US3615931A - Technique for growth of epitaxial compound semiconductor films - Google Patents

Technique for growth of epitaxial compound semiconductor films Download PDF

Info

Publication number
US3615931A
US3615931A US787470A US3615931DA US3615931A US 3615931 A US3615931 A US 3615931A US 787470 A US787470 A US 787470A US 3615931D A US3615931D A US 3615931DA US 3615931 A US3615931 A US 3615931A
Authority
US
United States
Prior art keywords
growth
accordance
gun
epitaxial
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US787470A
Inventor
John R Arthur Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Application granted granted Critical
Publication of US3615931A publication Critical patent/US3615931A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/017Clean surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/049Equivalence and options
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/065Gp III-V generic compounds-processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/072Heterojunctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/084Ion implantation of compound devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/15Silicon on sapphire SOS
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/158Sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/169Vacuum deposition, e.g. including molecular beam epitaxy

Definitions

  • the described process is a nonequilibrium 2,994,621 8/1961 Hugle et a1 148/174 X growth technique which permits the growth of epitaxial films 3,158,511 11/1964 Robillard 148/15 less than 1 micron in thickness at temperatures appreciably 3,172,778 3/1965 Guenther et al. 117/213 below those commonly employed in epitaxy.
  • FIG. 1 A first figure.
  • FIG. 2 /41 INVENTOR J. R. ARTHUR, JR.
  • This invention relates to a technique for the growth of epitaxial compound semiconductor films. More particularly, the present invention relates to a technique for the growth of epitaxial semiconductor films of Group Ill(a)-V(a) compounds of the Periodic Table of the Elements by a novel physical vapor growth procedure.
  • epitaxial films suitable in such applications have been grown by several techniques, the most popular being solution epitaxy, chemical vapor growth and physical vapor growth. Although such techniques have generally been satisfactory from a device standpoint, the need for a procedure permitting greater flexibility with respect to doping profiles combined with film thicknesses of the order of one micron or less has not been met. Additionally, a need has long existed for a nonequilibrium epitaxial growth procedure which would permit growth at temperatures appreciably below those conventionally employed.
  • III(a)-V(a) semiconductor compounds including mixed crystals, thereof, may be effected by providing vapors of Group "1(0) and V(a) elements at the substrate surface, an excess of Group V(a) element being present with respect to the III(a) element, thereby assuring that the entirety of the III(a) element will be consumed while the nonreacted V(a) excess is reflected.
  • the inventive technique involves forming an atomically clean substrate surface in a vacuum chamber, evacuating the chamber and directing at least one collimated molecular beam containing the constituent components of the desired crystalline material at the substrate for a time period sufficient to grow an epitaxial film of the required thickness.
  • the collimated molecular beams employed herein furnish not only the constituent components of the film but also the desired impurities, so permitting the altering of the composition at will and the production of abrupt changes in composition or impurity levels, such end being of particular interest in certain device applications in which either an abrupt PN junction is required or a ternary composition.
  • FIG. I is a front elevational view, partly in section, of a typical apparatus employed in the practice of the present invention.
  • FIG. 2 is a cross-sectional view of a cylindrical gun employed in the apparatus of FIG. 1.
  • FIG. I there is shown a vacuum chamber 11 having disposed therein a gun port 12 containing cylindrical guns 13 and 14, a sputtering port 15 containing a sputtering gun l6 and a substrate holder 17 connected to a ceramic insulator 18 by means of shaft 19.
  • Ceramic insulator 18 is connected by means of shaft 20 to a rotor 21 capable of effecting rotary motion of shafts l9 and 20. Also shown disposed within chamber 11 is a liquid nitrogen cooling shroud 22 and a collimating frame 23 having a collimating aperture 24. Substrate holder 17 is provided with an internal heater 25 and clips 26 and 27 for affixing a substrate member 28 thereto. Chamber 11 also includes an inlet 29 for the introduction of a sputtering gas from source 30 con trolled by valve 31 and an outlet 32 for evacuating the chamber by means of a pump 33.
  • FIG. 2 is a cross-sectional view of a typical cylindrical gun, such as 14, shown in FIG. 1.
  • Gun 14 typically comprises a refractory crucible 41 having a thermocouple well 42 and a thermocouple 43 inserted therein for the purpose of determining the temperature of the material contained therein.
  • the first step in the inventive technique involves selecting a substrate member (relatively dislocation free), obtained from commercial sources.
  • Suitable substrate members may be selected from among single crystal elemental and compound semiconductors as well as certain insulators manifesting lattice constants closely related to those of the desired epitaxial film.
  • Prime examples of substrate materials meeting these requirements are silicon, germanium, gallium arsenide, gallium phosphide, gallium arsenic phosphide, indium arsenide, indium phosphide, sapphire and the like.
  • the substrate member selected is initially polished by any conventional polishing technique for the purpose of removing impurities from the surface thereof.
  • An etchant such as a bromine-methanol or hydrogen peroxide-sulfuric acid solution may optionally be employed for the purpose of further purifying the substrate surface subsequent to polishing.
  • the cleaned substrate is placed in an apparatus of the type shown in FIG. 1 and the system baked for a time period ranging from 5 to 10 hours at a pressure within the range of l0 to 10" torr for the purpose of removing water vapor from the system.
  • a suitable inert sputtering gas such as argon is admitted to the vacuum chamber and sputtering initiated with the substrate member facing the sputtering gun.
