US3615931A - Technique for growth of epitaxial compound semiconductor films - Google Patents
Technique for growth of epitaxial compound semiconductor films Download PDFInfo
- Publication number
- US3615931A US3615931A US787470A US3615931DA US3615931A US 3615931 A US3615931 A US 3615931A US 787470 A US787470 A US 787470A US 3615931D A US3615931D A US 3615931DA US 3615931 A US3615931 A US 3615931A
- Authority
- US
- United States
- Prior art keywords
- growth
- accordance
- gun
- epitaxial
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 150000001875 compounds Chemical class 0.000 title abstract description 17
- 239000004065 semiconductor Substances 0.000 title abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 38
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 23
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 12
- 229910005540 GaP Inorganic materials 0.000 claims description 11
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 claims description 11
- 229910052785 arsenic Inorganic materials 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 6
- 239000002019 doping agent Substances 0.000 claims description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000013590 bulk material Substances 0.000 claims description 2
- 238000000407 epitaxy Methods 0.000 abstract description 3
- 238000004544 sputter deposition Methods 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- -1 mixed crystals Chemical class 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- MODGUXHMLLXODK-UHFFFAOYSA-N [Br].CO Chemical compound [Br].CO MODGUXHMLLXODK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- XEMZLVDIUVCKGL-UHFFFAOYSA-N hydrogen peroxide;sulfuric acid Chemical compound OO.OS(O)(=O)=O XEMZLVDIUVCKGL-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000007521 mechanical polishing technique Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02395—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02543—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/017—Clean surfaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/049—Equivalence and options
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/065—Gp III-V generic compounds-processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/072—Heterojunctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/084—Ion implantation of compound devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/15—Silicon on sapphire SOS
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/158—Sputtering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/169—Vacuum deposition, e.g. including molecular beam epitaxy
Definitions
- the described process is a nonequilibrium 2,994,621 8/1961 Hugle et a1 148/174 X growth technique which permits the growth of epitaxial films 3,158,511 11/1964 Robillard 148/15 less than 1 micron in thickness at temperatures appreciably 3,172,778 3/1965 Guenther et al. 117/213 below those commonly employed in epitaxy.
- FIG. 1 A first figure.
- FIG. 2 /41 INVENTOR J. R. ARTHUR, JR.
- This invention relates to a technique for the growth of epitaxial compound semiconductor films. More particularly, the present invention relates to a technique for the growth of epitaxial semiconductor films of Group Ill(a)-V(a) compounds of the Periodic Table of the Elements by a novel physical vapor growth procedure.
- epitaxial films suitable in such applications have been grown by several techniques, the most popular being solution epitaxy, chemical vapor growth and physical vapor growth. Although such techniques have generally been satisfactory from a device standpoint, the need for a procedure permitting greater flexibility with respect to doping profiles combined with film thicknesses of the order of one micron or less has not been met. Additionally, a need has long existed for a nonequilibrium epitaxial growth procedure which would permit growth at temperatures appreciably below those conventionally employed.
- III(a)-V(a) semiconductor compounds including mixed crystals, thereof, may be effected by providing vapors of Group "1(0) and V(a) elements at the substrate surface, an excess of Group V(a) element being present with respect to the III(a) element, thereby assuring that the entirety of the III(a) element will be consumed while the nonreacted V(a) excess is reflected.
- the inventive technique involves forming an atomically clean substrate surface in a vacuum chamber, evacuating the chamber and directing at least one collimated molecular beam containing the constituent components of the desired crystalline material at the substrate for a time period sufficient to grow an epitaxial film of the required thickness.
- the collimated molecular beams employed herein furnish not only the constituent components of the film but also the desired impurities, so permitting the altering of the composition at will and the production of abrupt changes in composition or impurity levels, such end being of particular interest in certain device applications in which either an abrupt PN junction is required or a ternary composition.
- FIG. I is a front elevational view, partly in section, of a typical apparatus employed in the practice of the present invention.
- FIG. 2 is a cross-sectional view of a cylindrical gun employed in the apparatus of FIG. 1.
