver halide, developing agents for exposed silver halide, hardening agents, softening agents, fluorescent compounds, and fillers, e.g., hydrophilic fillers such as silica, zinc oxide barium sulfate and
- ingredients may also be incorporated into a waterpermeable top-coating on the recording layer or into a subjacent layer.
- Dyes may be present in dissolved or dispersed form. They can advantageously be applied in dispersed form and selected in such a way that they dissolve in the melted hydrophobic material.
- the thickness of the recording layer preferably varies between 0.2 1. and p.
- the support may be hydrophobic or hydrophilic and may be porous or nonporous.
- use can be made of e.g., supports of paper, natural, modified natural or synthetic resins, metal, glass and the like.
- the support is contrasting in color in respect of the recording layer so that the image-wise change in transparency of the latter is detected as a difference in color between the image and nonimage areas.
- the image-wise irradiated and consequently heated recording material which then contains a reproduction of the original in terms of a different transparency of different portions of the recording layer, can be used as a legible document or can be applied as a transparency in diazo-type printing with ultraviolet radiation.
- the image-wise differentiation in water-permeability can be utilized for moving by diffusion image-forming substance or substances into the recording element in correspondence with the nonheated areas, the water-permeability of which is not decreased.
- the image-wise exposed recording material is dipped into an aqueous dye solution, so that the dye can diffuse into the recording element (layer or sheet) only at the areas that remained water-permeable.
- a solution of a catalyst that initiates a color reaction between components in the recording material or a solution of a colorless reaction component capable of entering into a color reaction with a colorless or slightly colored reaction component in the recording material can be used instead of a dye solution.
- the recording element it is also possible to incorporate into the recording element colored substances that can be bleached out and are bleached by a bleaching agent diffusing into the areas of the recording layer that remained permeable.
- metal particles e.g., colloidal silver can be dispersed homogeneously in the recording element and image-wise etched away or dissolved by a suitable liquid penetrating into the water-permeable areas.
- an image-forming substance incorporated into the recording material is transferred by diffusion from the areas that remained permeable to an image-receiving material.
- silver salts that can be complexed, and in their complexed form can diffuse to a receiving material containing reduction nuclei or development nuclei, on which in accordance with the areas of the recording layer that remained permeable, silver is deposited image-wise.
- the recording material and/or the receiving material may contain (a) developing substance(s) to reduce silver salts.
- a dye which on moistening of the recording material can be leached out gradually through the permeable areas and transferred to a receiving sheet.
- the second application substances of the image portions of the recording layer that remained hydrophilic can be transferred to an imagereceiving material by bringing the latter in contact with the exposed recording layer either or not in the presence of this processing liquid an afterwards separating the materials from each other.
- moderate heating may be applied to the recording and or the receiving material.
- an exposed recording layer containing, e.g., a water-soluble binder is treated with water or an aqueous liquid in order to wash away nonheated portions, thus leaving a relief image.
- the recording layer contains a pigment or a dye, the relief image forms a colored pattern of the original.
- the heat-sensitive recording layer composition is applied to a screening material, e.g., a Japan paper, a nylon fabric, or a support of woven bronze wire, a screen-printing master (stencil) can be produced after washing away the water-soluble portions.
- a screen-printing master stencil
- the exposed recording layer possessing such differentiation in a sufficiently strong degree is used as planographic printing master.
- a common offset-ink or a hydrotype ink e.g., an ink as described in the Belgian Pat. Specification 676,898 filed Feb. 23, 1966 by Gevaert-Agfa N.V. may be used.
- the exposure is carried out with a xenon gas discharge lamp, which can supply an energy of ZOO-2,000 Watt.sec. in a period of 10" to 10 seconds, the energy that impinges on the recording layer preferably varying between 0.5 to 1.5 Watt.sec. per sq.cm.
- the discharge lamp is in the form of a thin tube fitted in a hollow glass cylinder in order to make possible a uniform exposure of the recording material applied according to the periphery of the cylinder. More details about such a gas discharge lamp can be found in the Belgian Pat. Specifications 664,868 filed June 3, 1965 by Agfa-Gevaert AG and 681,138 filed May 17, 1966 by Gevaert-Agfa N.V.