  • Sputtering is continued for a time period ranging from I to 3 hours employing a sputtering voltage ranging from I00 to 250 volts with a current density within the range of I00 to 500 microamps for the purpose of removing several monolayers of material from the substrate so as to form an atomically clean surface thereon.
  • the substrate member is rotated so as to face the gun port of the apparatus, inert gas pumped out of the system and the background pressure then lowered to at least 5X10 torr and preferably to a value of the order of l l0 torr, thereby precluding the introduction of any deleterious components onto the substrate surface.
  • the next step in the process involves introducing liquid nitrogen to the cooling shroud and heating the substrate member to the growth temperature which ranges from 450-650 C. dependent upon the specific material to be grown, such range being dictated by considerations relating to surface diffusion.
  • the gun or guns employed in the system which have previously been filled with the requisite amounts of the constituent of the desired films to be grown, are heated to a temperature sufficient to vaporize the contents thereof to yield a molecular beam, that is, a stream of atoms manifesting velocity components in the same direction, in this case toward the substrate surface.
  • a molecular beam that is, a stream of atoms manifesting velocity components in the same direction, in this case toward the substrate surface.
  • the atoms of molecules reflected from the surface strike the cooled shroud and are condensed, thereby insuring that only atoms or molecules from the molecular beam impinge upon the surface.
  • the present invention relates to the growth of Group IIl(a)-V(a) semiconductor compounds and mixed crystals thereof.
  • the materials furnished to the gun or guns are either Group IIl(a)-V(a) compounds or Group Ill(a) elements.
  • a desired dopant may be added either to an independent gun or included with the lll(a)V() compound.
  • the amount of source materials furnished to the guns must be sufficient to provide an excess of the V(a) element with respect to the lIl(a) element.
  • the phosphorous-to-arsenic ratio in the vapor must be about four times the desired phosphorous-to-arsenic ratio in the bulk.
  • growth of the desired epitaxial film is effected by directing the molecular beam or beams at the collimator which functions to remove velocity components therein in directions other than those desired, thereby permitting the desired beam to pass through the collimating aperture to effect reaction at the substrate surface.
  • Growth is continued for a time period sufficient to yield an epitaxial film of the desired thickness, a feature of the subject technique residing in the growth of films appreciably less than one micron in thickness.
  • Diffusion of a desired dopant into the grown layer may be effected simultaneously with the growth of that layer or following growth by rotation of the substrate in such manner that it faces a gun port containing a doping gun.
  • composition ofthe grown layer can be altered at will.
  • ternary compounds of the type alluded to hereinabove can be grown by using three source beams and the value of x can be precisely controlled and altered at any time during growth by appropriate beam regulation.
  • EXAMPLE I This example describes a process for the growth of an epitaxial film of gallium arsenide upon a gallium arsenide substrate member.
  • a gallium arsenide substrate member evidencing few dislocations, obtained from commercial sources, and initially polished by conventional mechanical polishing techniques was inserted in an apparatus of the type shown in FIG. 1.
  • two guns were contained in the gun port, one gram of gallium arsenide and one-half gram of gallium being placed in the respective guns.
  • the vacuum chamber was evacuated to a pressure of the order of torr and the system baked at 250 C. for l2 hours.
  • the beams were focused upon the substrate surface for a period of 1 hour, so resulting in the growth of an epitaxial film of gallium arsenide upon the substrate 1 micron in thickness.
  • EXAMPLE III The procedure of example ll was repeated with the exception that the solitary gun contained 1 gram of gallium phosphide. Growth was continued for a period of 1 hour, so resulting in the growth of an epitaxial film of gallium phosphide upon the gallium arsenide substrate one-half micron in thickness.
  • EXAMPLE IV The procedure of example lll was repeated with the exception that a gallium phosphide substrate was employed. Growth was continued for a time period of approximately 1 hour, so resulting in the growth of an epitaxial film of gallium phosphide, one-half micron in thickness.
  • EXAMPLE V This example describes the growth of an epitaxial film of GaAs P
  • the procedure of example 1 was employed utilizing one gram of gallium phosphide and one gram of gallium arsenide in the respective guns.
  • the gallium phosphide gun was heated to a temperature of 1,212 K. and the gallium arsenide gun to a temperature of 1,140 K., heating being continued for a time period of approximately 2 hours during which a film of GaAs P 1 micron in thickness grew upon the substrate.
  • EXAMPLE VI The procedure of example I was repeated with the exception that a third gun was employed containing one-half gram of tellurium which was heated to a temperature of 400 C. during the operation of the procedure, so resulting in the formation of an N-type gallium arsenide epitaxial film, 1 micron in thickness.
  • a method for the growth of an epitaxial film of a Group lIl(a)-V() compound of the Periodic Table of the Elements upon a substrate surface at subatmospheric pressure which comprises focusing collimated molecular beams at least one of which comprises a lIl(a)V(a) compound of the desired epitaxial film upon a substrate surface, preheated to a temperature within the range of 450-650 C., for a time period sufficient to effect growth of a film of the desired thickness.
  • one gun contains gallium phosphide and the other contains gallium arsenide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Epitaxial growth of Group III(a)-V(a) semiconductor compound films is effected in an ultrahigh vacuum by directing collimated molecular beams at the surface of a suitable substrate member preheated to a temperature ranging from 450*-650* C. The described process is a nonequilibrium growth technique which permits the growth of epitaxial films less than 1 micron in thickness at temperatures appreciably below those commonly employed in epitaxy.