- FIG. I there is shown a vacuum chamber 11 having disposed therein a gun port 12 containing cylindrical guns 13 and 14, a sputtering port 15 containing a sputtering gun l6 and a substrate holder 17 connected to a ceramic insulator 18 by means of shaft 19.
- Ceramic insulator 18 is connected by means of shaft 20 to a rotor 21 capable of effecting rotary motion of shafts l9 and 20. Also shown disposed within chamber 11 is a liquid nitrogen cooling shroud 22 and a collimating frame 23 having a collimating aperture 24. Substrate holder 17 is provided with an internal heater 25 and clips 26 and 27 for affixing a substrate member 28 thereto. Chamber 11 also includes an inlet 29 for the introduction of a sputtering gas from source 30 con trolled by valve 31 and an outlet 32 for evacuating the chamber by means of a pump 33.
- FIG. 2 is a cross-sectional view of a typical cylindrical gun, such as 14, shown in FIG. 1.
- Gun 14 typically comprises a refractory crucible 41 having a thermocouple well 42 and a thermocouple 43 inserted therein for the purpose of determining the temperature of the material contained therein.
- the first step in the inventive technique involves selecting a substrate member (relatively dislocation free), obtained from commercial sources.
- Suitable substrate members may be selected from among single crystal elemental and compound semiconductors as well as certain insulators manifesting lattice constants closely related to those of the desired epitaxial film.
- Prime examples of substrate materials meeting these requirements are silicon, germanium, gallium arsenide, gallium phosphide, gallium arsenic phosphide, indium arsenide, indium phosphide, sapphire and the like.
- the substrate member selected is initially polished by any conventional polishing technique for the purpose of removing impurities from the surface thereof.
- An etchant such as a bromine-methanol or hydrogen peroxide-sulfuric acid solution may optionally be employed for the purpose of further purifying the substrate surface subsequent to polishing.
- the cleaned substrate is placed in an apparatus of the type shown in FIG. 1 and the system baked for a time period ranging from 5 to 10 hours at a pressure within the range of l0 to 10" torr for the purpose of removing water vapor from the system.
- a suitable inert sputtering gas such as argon is admitted to the vacuum chamber and sputtering initiated with the substrate member facing the sputtering gun.
- Sputtering is continued for a time period ranging from I to 3 hours employing a sputtering voltage ranging from I00 to 250 volts with a current density within the range of I00 to 500 microamps for the purpose of removing several monolayers of material from the substrate so as to form an atomically clean surface thereon.
- the substrate member is rotated so as to face the gun port of the apparatus, inert gas pumped out of the system and the background pressure then lowered to at least 5X10 torr and preferably to a value of the order of l l0 torr, thereby precluding the introduction of any deleterious components onto the substrate surface.
- the next step in the process involves introducing liquid nitrogen to the cooling shroud and heating the substrate member to the growth temperature which ranges from 450-650 C. dependent upon the specific material to be grown, such range being dictated by considerations relating to surface diffusion.
- the gun or guns employed in the system which have previously been filled with the requisite amounts of the constituent of the desired films to be grown, are heated to a temperature sufficient to vaporize the contents thereof to yield a molecular beam, that is, a stream of atoms manifesting velocity components in the same direction, in this case toward the substrate surface.
- a molecular beam that is, a stream of atoms manifesting velocity components in the same direction, in this case toward the substrate surface.
- the atoms of molecules reflected from the surface strike the cooled shroud and are condensed, thereby insuring that only atoms or molecules from the molecular beam impinge upon the surface.
- the present invention relates to the growth of Group IIl(a)-V(a) semiconductor compounds and mixed crystals thereof.
- the materials furnished to the gun or guns are either Group IIl(a)-V(a) compounds or Group Ill(a) elements.
- a desired dopant may be added either to an independent gun or included with the lll(a)V() compound.
- the amount of source materials furnished to the guns must be sufficient to provide an excess of the V(a) element with respect to the lIl(a) element.
- the phosphorous-to-arsenic ratio in the vapor must be about four times the desired phosphorous-to-arsenic ratio in the bulk.