- the intensity of the light emitted by such a gas discharge lamp is particularly high in the region of the visible spectrum.
- Radiation sources with a much lower energy output than the aforementioned may be used if the light energy is focused onto a relatively small heat-sensitive area, e.g., by using a laser beam or by carrying out the exposure progressively and/or intermittently.
- the heat-sensitive material containing the radiation-absorbing substances, which convert the radiation, e.g., light, into heat may be scanning-wise exposed, e.g., light, into heat, may be scanning-wise exposed, e.g., by means of an image-wise modulated high-intensity light spot, and may be progressively exposed e.g., through a slot wherein light, e.g., ofa tubelike radiation sources, is focused.
- the heat-sensitive material can be integrally heated before or during the image-wise heating, to a certain temperature below the temperature at which a material increase in transmittance is obtained.
- EXAMPLE 1 A mixture consisting of ethylcellulose 30 5. carbon black 0.5 g. methanol 400 is ground for 6 hours in a ball mill. To this fine suspension a dispersion is added obtained by grinding in a vibrating ball mill for 2 hours a mixture consisting of:
- the mixture obtained is then coated on a subbed support of polyethylene terephthalate in a proportion of 60 g. per sq.m. After having been dried at room temperature the layer has a grey and opaque appearance. Then the material is laid with its heat-sensitive layer on an original to be reproduced and the whole is reflectographically irradiated with an electronic flash lamp, the energy output of which amounts to 0.75 Watt.sec. per sq.cm. Hereby the heat-sensitive material becomes transparent on the areas corresponding with the white areas of the After drying a heat-sensitive layer is applied thereto in a proportion of 50 g./sq.m. from a composition, which is obtained by grinding for 6 hours in a ball mill the following substances:
- EXAMPLE 3 A subbed cellulose triacetate support is coated in a proportion of g./sq.m. with the barium sulfate dispersion of example 2. After drying at heat-sensitive layer is applied thereto in a copoly(vinylidene chloride/acrylonitrile/ n-butyl acrylatelethyl acrylate) (86/3/7/4! by weight) 60 g. carbon black having a particle size of 0.01 p 0.5 g. oleic acid 20 g. methanol 800 cc.
- This material is reflectographically irradiated with flashlight as described in example 1. A positive transparency is obtained.
- EXAMPLE 4 A transparent paper support of 40 g./sq.m. is coated in a proportion of 50 g./sq.m. with a dispersion consisting of:
- cthylcellulose (degree of substitution of ethoxy groups 2.45) 20 g. carbon black 0.5 g. glycerol monostearate 80 g. methanol 800 cc.
- Example 4 Example 4 is repeated but the heat-sensitive material is reflectographically exposed with its backside facing the original. The material is then inked with an ink composition consisting of 20 percent aqueous methylene blue. inking is carried out by means of an offset-roller. Since the ink is only accepted at those areas corresponding with the text parts of the original, a direct-reading positive print is obtained.
- EXAMPLE 6 A subbed support of polyethylene terephthalate is coated with a baryta suspension as described in example 2. Then a coating is applied thereto in a proportion of 50 g./sq.m. from the following suspension, which has been ground for 6 hours in a ball-mill:
- the nonheated areas i.e., the parts corresponding with the image markings of the original, can easily be rubbed away with water. In this way a grey negative image is obtained from the original.
- EXAMPLE 7 A transparent paper support of 40 g./sq.m. is coated in a proportion of 50 g./sq.m. with a dispersion, which has been ground for 6 hours in a ball-mill and which consists of:
- the material After having been exposed reflectographically by a flash lamp as described in example 2, the material is heated at 60 C. for 10 sec. while being held in contact with a sheet of common writing paper. On the latter a grey positive print is obtained from the original.
- EXAMPLE 8 A subbed support of cellulose triacetate is coated with a solution of the following composition in a proportion of 85 g./sq.m.:
- ethylcellulose (degree of substitution of ethoxy groups 2.45) 35 g. carbon black 0.5 g. stearic acid 65 g. methanol 800 cc.