Description

United Mates Patent 1 1 3,615,931
72 Inventor John R. Arthur, Jr. 3,206,322 9/1965 Morgan.... 117 93.3 x Murray 1111111,]. 3,271,286 9 1966 Lepselter..... 204/192 211 Appl. No. 787,470 3,298,863 1 1967 McCusker 117 212 22 Filed Dec. 27, 1968 3,419,487 12/1968 Robbins et al. 204/192 X Patented L be t In t 6 OTHER REFERENCES [73] Asslgnee j g f f f WW8 (1138535011; R. P, Journal of Physics (Paris) 25 pp. 212- 217 Davey; J. E., and Pankey; T., Journal of Applied Physics 35, 54 TECHNIQUE FOR GROWTH OF EPITAXIAL 1 1- 3- 09, July, 1964.
COMPOUND SEMICONDUCTOR FILMS Davey; J. E., and Pankey; T., Applied Physics Letters 12, 11 Claims, 2 Drawing Figs. 21PP- 39,139 196 52 US. Cl 148/175, Davey; and Pankey; Journal Applied Physics 39 N .4, .1,941-48,M .1968. 23 204, 1 17 106, 1 17/212, 148 15, 204/192, 0 pp at 252/623 Primary Examiner-L. Dewayne Rutledge 51 1111. C1 110117/36, Assistant Examiner-W Saba 011, 31 3 23 1 1/00 Attorneys-R. J. Guenther and Edwin H. Cave [50] Field of Search 148/1.5,
204/192; 252/623; 23/204 ABSTRACT: Epitaxial growth of Group lll(a)-V(a) semiconductor compound films is effected in an ultrahigh vacuum by [56] References Clted directing collimated molecular beams at the surface of a suita- UNITED STATES PATENTS ble substrate member preheated to a temperature ranging 2,938,816 5/1960 Guenther 1 17/212 from 450650 C. The described process is a nonequilibrium 2,994,621 8/1961 Hugle et a1 148/174 X growth technique which permits the growth of epitaxial films 3,158,511 11/1964 Robillard 148/15 less than 1 micron in thickness at temperatures appreciably 3,172,778 3/1965 Guenther et al. 117/213 below those commonly employed in epitaxy.
ARGON PATENTED 26 ml 3,615,931
FIG.
FIG. 2 /41 INVENTOR J. R. ARTHUR, JR.
Bri
ATTORNEY TECHNIQUE FOR GROWTH OF EPITAXIAL COMPOUND SEMICONDUCTOR FILMS This invention relates to a technique for the growth of epitaxial compound semiconductor films. More particularly, the present invention relates to a technique for the growth of epitaxial semiconductor films of Group Ill(a)-V(a) compounds of the Periodic Table of the Elements by a novel physical vapor growth procedure.
The dynamic growth of the semiconductor industry and the sophistication of device technology over the past decade have created stringent demands upon materials from the standpoint of reliability and physical and electrical characteristics. In order to meet certain of these demands, workers in the art have focused their attention with increasing frequency upon epitaxial growth techniques. epitaxial Heretofore, epitaxial films suitable in such applications have been grown by several techniques, the most popular being solution epitaxy, chemical vapor growth and physical vapor growth. Although such techniques have generally been satisfactory from a device standpoint, the need for a procedure permitting greater flexibility with respect to doping profiles combined with film thicknesses of the order of one micron or less has not been met. Additionally, a need has long existed for a nonequilibrium epitaxial growth procedure which would permit growth at temperatures appreciably below those conventionally employed.
In accordance with the present invention, these needs have been realized by means of a novel physical vapor growth procedure wherein epitaxial growth is effected in an ultrahigh vacuum at temperatures ranging from 450-650 C. (which permits impurity profiles to be altered abruptly due to limited diffusion) the constituent components of the grown films being furnished to the substrate by collimated molecular beams.
The described technique is premised upon the discovery that Group IIl(a)-(a) elements contained in compound semiconductors are adsorbed upon the surface of single crystal semiconductors at varying rates, the V(a) elements typically being almost entirely reflected therefrom in the absence of III(a) elements. However, it has been determined that growth of stoichiometric III(a)-V(a) semiconductor compounds, including mixed crystals, thereof, may be effected by providing vapors of Group "1(0) and V(a) elements at the substrate surface, an excess of Group V(a) element being present with respect to the III(a) element, thereby assuring that the entirety of the III(a) element will be consumed while the nonreacted V(a) excess is reflected.