- growth of the desired epitaxial film is effected by directing the molecular beam or beams at the collimator which functions to remove velocity components therein in directions other than those desired, thereby permitting the desired beam to pass through the collimating aperture to effect reaction at the substrate surface.
- Growth is continued for a time period sufficient to yield an epitaxial film of the desired thickness, a feature of the subject technique residing in the growth of films appreciably less than one micron in thickness.
- Diffusion of a desired dopant into the grown layer may be effected simultaneously with the growth of that layer or following growth by rotation of the substrate in such manner that it faces a gun port containing a doping gun.
- composition ofthe grown layer can be altered at will.
- ternary compounds of the type alluded to hereinabove can be grown by using three source beams and the value of x can be precisely controlled and altered at any time during growth by appropriate beam regulation.
- EXAMPLE I This example describes a process for the growth of an epitaxial film of gallium arsenide upon a gallium arsenide substrate member.
- a gallium arsenide substrate member evidencing few dislocations, obtained from commercial sources, and initially polished by conventional mechanical polishing techniques was inserted in an apparatus of the type shown in FIG. 1.
- two guns were contained in the gun port, one gram of gallium arsenide and one-half gram of gallium being placed in the respective guns.
- the vacuum chamber was evacuated to a pressure of the order of torr and the system baked at 250 C. for l2 hours.
- the beams were focused upon the substrate surface for a period of 1 hour, so resulting in the growth of an epitaxial film of gallium arsenide upon the substrate 1 micron in thickness.
- EXAMPLE III The procedure of example ll was repeated with the exception that the solitary gun contained 1 gram of gallium phosphide. Growth was continued for a period of 1 hour, so resulting in the growth of an epitaxial film of gallium phosphide upon the gallium arsenide substrate one-half micron in thickness.
- EXAMPLE IV The procedure of example lll was repeated with the exception that a gallium phosphide substrate was employed. Growth was continued for a time period of approximately 1 hour, so resulting in the growth of an epitaxial film of gallium phosphide, one-half micron in thickness.
- EXAMPLE V This example describes the growth of an epitaxial film of GaAs P
- the procedure of example 1 was employed utilizing one gram of gallium phosphide and one gram of gallium arsenide in the respective guns.
- the gallium phosphide gun was heated to a temperature of 1,212 K. and the gallium arsenide gun to a temperature of 1,140 K., heating being continued for a time period of approximately 2 hours during which a film of GaAs P 1 micron in thickness grew upon the substrate.
- EXAMPLE VI The procedure of example I was repeated with the exception that a third gun was employed containing one-half gram of tellurium which was heated to a temperature of 400 C. during the operation of the procedure, so resulting in the formation of an N-type gallium arsenide epitaxial film, 1 micron in thickness.
- a method for the growth of an epitaxial film of a Group lIl(a)-V() compound of the Periodic Table of the Elements upon a substrate surface at subatmospheric pressure which comprises focusing collimated molecular beams at least one of which comprises a lIl(a)V(a) compound of the desired epitaxial film upon a substrate surface, preheated to a temperature within the range of 450-650 C., for a time period sufficient to effect growth of a film of the desired thickness.