- the material After reflectographic flash exposure as described in example 2, the material is wetted for a short while with water and then for 15 sec. brought in contact with a receiving paper prepared by dipping common writing paper in a 5 percent solution of 2,4-dinitrophenylpyridinium chloride in ethanol and drying. A brown positive image is obtained on this receiving paper. By wetting the master again and pressing it repeatedly to fresh sheets of receiving paper, some four prints can be obtained from the original.
- EXAMPLE 9 A transparent paper support weighting 40 g./sq.m. is coated with the following suspension in a proportion of 60 g./sq.m.:
- this material After having been dried, this material is reflectographically exposed by means of an electronic flash lamp as described in example 2, then wetted with water and pressed against a sheet of common writing paper. After having separated the material therefrom, a black positive reproduction of the original is obtained on the receiving material.
- EXAMPLE i0 japan paper support weighing l6 g.lsq.m. is coated with a dispersion obtained by grinding for 8 hours in a ball-mill the following substances:
- copoly (styrene ally) carbon black 05 g.
- polyethylene glycol having an average molecular weight of l0,000 20 g.
- a transparent negative to be copied is then laid with its backside onto the heat-sensitive plate and the whole is irradiated by means of an electronic flash lamp having an energy output of 0.75 Watt.sec./sq.cm.
- the plate is then rubbed by means of a plug of wadding soaked with a 1 percent aqueous solution of sodium hydroxide. In this way the nonheated parts of the composition are eliminated from the plate and the subjacent metal parts are rendered strongly hydrophilic.
- the treated plate can now he used as an offset printing plate. by means of which positive prints can be obtained.
- EXAMPLE 12 Common paper of 60 g./sq.m. is coated in a proportion of 50 g./sq.m. with the following dispersion, which has been ground for 6 hours in a ball-mill:
- ethylcellulose (degree of substitution of ethoxy groups: 2.45) 4 g, stearic acid 70 carbon black 0.5 g. ethanol 800 cc.
- EXAMPLE 13 A subbed cellulose triacetate film is coated in a proportion of 80 g./sq.m. with the barium sulfate dispersion described in example 2. After drying, a heat-sensitive layer is applied thereto in a proportion of 50 g./sq.m. from the following suspension, which has been ground for 7 hours in a ball-mill:
- the material obtained is irradiated with flash light in the way described in example 10 and can then be used as a master hydrotype printing.
- an ink paste is used, which is prepared as follows:
- 75 g. of a carbon black dispersion containing per 100 g. 53 g. of carbon black, 23 g. of water, 18 g. of glycol, and 6 g. of nonylphenyl polyethylene oxide (containing 15 ethylene oxide units) are mixed with 225 g. of a 20 percent aqueous solution of cellulose acetophthaiate (degree of substitution of acetyl groups 1.3 to 1.5, degree of substitution of phthalyl groups 0.9 to 1.2; viscosity 12 cps., measured at 20 C. as a 3 percent solution in a mixture of 35 cc. of methyiglycol, 60 cc. of ethanol and cc. of acetone), g.
- EXAMPLE 14 A subbed cellulose triacetate support is coated with a heatsensitive layer pro rate of 50 g./sq.m. from a coating compost tion prepared by grinding the following substances for 6 hours in a ball-mill: I
- the heat-sensitive material After having been dried, the heat-sensitive material is reflectographically exposed as described in example 1, but with an energy intensity of 0.98 Watt.sec. per sq.cm. Subsequently a paper wetted with methanol is pressed against the exposed heat-sensitive layer and then immediately separated therefrom. A dark grey positive image is obtained from the original on the paper. By repeating the latter steps some 5 copies having the same quality can be produced.
- EXAMPLE 16 A subbed polyethylene terephthalate support is coated pro rata of g./sq.m. with a composition prepared as follows:
- a graphic paper original in contact with the heat-sensitive layer is reflectographically exposed with a flash lamp irradiating the heat-sensitive layer with an energy of 0.53 Watt.sec. per sq.cm. in 8.10" seconds.
- the exposed material is suited for use as hydrotype master.
- As printing ink the following composition is used:
- a carbon layer with which useful results are obtained is prepared as follows:
- ethylcellulose degree of substitution of ethoxy groups: 2.45) 35 g. bleached montan wax 55 g. poly(isobutylene) (average molecular weight: 150,000) 10 g. methanol 800 cc.