Briefly, the inventive technique involves forming an atomically clean substrate surface in a vacuum chamber, evacuating the chamber and directing at least one collimated molecular beam containing the constituent components of the desired crystalline material at the substrate for a time period sufficient to grow an epitaxial film of the required thickness. The collimated molecular beams employed herein furnish not only the constituent components of the film but also the desired impurities, so permitting the altering of the composition at will and the production of abrupt changes in composition or impurity levels, such end being of particular interest in certain device applications in which either an abrupt PN junction is required or a ternary composition.
The invention will be more readily understood by reference to the following detailed description taken in conjunction with the accompanying drawing wherein:
FIG. I is a front elevational view, partly in section, of a typical apparatus employed in the practice of the present invention; and
FIG. 2 is a cross-sectional view of a cylindrical gun employed in the apparatus of FIG. 1.
With reference now more particularly to FIG. I, there is shown a vacuum chamber 11 having disposed therein a gun port 12 containing cylindrical guns 13 and 14, a sputtering port 15 containing a sputtering gun l6 and a substrate holder 17 connected to a ceramic insulator 18 by means of shaft 19.
Ceramic insulator 18 is connected by means of shaft 20 to a rotor 21 capable of effecting rotary motion of shafts l9 and 20. Also shown disposed within chamber 11 is a liquid nitrogen cooling shroud 22 and a collimating frame 23 having a collimating aperture 24. Substrate holder 17 is provided with an internal heater 25 and clips 26 and 27 for affixing a substrate member 28 thereto. Chamber 11 also includes an inlet 29 for the introduction of a sputtering gas from source 30 con trolled by valve 31 and an outlet 32 for evacuating the chamber by means of a pump 33.
FIG. 2 is a cross-sectional view of a typical cylindrical gun, such as 14, shown in FIG. 1. Gun 14 typically comprises a refractory crucible 41 having a thermocouple well 42 and a thermocouple 43 inserted therein for the purpose of determining the temperature of the material contained therein.
For purposes of exposition, the present invention will be described in detail by reference to an illustrative example wherein the various operating parameters are given.
The first step in the inventive technique involves selecting a substrate member (relatively dislocation free), obtained from commercial sources. Suitable substrate members may be selected from among single crystal elemental and compound semiconductors as well as certain insulators manifesting lattice constants closely related to those of the desired epitaxial film. Prime examples of substrate materials meeting these requirements are silicon, germanium, gallium arsenide, gallium phosphide, gallium arsenic phosphide, indium arsenide, indium phosphide, sapphire and the like.
The substrate member selected is initially polished by any conventional polishing technique for the purpose of removing impurities from the surface thereof. An etchant such as a bromine-methanol or hydrogen peroxide-sulfuric acid solution may optionally be employed for the purpose of further purifying the substrate surface subsequent to polishing.
Next, the cleaned substrate is placed in an apparatus of the type shown in FIG. 1 and the system baked for a time period ranging from 5 to 10 hours at a pressure within the range of l0 to 10" torr for the purpose of removing water vapor from the system. Thereafter, a suitable inert sputtering gas such as argon is admitted to the vacuum chamber and sputtering initiated with the substrate member facing the sputtering gun. Sputtering is continued for a time period ranging from I to 3 hours employing a sputtering voltage ranging from I00 to 250 volts with a current density within the range of I00 to 500 microamps for the purpose of removing several monolayers of material from the substrate so as to form an atomically clean surface thereon. Then, the substrate member is rotated so as to face the gun port of the apparatus, inert gas pumped out of the system and the background pressure then lowered to at least 5X10 torr and preferably to a value of the order of l l0 torr, thereby precluding the introduction of any deleterious components onto the substrate surface. The next step in the process involves introducing liquid nitrogen to the cooling shroud and heating the substrate member to the growth temperature which ranges from 450-650 C. dependent upon the specific material to be grown, such range being dictated by considerations relating to surface diffusion.