- one gun contains gallium phosphide and the other contains gallium arsenide.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78747068A | 1968-12-27 | 1968-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3615931A true US3615931A (en) | 1971-10-26 |
Family
ID=25141584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US787470A Expired - Lifetime US3615931A (en) | 1968-12-27 | 1968-12-27 | Technique for growth of epitaxial compound semiconductor films |
Country Status (8)
Country | Link |
---|---|
US (1) | US3615931A (enrdf_load_stackoverflow) |
JP (1) | JPS4930557B1 (enrdf_load_stackoverflow) |
BE (1) | BE743687A (enrdf_load_stackoverflow) |
DE (1) | DE1965258C3 (enrdf_load_stackoverflow) |
FR (1) | FR2027188A1 (enrdf_load_stackoverflow) |
GB (1) | GB1270550A (enrdf_load_stackoverflow) |
NL (1) | NL168892C (enrdf_load_stackoverflow) |
SE (1) | SE361828B (enrdf_load_stackoverflow) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3751310A (en) * | 1971-03-25 | 1973-08-07 | Bell Telephone Labor Inc | Germanium doped epitaxial films by the molecular beam method |
US3839084A (en) * | 1972-11-29 | 1974-10-01 | Bell Telephone Labor Inc | Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds |
US3862857A (en) * | 1972-12-26 | 1975-01-28 | Ibm | Method for making amorphous semiconductor thin films |
US3865625A (en) * | 1972-10-13 | 1975-02-11 | Bell Telephone Labor Inc | Molecular beam epitaxy shadowing technique for fabricating dielectric optical waveguides |
US3865646A (en) * | 1972-09-25 | 1975-02-11 | Bell Telephone Labor Inc | Dielectric optical waveguides and technique for fabricating same |
US3928092A (en) * | 1974-08-28 | 1975-12-23 | Bell Telephone Labor Inc | Simultaneous molecular beam deposition of monocrystalline and polycrystalline III(a)-V(a) compounds to produce semiconductor devices |
US4013533A (en) * | 1974-03-27 | 1977-03-22 | Agence Nationale De Valorisation De La Recherche (Anvar) | Volatilization and deposition of a semi-conductor substance and a metallic doping impurity |
US4028146A (en) * | 1975-03-11 | 1977-06-07 | Bell Telephone Laboratories, Incorporated | LPE Technique for fabricating tapered optical couplers |
US4063974A (en) * | 1975-11-14 | 1977-12-20 | Hughes Aircraft Company | Planar reactive evaporation method for the deposition of compound semiconducting films |
US4116733A (en) * | 1977-10-06 | 1978-09-26 | Rca Corporation | Vapor phase growth technique of III-V compounds utilizing a preheating step |
US4126930A (en) * | 1975-06-19 | 1978-11-28 | Varian Associates, Inc. | Magnesium doping of AlGaAs |
US4147573A (en) * | 1977-04-05 | 1979-04-03 | Futaba Denshi Kogyo K. K. | Method of depositing III-V compounds on group IV element wafers by the cluster ion technique |
US4239584A (en) * | 1978-09-29 | 1980-12-16 | International Business Machines Corporation | Molecular-beam epitaxy system and method including hydrogen treatment |
US4426237A (en) | 1981-10-13 | 1984-01-17 | International Business Machines Corporation | Volatile metal oxide suppression in molecular beam epitaxy systems |
US4426569A (en) | 1982-07-13 | 1984-01-17 | The Perkin-Elmer Corporation | Temperature sensor assembly |
US4523051A (en) * | 1983-09-27 | 1985-06-11 | The Boeing Company | Thin films of mixed metal compounds |
US4622093A (en) * | 1983-07-27 | 1986-11-11 | At&T Bell Laboratories | Method of selective area epitaxial growth using ion beams |
US4833100A (en) * | 1985-12-12 | 1989-05-23 | Kozo Iizuka, Director-General Of Agency Of Industrial Science And Technology | Method for producing a silicon thin film by MBE using silicon beam precleaning |
US5537951A (en) * | 1994-01-14 | 1996-07-23 | Nec Corporation | Crystal growth method and apparatus therefor |
US6121061A (en) * | 1997-11-03 | 2000-09-19 | Asm America, Inc. | Method of processing wafers with low mass support |
US9885123B2 (en) | 2011-03-16 | 2018-02-06 | Asm America, Inc. | Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524447U (enrdf_load_stackoverflow) * | 1975-06-24 | 1977-01-12 | ||