- a method for reproducing an original having image markings of radiation-absorbing material comprises the step of uniformly exposing to electromagnetic radiation, a recording material comprising at least one recording layer formed by a substantially opaque dispersion of a hydrophilic binder of finely divided particles of a hydrophobic nonpolymeric fatty or waxy material which is solid at room temperature, said finely divide material forming with the binder upon heating a substantially compatible mixture of significantly increased light-transparency, said recording layer also having uniformly distributed therethrough at least one finely divided pigment adapted to absorb at least part of electromagnetic radiation impinged thereon and convert such absorbed radiation into heat internally within said layer, said exposure being carried out while said recording layer is in direct heat conductive relation with the image markings of said original with a radiation source of sufficient intensity and for a time of such duration up to seconds that as a consequence of the generation of heat by said pigment a pattern corresponding to the nonimage areas of said is produced in said layer having increased transparency and decreased hydrophlity, the area of said layer corresponding to the image
- said recording layer is prepared from a dispersion of said relatively hydrophobic material in a hydrophilic binder, the ratio by weight of dispersed hydrophobic material to hydrophilic binder being at least 1:4 and at most 25: l.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Printing Plates And Materials Therefor (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB47626/66A GB1208414A (en) | 1966-10-24 | 1966-10-24 | Improvements relating to thermo recording |
Publications (1)
Publication Number | Publication Date |
---|---|
US3619157A true US3619157A (en) | 1971-11-09 |
Family
ID=10445676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US677759A Expired - Lifetime US3619157A (en) | 1966-10-24 | 1967-10-24 | Thermo recording |
Country Status (6)
Country | Link |
---|---|
US (1) | US3619157A (enrdf_load_stackoverflow) |
BE (1) | BE705529A (enrdf_load_stackoverflow) |
DE (1) | DE1671519A1 (enrdf_load_stackoverflow) |
FR (1) | FR1561957A (enrdf_load_stackoverflow) |
GB (1) | GB1208414A (enrdf_load_stackoverflow) |
NL (1) | NL6714061A (enrdf_load_stackoverflow) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945318A (en) * | 1974-04-08 | 1976-03-23 | Logetronics, Inc. | Printing plate blank and image sheet by laser transfer |
US3962526A (en) * | 1974-07-23 | 1976-06-08 | The Mazer Corporation | Tissueless pre-printed spirit duplicating masters |
US3964389A (en) * | 1974-01-17 | 1976-06-22 | Scott Paper Company | Printing plate by laser transfer |
US3967034A (en) * | 1971-12-22 | 1976-06-29 | Canadian Patents And Development Limited | Pressure sensitive coatings |
US4005237A (en) * | 1974-07-23 | 1977-01-25 | The Mazer Corporation | Non-bleed pre-printed spirit duplicating masters |
US4020762A (en) * | 1974-01-17 | 1977-05-03 | Scott Paper Company | Laser imaging a lanographic printing plate |
US4088073A (en) * | 1973-12-27 | 1978-05-09 | Xerox Corporation | Process for preparing ink releasing stencil |
US4091727A (en) * | 1973-08-03 | 1978-05-30 | Asahi Dow Limited | Heat-sensitive copying method for preparation of printing stencils |
US4132168A (en) * | 1974-01-17 | 1979-01-02 | Scott Paper Company | Presensitized printing plate with in-situ, laser imageable mask |
US4158648A (en) * | 1971-12-12 | 1979-06-19 | Canadian Patents And Development Limited | Pressure- and heat-sensitive coatings |
US4199359A (en) * | 1968-05-16 | 1980-04-22 | Xerox Corporation | Photographic screen stencil printing process |