Following, the gun or guns employed in the system, which have previously been filled with the requisite amounts of the constituent of the desired films to be grown, are heated to a temperature sufficient to vaporize the contents thereof to yield a molecular beam, that is, a stream of atoms manifesting velocity components in the same direction, in this case toward the substrate surface. The atoms of molecules reflected from the surface strike the cooled shroud and are condensed, thereby insuring that only atoms or molecules from the molecular beam impinge upon the surface.
As indicated, the present invention relates to the growth of Group IIl(a)-V(a) semiconductor compounds and mixed crystals thereof. Accordingly, the materials furnished to the gun or guns are either Group IIl(a)-V(a) compounds or Group Ill(a) elements. Additionally, a desired dopant may be added either to an independent gun or included with the lll(a)V() compound. For the purposes of the present invention, the amount of source materials furnished to the guns must be sufficient to provide an excess of the V(a) element with respect to the lIl(a) element. Similar considerations obtain with respect to the ternary compounds, such as GaAs P However, it has been found that in regard to this material the phosphorous-to-arsenic ratio in the vapor must be about four times the desired phosphorous-to-arsenic ratio in the bulk.
Thereafter, growth of the desired epitaxial film is effected by directing the molecular beam or beams at the collimator which functions to remove velocity components therein in directions other than those desired, thereby permitting the desired beam to pass through the collimating aperture to effect reaction at the substrate surface. Growth is continued for a time period sufficient to yield an epitaxial film of the desired thickness, a feature of the subject technique residing in the growth of films appreciably less than one micron in thickness. Diffusion of a desired dopant into the grown layer may be effected simultaneously with the growth of that layer or following growth by rotation of the substrate in such manner that it faces a gun port containing a doping gun.
it will be understood by those skilled in the art that the composition ofthe grown layer can be altered at will. Thus, for example, ternary compounds of the type alluded to hereinabove can be grown by using three source beams and the value of x can be precisely controlled and altered at any time during growth by appropriate beam regulation.
Several exampies of the present invention are given by way of illustration and are not to be construed as limitations, many variations being possible within the spirit and scope of the invention.
EXAMPLE I This example describes a process for the growth of an epitaxial film of gallium arsenide upon a gallium arsenide substrate member.
A gallium arsenide substrate member evidencing few dislocations, obtained from commercial sources, and initially polished by conventional mechanical polishing techniques was inserted in an apparatus of the type shown in FIG. 1. In the ap paratus actually employed, two guns were contained in the gun port, one gram of gallium arsenide and one-half gram of gallium being placed in the respective guns. Following, the vacuum chamber was evacuated to a pressure of the order of torr and the system baked at 250 C. for l2 hours. Following the baking procedure, 10 microns of argon were admitted to the system, the substrate rotated in such manner as to face the sputtering port and sputtering effected at 200 volts with a current of approximately 500 microamps for a period of 2 hours, thereby effecting the removal of several monolayers of material from the substrate surface. Then, the argon was pumped out of the system, the substrate member rotated so as to face the gun port and heated to a temperature of approximately 600 C., the background pressure of the system being lX 10 torr. At this time, liquid nitrogen was introduced to the cooling shroud and the guns heated, the gallium arsenide gun to a temperature of 1,250" K. and the gallium gun to l,300 K., thereby resulting in vaporization of the materials contained therein and the consequent flow of molecular beams toward the collimating frame which removed velocity components in the beams which were undesirable. The beams were focused upon the substrate surface for a period of 1 hour, so resulting in the growth of an epitaxial film of gallium arsenide upon the substrate 1 micron in thickness.