JPS5318623A (en) * | 1976-08-05 | 1978-02-21 | Nobuyuki Toyoda | Method of producing dry readyymixed concrete from waste readyymixed concrete |
GB1574525A (en) * | 1977-04-13 | 1980-09-10 | Philips Electronic Associated | Method of manufacturing semiconductor devices and semiconductor devices manufactured by the method |
CA1102013A (en) * | 1977-05-26 | 1981-05-26 | Chin-An Chang | Molecular-beam epitaxy system and method including hydrogen treatment |
GB2030551B (en) * | 1978-09-22 | 1982-08-04 | Philips Electronic Associated | Growing a gaas layer doped with s se or te |
EP0031180A3 (en) * | 1979-12-19 | 1983-07-20 | Philips Electronics Uk Limited | Method of growing a doped iii-v alloy layer by molecular beam epitaxy and a semiconductor device comprising a semiconductor substrate bearing an epitaxial layer of a doped iii-v alloy grown by such a method |
NL8300780A (nl) * | 1983-03-03 | 1984-10-01 | Philips Nv | Werkwijze voor het vervaardigen van een halfgeleiderinrichting met een moleculaire bundeltechniek. |
US4550411A (en) * | 1983-03-30 | 1985-10-29 | Vg Instruments Group Limited | Sources used in molecular beam epitaxy |
-
1968
- 1968-12-27 US US787470A patent/US3615931A/en not_active Expired - Lifetime
-
1969
- 1969-12-18 SE SE17494/69A patent/SE361828B/xx unknown
- 1969-12-22 FR FR6944378A patent/FR2027188A1/fr active Pending
- 1969-12-22 NL NLAANVRAGE6919180,A patent/NL168892C/xx not_active IP Right Cessation
- 1969-12-22 GB GB62287/69A patent/GB1270550A/en not_active Expired
- 1969-12-23 JP JP44103106A patent/JPS4930557B1/ja active Pending
- 1969-12-24 BE BE743687D patent/BE743687A/xx not_active IP Right Cessation
- 1969-12-29 DE DE1965258A patent/DE1965258C3/de not_active Expired
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3751310A (en) * | 1971-03-25 | 1973-08-07 | Bell Telephone Labor Inc | Germanium doped epitaxial films by the molecular beam method |
US3865646A (en) * | 1972-09-25 | 1975-02-11 | Bell Telephone Labor Inc | Dielectric optical waveguides and technique for fabricating same |
US3865625A (en) * | 1972-10-13 | 1975-02-11 | Bell Telephone Labor Inc | Molecular beam epitaxy shadowing technique for fabricating dielectric optical waveguides |
US3839084A (en) * | 1972-11-29 | 1974-10-01 | Bell Telephone Labor Inc | Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds |
US3862857A (en) * | 1972-12-26 | 1975-01-28 | Ibm | Method for making amorphous semiconductor thin films |
US4013533A (en) * | 1974-03-27 | 1977-03-22 | Agence Nationale De Valorisation De La Recherche (Anvar) | Volatilization and deposition of a semi-conductor substance and a metallic doping impurity |
US3928092A (en) * | 1974-08-28 | 1975-12-23 | Bell Telephone Labor Inc | Simultaneous molecular beam deposition of monocrystalline and polycrystalline III(a)-V(a) compounds to produce semiconductor devices |
DE2538325A1 (de) * | 1974-08-28 | 1976-03-11 | Western Electric Co | Verfahren zur herstellung von halbleiterbauelementen |
US4028146A (en) * | 1975-03-11 | 1977-06-07 | Bell Telephone Laboratories, Incorporated | LPE Technique for fabricating tapered optical couplers |
US4126930A (en) * | 1975-06-19 | 1978-11-28 | Varian Associates, Inc. | Magnesium doping of AlGaAs |
US4063974A (en) * | 1975-11-14 | 1977-12-20 | Hughes Aircraft Company | Planar reactive evaporation method for the deposition of compound semiconducting films |
US4147573A (en) * | 1977-04-05 | 1979-04-03 | Futaba Denshi Kogyo K. K. | Method of depositing III-V compounds on group IV element wafers by the cluster ion technique |
US4116733A (en) * | 1977-10-06 | 1978-09-26 | Rca Corporation | Vapor phase growth technique of III-V compounds utilizing a preheating step |
US4239584A (en) * | 1978-09-29 | 1980-12-16 | International Business Machines Corporation | Molecular-beam epitaxy system and method including hydrogen treatment |