US4252890A (en) * | 1968-08-26 | 1981-02-24 | Xerox Corporation | Imaging system which agglomerates particulate material |
US4272569A (en) * | 1977-08-24 | 1981-06-09 | Allied Paper Incorporated | Water and solvent resistant coated paper and method for making the same |
US4304626A (en) * | 1977-08-24 | 1981-12-08 | Allied Paper Incorporated | Method for making water and solvent resistant paper |
US4731317A (en) * | 1984-06-08 | 1988-03-15 | Howard A. Fromson | Laser imagable lithographic printing plate with diazo resin |
US5234797A (en) * | 1989-02-20 | 1993-08-10 | Jujo Paper Co., Ltd. | Optical recording medium |
US6001536A (en) * | 1995-10-24 | 1999-12-14 | Agfa-Gevaert, N.V. | Method for making a lithographic printing plate involving development by plain water |
US6040113A (en) * | 1997-03-11 | 2000-03-21 | Agfa-Gevaert, N.V. | Heat-sensitive imaging element for making positive working printing plates |
US6153353A (en) * | 1998-03-14 | 2000-11-28 | Agfa-Gevaert, N.V. | Method for making positive working printing plates from a heat mode sensitive imaging element |
US6244181B1 (en) * | 1998-07-16 | 2001-06-12 | Agfa-Gevaert | Dry method for preparing a thermal lithographic printing plate precursor |
US6248503B1 (en) | 1997-11-07 | 2001-06-19 | Agfa-Gevaert | Method for making positive working printing plates from a heat mode sensitive imaging element |
US6250225B1 (en) * | 1998-07-16 | 2001-06-26 | Agfa-Gevaert | Thermal lithographic printing plate precursor with excellent shelf life |
US6267055B1 (en) * | 2000-07-18 | 2001-07-31 | Howard A. Fromson | Dual laser thermal imaging |
US6340815B1 (en) | 1998-04-15 | 2002-01-22 | Agfa-Gevaert | Heat mode sensitive imaging element for making positive working printing plates |
US6342336B2 (en) | 1998-03-06 | 2002-01-29 | Agfa-Gevaert | Heat mode sensitive imaging element for making positive working printing plates |
US6391517B1 (en) | 1998-04-15 | 2002-05-21 | Agfa-Gevaert | Heat mode sensitive imaging element for making positive working printing plates |
US6815139B2 (en) | 2000-12-07 | 2004-11-09 | Agfa-Gevaert | Method of processing a printing plate material with a single-fluid ink |
EP2993054A1 (de) * | 2014-09-06 | 2016-03-09 | Mitsubishi HiTec Paper Europe GmbH | Bahnförmiges wärmeempfindliches Aufzeichnungsmaterial mit mindestens zwei Lagen |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4251564A (en) * | 1979-02-12 | 1981-02-17 | Cannella Vincent D | Heat-sink imaging method and apparatus for live skin tissue using pulsed energy source |
EP0770497B1 (en) * | 1995-10-24 | 2002-04-03 | Agfa-Gevaert | A method for making a lithographic printing plate involving development by plain water |
US6110644A (en) * | 1995-10-24 | 2000-08-29 | Agfa-Gevaert, N.V. | Method for making a lithographic printing plate involving on press development |
EP0770494B1 (en) * | 1995-10-24 | 2000-05-24 | Agfa-Gevaert N.V. | A method for making a lithographic printing plate involving on press development |
EP0770495B1 (en) * | 1995-10-24 | 2002-06-19 | Agfa-Gevaert | A method for making a lithographic printing plate involving on press development |
EP0770496B1 (en) * | 1995-10-24 | 2002-03-13 | Agfa-Gevaert | Printing apparatus for making a lithographic printing plate involving on press development |
EP0773113B1 (en) * | 1995-11-09 | 2000-05-24 | Agfa-Gevaert N.V. | Heat sensitive imaging element and method for making a printing plate therewith |
EP0773112B1 (en) | 1995-11-09 | 2001-05-30 | Agfa-Gevaert N.V. | Heat sensitive imaging element and method for making a printing plate therewith |
EP0774364B1 (en) * | 1995-11-16 | 2000-10-11 | Agfa-Gevaert N.V. | Method for making a lithographic printing plate by image-wise heating an imaging element using a thermal head |