EXAMPLE II nide, it was necessary to TlSbUt one source material. Growth was continued fbr a time period of 1 hour, so resulting in the growth of a gallium arsenide epitaxial film upon the gallium arsenide substrate one-half micron in thickness.
EXAMPLE III The procedure of example ll was repeated with the exception that the solitary gun contained 1 gram of gallium phosphide. Growth was continued for a period of 1 hour, so resulting in the growth of an epitaxial film of gallium phosphide upon the gallium arsenide substrate one-half micron in thickness.
EXAMPLE IV The procedure of example lll was repeated with the exception that a gallium phosphide substrate was employed. Growth was continued for a time period of approximately 1 hour, so resulting in the growth of an epitaxial film of gallium phosphide, one-half micron in thickness.
EXAMPLE V This example describes the growth of an epitaxial film of GaAs P The procedure of example 1 was employed utilizing one gram of gallium phosphide and one gram of gallium arsenide in the respective guns. The gallium phosphide gun was heated to a temperature of 1,212 K. and the gallium arsenide gun to a temperature of 1,140 K., heating being continued for a time period of approximately 2 hours during which a film of GaAs P 1 micron in thickness grew upon the substrate.
EXAMPLE VI The procedure of example I was repeated with the exception that a third gun was employed containing one-half gram of tellurium which was heated to a temperature of 400 C. during the operation of the procedure, so resulting in the formation of an N-type gallium arsenide epitaxial film, 1 micron in thickness.
What is claimed is:
l. A method for the growth of an epitaxial film of a Group lIl(a)-V() compound of the Periodic Table of the Elements upon a substrate surface at subatmospheric pressure, which comprises focusing collimated molecular beams at least one of which comprises a lIl(a)V(a) compound of the desired epitaxial film upon a substrate surface, preheated to a temperature within the range of 450-650 C., for a time period sufficient to effect growth of a film of the desired thickness.
2. A method in accordance with claim 1 wherein said substrate possesses an atomically clean surface.
3. A method in accordance with claim 1 wherein said pressure is less than 5X10 torr.
4. A method in accordance with claim 1 wherein said molecular beam is formed by heating at least one gun member containing the constituent components of the desired epitaxial film to a temperature sufficient to vaporize said components and permitting the resultant vapor to impinge upon a collim ating frame.
5. A method in accordance with claim 4 wherein said gun member contains gallium arsenide.
6. A method in accordance with claim 4 wherein a pair of gun members are employed and in which one contains gallium arsenide and the other contains gallium.
7. A method in accordance with claim 4 wherein said gun member contains gallium phosphide.
8. A method in accordance with claim 6 wherein one gun contains gallium phosphide and the other contains gallium arsenide.
9. A method in accordance with claim 8 wherein the phosphorus-to-arsenic ratio in the vapor is four times the phosphorus-to-arsenic ratio in the bulk material.
10. A method in accordance with claim 4 wherein three guns are employed and in which one gun contains a dopant.
l l. A method in accordance with claim 10 wherein said do- UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. 3, 5,931 DATED October 26, 1971 INVENTOR(S) John R. Arthur, J1".
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 39, "10 should be "10 "10 should be l0 Column line 51, "5xlO should be -5xlO Column 2, line 52, "lxl0 should be -lxlO Column 3, line #6, "10 should he 10' Column 3, line 56, "lxl0 should be --lxl0 Column l, line 52, "5xl0 should be -5xl0 Signed and Scaled this Sevcnth Day Of June 1977 (SEAL) Arrest:
RUTH C. MASON C. MARSHALL DANN Arresting Officer (nmmixsiuner 0] Parent: and, Trademarks