US4426237A (en) | 1981-10-13 | 1984-01-17 | International Business Machines Corporation | Volatile metal oxide suppression in molecular beam epitaxy systems |
US4426569A (en) | 1982-07-13 | 1984-01-17 | The Perkin-Elmer Corporation | Temperature sensor assembly |
US4622093A (en) * | 1983-07-27 | 1986-11-11 | At&T Bell Laboratories | Method of selective area epitaxial growth using ion beams |
US4523051A (en) * | 1983-09-27 | 1985-06-11 | The Boeing Company | Thin films of mixed metal compounds |
US4833100A (en) * | 1985-12-12 | 1989-05-23 | Kozo Iizuka, Director-General Of Agency Of Industrial Science And Technology | Method for producing a silicon thin film by MBE using silicon beam precleaning |
US5537951A (en) * | 1994-01-14 | 1996-07-23 | Nec Corporation | Crystal growth method and apparatus therefor |
US6121061A (en) * | 1997-11-03 | 2000-09-19 | Asm America, Inc. | Method of processing wafers with low mass support |
US6284048B1 (en) | 1997-11-03 | 2001-09-04 | Asm America, Inc | Method of processing wafers with low mass support |
US9885123B2 (en) | 2011-03-16 | 2018-02-06 | Asm America, Inc. | Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow |
US10480095B2 (en) | 2011-03-16 | 2019-11-19 | Asm America, Inc. | System for rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow |
Also Published As
Publication number | Publication date |
---|---|
GB1270550A (en) | 1972-04-12 |
BE743687A (enrdf_load_stackoverflow) | 1970-05-28 |
NL6919180A (enrdf_load_stackoverflow) | 1970-06-30 |
DE1965258C3 (de) | 1979-06-21 |
NL168892C (nl) | 1982-05-17 |
FR2027188A1 (enrdf_load_stackoverflow) | 1970-09-25 |
NL168892B (nl) | 1981-12-16 |
SE361828B (enrdf_load_stackoverflow) | 1973-11-19 |
DE1965258B2 (de) | 1978-10-26 |
JPS4930557B1 (enrdf_load_stackoverflow) | 1974-08-14 |
DE1965258A1 (de) | 1970-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3615931A (en) | Technique for growth of epitaxial compound semiconductor films | |
US3751310A (en) | Germanium doped epitaxial films by the molecular beam method | |
US4146774A (en) | Planar reactive evaporation apparatus for the deposition of compound semiconducting films | |
US4368098A (en) | Epitaxial composite and method of making | |
US3664866A (en) | Composite, method for growth of ii{11 {14 vi{11 {0 compounds on substrates, and process for making composition for the compounds | |
US4404265A (en) | Epitaxial composite and method of making | |
US4213781A (en) | Deposition of solid semiconductor compositions and novel semiconductor materials | |
US3619283A (en) | Method for epitaxially growing thin films | |
EP0202329B1 (en) | Chemical beam deposition method | |
US3316130A (en) | Epitaxial growth of semiconductor devices | |
US4801557A (en) | Vapor-phase epitaxy of indium phosphide and other compounds using flow-rate modulation | |
US3551312A (en) | Vacuum evaporation deposition of group iii-a metal nitrides | |
US3139361A (en) | Method of forming single crystal films on a material in fluid form | |
US3666553A (en) | Method of growing compound semiconductor films on an amorphous substrate | |
US4642142A (en) | Process for making mercury cadmium telluride | |
US3441453A (en) | Method for making graded composition mixed compound semiconductor materials | |
GB1598051A (en) | Molecular-beam epitaxy | |
US4239584A (en) | Molecular-beam epitaxy system and method including hydrogen treatment | |
US4622083A (en) | Molecular beam epitaxial process | |
US3406048A (en) | Epitaxial deposition of gallium arsenide from an atmosphere of hydrogen and ga2h6+ascl3+ash3 vapors | |
US3172792A (en) | Epitaxial deposition in a vacuum onto semiconductor wafers through an in- teracttgn between the wafer and the support material | |
US3823043A (en) | Method of manufacturing semiconductor body | |
US3677228A (en) | Crystal growth apparatus | |
US4591408A (en) | Liquid phase growth of crystalline polyphosphide | |
US3337375A (en) | Semiconductor method and device |