EP0795998A1 (en) * | 1996-03-14 | 1997-09-17 | Agfa-Gevaert N.V. | Producing a lithographic printing plate by sequentially exposing a thermo-sensitive imaging element by a set of radiation beams |
EP0800928B1 (en) | 1996-04-09 | 1999-07-28 | Agfa-Gevaert N.V. | A heat sensitive imaging element and a method for producing lithographic plates therewith |
EP0816070B1 (en) * | 1996-06-24 | 2000-10-18 | Agfa-Gevaert N.V. | A heat sensitive imaging element and a method for producing lithographic plates therewith |
EP0839648A1 (en) * | 1996-10-29 | 1998-05-06 | Agfa-Gevaert N.V. | Method for making lithographic printing plates allowing for the use of lower laser writing power |
EP0839647B2 (en) * | 1996-10-29 | 2014-01-22 | Agfa Graphics N.V. | Method for making a lithographic printing plate with improved ink-uptake |
EP0846571B1 (en) | 1996-12-04 | 2001-04-11 | Agfa-Gevaert N.V. | Method for the formation of an improved heat mode image |
EP0849090A3 (en) * | 1996-12-19 | 1998-07-01 | Agfa-Gevaert N.V. | Thermosensitive imaging element for the preparation of lithographic printing plates with improved transporting properties |
GB9709404D0 (en) * | 1997-05-10 | 1997-07-02 | Du Pont Uk | Improvements in or relating to the formation of images |
EP0914941B1 (en) * | 1997-11-07 | 2001-12-12 | Agfa-Gevaert N.V. | A method for making positive working printing plates from heat mode sensitive imaging element |
EP0940266B1 (en) * | 1998-03-06 | 2002-06-26 | Agfa-Gevaert | A heat mode sensitive imaging element for making positive working printing plates. |
EP0943451B3 (en) * | 1998-03-14 | 2018-12-12 | Agfa Graphics NV | A heat mode imaging element and a method for making positive working printing plates from said heat mode imaging element |
DE69901642T3 (de) | 1998-03-14 | 2019-03-21 | Agfa Nv | Verfahren zur Herstellung einer positiv arbeitenden Druckplatte aus einem wärmeempfindlichem Bildaufzeichnungsmaterial |
EP0950516B1 (en) * | 1998-04-15 | 2004-05-06 | Agfa-Gevaert | A heat mode sensitive imaging element for making positive working printing plates |
EP0950514B1 (en) * | 1998-04-15 | 2001-11-07 | Agfa-Gevaert N.V. | A heat mode sensitive imaging element for making positive working printing plates |
EP1232858B1 (en) * | 2001-02-16 | 2003-10-15 | Agfa-Gevaert | On-press coating and on-press processing of a lithographic material |
US6789480B2 (en) | 2001-02-16 | 2004-09-14 | Agfa-Gevaert | On-press exposure and on-press processing of a lithographic material |
EP1232859B1 (en) * | 2001-02-16 | 2003-11-26 | Agfa-Gevaert | On-press exposure and on-press processing of a lithographic material |
US6789481B2 (en) | 2001-02-16 | 2004-09-14 | Agfa-Gevaert | On-press coating and on-press processing of a lithographic material |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3121162A (en) * | 1960-04-16 | 1964-02-11 | Eastman Kodak Co | Thermographic colloid transfer process |
US3298833A (en) * | 1960-12-30 | 1967-01-17 | Gen Electric | Method for storing information |
US3384015A (en) * | 1965-03-23 | 1968-05-21 | Columbia Ribbon & Carbon | Thermographic method |
US3405265A (en) * | 1964-12-04 | 1968-10-08 | Gevaert Photo Prod Nv | Thermographic copying method and apparatus having means for uniformly pre-heating the copy sheet |
US3476937A (en) * | 1963-12-05 | 1969-11-04 | Agfa Gevaert Nv | Thermographic recording method employing a recording material comprising a uniform layer of discrete hydrophobic thermoplastic polymer particles |
US3511652A (en) * | 1965-06-12 | 1970-05-12 | Agfa Gevaert Nv | Process for the reproduction of information by short-duration,high-intensity exposure of a heat-sensitive material to visible light |