Claims (10)

  1. 2. A method in accordance with claim 1 wherein said substrate possesses an atomically clean surface.
  2. 3. A method in accordance with claim 1 wherein said pressure is less than 5 X 10 8 torr.
  3. 4. A method in accordance with claim 1 wherein said molecular beam is formed by heating at least one gun member containing the constituent components of the desired epitaxial film to a temperature sufficient to vaporize said components and permitting the resultant vapor to impinge upon a collimating frame.
  4. 5. A method in accordance with claim 4 wherein said gun member contains gallium arsenide.
  5. 6. A method in accordance with claim 4 wherein a pair of gun members are employed and in which one contains gallium arsenide and the other contains gallium.
  6. 7. A method in accordance with claim 4 wherein said gun member contains gallium phosphide.
  7. 8. A method in accordance with claim 6 wherein one gun contains gallium phosphide and the other contains gallium arsenide.
  8. 9. A method in accordance with claim 8 wherein the phosphorus-to-arsenic ratio in the vapor is four times the phosphorus-to-arsenic ratio in the bulk material.
  9. 10. A method in accordance with claim 4 wherein three guns are employed and in which one gun contains a dopant.
  10. 11. A method in accordance with claim 10 wherein said dopant is an N-type material.
US787470A 1968-12-27 1968-12-27 Technique for growth of epitaxial compound semiconductor films Expired - Lifetime US3615931A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US78747068A 1968-12-27 1968-12-27

Publications (1)

Publication Number Publication Date
US3615931A true US3615931A (en) 1971-10-26

Family

ID=25141584

Family Applications (1)

Application Number Title Priority Date Filing Date
US787470A Expired - Lifetime US3615931A (en) 1968-12-27 1968-12-27 Technique for growth of epitaxial compound semiconductor films

Country Status (8)

Country Link
US (1) US3615931A (en)
JP (1) JPS4930557B1 (en)
BE (1) BE743687A (en)
DE (1) DE1965258C3 (en)
FR (1) FR2027188A1 (en)
GB (1) GB1270550A (en)
NL (1) NL168892C (en)
SE (1) SE361828B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751310A (en) * 1971-03-25 1973-08-07 Bell Telephone Labor Inc Germanium doped epitaxial films by the molecular beam method
US3839084A (en) * 1972-11-29 1974-10-01 Bell Telephone Labor Inc Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds
US3862857A (en) * 1972-12-26 1975-01-28 Ibm Method for making amorphous semiconductor thin films
US3865646A (en) * 1972-09-25 1975-02-11 Bell Telephone Labor Inc Dielectric optical waveguides and technique for fabricating same
US3865625A (en) * 1972-10-13 1975-02-11 Bell Telephone Labor Inc Molecular beam epitaxy shadowing technique for fabricating dielectric optical waveguides
US3928092A (en) * 1974-08-28 1975-12-23 Bell Telephone Labor Inc Simultaneous molecular beam deposition of monocrystalline and polycrystalline III(a)-V(a) compounds to produce semiconductor devices
US4013533A (en) * 1974-03-27 1977-03-22 Agence Nationale De Valorisation De La Recherche (Anvar) Volatilization and deposition of a semi-conductor substance and a metallic doping impurity
US4028146A (en) * 1975-03-11 1977-06-07 Bell Telephone Laboratories, Incorporated LPE Technique for fabricating tapered optical couplers
US4063974A (en) * 1975-11-14 1977-12-20 Hughes Aircraft Company Planar reactive evaporation method for the deposition of compound semiconducting films
US4116733A (en) * 1977-10-06 1978-09-26 Rca Corporation Vapor phase growth technique of III-V compounds utilizing a preheating step
US4126930A (en) * 1975-06-19 1978-11-28 Varian Associates, Inc. Magnesium doping of AlGaAs
US4147573A (en) * 1977-04-05 1979-04-03 Futaba Denshi Kogyo K. K. Method of depositing III-V compounds on group IV element wafers by the cluster ion technique
US4239584A (en) * 1978-09-29 1980-12-16 International Business Machines Corporation Molecular-beam epitaxy system and method including hydrogen treatment
US4523051A (en) * 1983-09-27 1985-06-11 The Boeing Company Thin films of mixed metal compounds
US4622093A (en) * 1983-07-27 1986-11-11 At&T Bell Laboratories Method of selective area epitaxial growth using ion beams
US4833100A (en) * 1985-12-12 1989-05-23 Kozo Iizuka, Director-General Of Agency Of Industrial Science And Technology Method for producing a silicon thin film by MBE using silicon beam precleaning
US5537951A (en) * 1994-01-14 1996-07-23 Nec Corporation Crystal growth method and apparatus therefor
US6121061A (en) * 1997-11-03 2000-09-19 Asm America, Inc. Method of processing wafers with low mass support
US9885123B2 (en) 2011-03-16 2018-02-06 Asm America, Inc. Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524447U (en) * 1975-06-24 1977-01-12
JPS5318623A (en) * 1976-08-05 1978-02-21 Nobuyuki Toyoda Method of producing dry readyymixed concrete from waste readyymixed concrete
GB1574525A (en) * 1977-04-13 1980-09-10 Philips Electronic Associated Method of manufacturing semiconductor devices and semiconductor devices manufactured by the method
CA1102013A (en) * 1977-05-26 1981-05-26 Chin-An Chang Molecular-beam epitaxy system and method including hydrogen treatment
GB2030551B (en) * 1978-09-22 1982-08-04 Philips Electronic Associated Growing a gaas layer doped with s se or te
EP0031180A3 (en) * 1979-12-19 1983-07-20 Philips Electronics Uk Limited Method of growing a doped iii-v alloy layer by molecular beam epitaxy and a semiconductor device comprising a semiconductor substrate bearing an epitaxial layer of a doped iii-v alloy grown by such a method
NL8300780A (en) * 1983-03-03 1984-10-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE WITH A MOLECULAR BUNDLE TECHNIQUE
US4550411A (en) * 1983-03-30 1985-10-29 Vg Instruments Group Limited Sources used in molecular beam epitaxy