US3514597A (en) * | 1966-04-05 | 1970-05-26 | Agfa Gevaert Nv | Thermographic recording processes and materials |
-
1966
- 1966-10-24 GB GB47626/66A patent/GB1208414A/en not_active Expired
-
1967
- 1967-10-17 NL NL6714061A patent/NL6714061A/xx unknown
- 1967-10-19 DE DE19671671519 patent/DE1671519A1/de active Pending
- 1967-10-20 FR FR1561957D patent/FR1561957A/fr not_active Expired
- 1967-10-24 US US677759A patent/US3619157A/en not_active Expired - Lifetime
- 1967-10-24 BE BE705529D patent/BE705529A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3121162A (en) * | 1960-04-16 | 1964-02-11 | Eastman Kodak Co | Thermographic colloid transfer process |
US3298833A (en) * | 1960-12-30 | 1967-01-17 | Gen Electric | Method for storing information |
US3476937A (en) * | 1963-12-05 | 1969-11-04 | Agfa Gevaert Nv | Thermographic recording method employing a recording material comprising a uniform layer of discrete hydrophobic thermoplastic polymer particles |
US3405265A (en) * | 1964-12-04 | 1968-10-08 | Gevaert Photo Prod Nv | Thermographic copying method and apparatus having means for uniformly pre-heating the copy sheet |
US3384015A (en) * | 1965-03-23 | 1968-05-21 | Columbia Ribbon & Carbon | Thermographic method |
US3511652A (en) * | 1965-06-12 | 1970-05-12 | Agfa Gevaert Nv | Process for the reproduction of information by short-duration,high-intensity exposure of a heat-sensitive material to visible light |
US3514597A (en) * | 1966-04-05 | 1970-05-26 | Agfa Gevaert Nv | Thermographic recording processes and materials |
Non-Patent Citations (1)
Title |
---|
Van Der Grinten Bulletin, Thermographic Writing and Copying Methods and Materials, Aug. 8, 1963, pp. 1 6 * |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4199359A (en) * | 1968-05-16 | 1980-04-22 | Xerox Corporation | Photographic screen stencil printing process |
US4252890A (en) * | 1968-08-26 | 1981-02-24 | Xerox Corporation | Imaging system which agglomerates particulate material |
US4158648A (en) * | 1971-12-12 | 1979-06-19 | Canadian Patents And Development Limited | Pressure- and heat-sensitive coatings |
US3967034A (en) * | 1971-12-22 | 1976-06-29 | Canadian Patents And Development Limited | Pressure sensitive coatings |
US4091727A (en) * | 1973-08-03 | 1978-05-30 | Asahi Dow Limited | Heat-sensitive copying method for preparation of printing stencils |
US4088073A (en) * | 1973-12-27 | 1978-05-09 | Xerox Corporation | Process for preparing ink releasing stencil |
US4020762A (en) * | 1974-01-17 | 1977-05-03 | Scott Paper Company | Laser imaging a lanographic printing plate |
US4132168A (en) * | 1974-01-17 | 1979-01-02 | Scott Paper Company | Presensitized printing plate with in-situ, laser imageable mask |
US3964389A (en) * | 1974-01-17 | 1976-06-22 | Scott Paper Company | Printing plate by laser transfer |
US3945318A (en) * | 1974-04-08 | 1976-03-23 | Logetronics, Inc. | Printing plate blank and image sheet by laser transfer |
US4005237A (en) * | 1974-07-23 | 1977-01-25 | The Mazer Corporation | Non-bleed pre-printed spirit duplicating masters |
US3962526A (en) * | 1974-07-23 | 1976-06-08 | The Mazer Corporation | Tissueless pre-printed spirit duplicating masters |
US4272569A (en) * | 1977-08-24 | 1981-06-09 | Allied Paper Incorporated | Water and solvent resistant coated paper and method for making the same |
US4304626A (en) * | 1977-08-24 | 1981-12-08 | Allied Paper Incorporated | Method for making water and solvent resistant paper |
US4731317A (en) * | 1984-06-08 | 1988-03-15 | Howard A. Fromson | Laser imagable lithographic printing plate with diazo resin |
US5234797A (en) * | 1989-02-20 | 1993-08-10 | Jujo Paper Co., Ltd. | Optical recording medium |
US6001536A (en) * | 1995-10-24 | 1999-12-14 | Agfa-Gevaert, N.V. | Method for making a lithographic printing plate involving development by plain water |
US6040113A (en) * | 1997-03-11 | 2000-03-21 | Agfa-Gevaert, N.V. | Heat-sensitive imaging element for making positive working printing plates |
US6248503B1 (en) | 1997-11-07 | 2001-06-19 | Agfa-Gevaert | Method for making positive working printing plates from a heat mode sensitive imaging element |
US6342336B2 (en) | 1998-03-06 | 2002-01-29 | Agfa-Gevaert | Heat mode sensitive imaging element for making positive working printing plates |
US6153353A (en) * | 1998-03-14 | 2000-11-28 | Agfa-Gevaert, N.V. | Method for making positive working printing plates from a heat mode sensitive imaging element |
US6340815B1 (en) | 1998-04-15 | 2002-01-22 | Agfa-Gevaert | Heat mode sensitive imaging element for making positive working printing plates |
US6391517B1 (en) | 1998-04-15 | 2002-05-21 | Agfa-Gevaert | Heat mode sensitive imaging element for making positive working printing plates |
US6250225B1 (en) * | 1998-07-16 | 2001-06-26 | Agfa-Gevaert | Thermal lithographic printing plate precursor with excellent shelf life |
US6244181B1 (en) * | 1998-07-16 | 2001-06-12 | Agfa-Gevaert | Dry method for preparing a thermal lithographic printing plate precursor |
WO2002006050A1 (en) * | 2000-07-18 | 2002-01-24 | Fromson H A | Dual laser thermal imaging |
US6267055B1 (en) * | 2000-07-18 | 2001-07-31 | Howard A. Fromson | Dual laser thermal imaging |
US6815139B2 (en) | 2000-12-07 | 2004-11-09 | Agfa-Gevaert | Method of processing a printing plate material with a single-fluid ink |
EP2993054A1 (de) * | 2014-09-06 | 2016-03-09 | Mitsubishi HiTec Paper Europe GmbH | Bahnförmiges wärmeempfindliches Aufzeichnungsmaterial mit mindestens zwei Lagen |
Also Published As
Publication number | Publication date |
---|---|
BE705529A (enrdf_load_stackoverflow) | 1968-04-24 |
DE1671519A1 (de) | 1971-09-30 |
FR1561957A (enrdf_load_stackoverflow) | 1969-04-04 |
GB1208414A (en) | 1970-10-14 |
NL6714061A (enrdf_load_stackoverflow) | 1967-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3619157A (en) | Thermo recording | |
US3514597A (en) | Thermographic recording processes and materials | |
US3793025A (en) | Thermorecording | |
US3628953A (en) | Thermorecording | |
US4004924A (en) | Thermorecording | |
US3476937A (en) | Thermographic recording method employing a recording material comprising a uniform layer of discrete hydrophobic thermoplastic polymer particles | |
US3280735A (en) | Heat-copying process | |
US3615423A (en) | Thermocopying | |
US3094619A (en) | Ultra-violet radiation-desensitizable thermographic copy-sheet and method | |
US2844733A (en) | Reflex thermoprinting | |
US3476578A (en) | Thermographic method for producing thermostable prints | |
US3592644A (en) | Thermorecording and reproduction of graphic information | |
US3502871A (en) | Process for making a projection transparency by exposing a sublimeable material to a pattern of infrared radiation | |
US3811773A (en) | Thermographic copying | |
US3679410A (en) | Heat-sensitive recording material | |
US3941596A (en) | Thermographic processes using polymer layer capable of existing in metastable state | |
US3642480A (en) | Photographic process and materials used therein | |
US3580719A (en) | Thermographic recording process | |
US3368892A (en) | Method of copying utilizing an infrared-absorptive image formed by electrostatic attraction | |
US3121162A (en) | Thermographic colloid transfer process | |
US3218168A (en) | Heat and photosensitive copy sheet | |
US3156183A (en) | Thermographic offset master and method of use | |
US3630732A (en) | Thermographic recording material | |
US3839028A (en) | Imaging process | |
DE1471668C3 (de) | Registrierverfahren und Material zur Durchführung des Verfahrens |