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751310A (en) * 1971-03-25 1973-08-07 Bell Telephone Labor Inc Germanium doped epitaxial films by the molecular beam method
US3865646A (en) * 1972-09-25 1975-02-11 Bell Telephone Labor Inc Dielectric optical waveguides and technique for fabricating same
US3865625A (en) * 1972-10-13 1975-02-11 Bell Telephone Labor Inc Molecular beam epitaxy shadowing technique for fabricating dielectric optical waveguides
US3839084A (en) * 1972-11-29 1974-10-01 Bell Telephone Labor Inc Molecular beam epitaxy method for fabricating magnesium doped thin films of group iii(a)-v(a) compounds
US3862857A (en) * 1972-12-26 1975-01-28 Ibm Method for making amorphous semiconductor thin films
US4013533A (en) * 1974-03-27 1977-03-22 Agence Nationale De Valorisation De La Recherche (Anvar) Volatilization and deposition of a semi-conductor substance and a metallic doping impurity
US3928092A (en) * 1974-08-28 1975-12-23 Bell Telephone Labor Inc Simultaneous molecular beam deposition of monocrystalline and polycrystalline III(a)-V(a) compounds to produce semiconductor devices
DE2538325A1 (en) * 1974-08-28 1976-03-11 Western Electric Co METHOD FOR MANUFACTURING SEMICONDUCTOR COMPONENTS
US4028146A (en) * 1975-03-11 1977-06-07 Bell Telephone Laboratories, Incorporated LPE Technique for fabricating tapered optical couplers
US4126930A (en) * 1975-06-19 1978-11-28 Varian Associates, Inc. Magnesium doping of AlGaAs
US4063974A (en) * 1975-11-14 1977-12-20 Hughes Aircraft Company Planar reactive evaporation method for the deposition of compound semiconducting films
US4147573A (en) * 1977-04-05 1979-04-03 Futaba Denshi Kogyo K. K. Method of depositing III-V compounds on group IV element wafers by the cluster ion technique
US4116733A (en) * 1977-10-06 1978-09-26 Rca Corporation Vapor phase growth technique of III-V compounds utilizing a preheating step
US4239584A (en) * 1978-09-29 1980-12-16 International Business Machines Corporation Molecular-beam epitaxy system and method including hydrogen treatment
US4622093A (en) * 1983-07-27 1986-11-11 At&T Bell Laboratories Method of selective area epitaxial growth using ion beams
US4523051A (en) * 1983-09-27 1985-06-11 The Boeing Company Thin films of mixed metal compounds
US4833100A (en) * 1985-12-12 1989-05-23 Kozo Iizuka, Director-General Of Agency Of Industrial Science And Technology Method for producing a silicon thin film by MBE using silicon beam precleaning
US5537951A (en) * 1994-01-14 1996-07-23 Nec Corporation Crystal growth method and apparatus therefor
US6121061A (en) * 1997-11-03 2000-09-19 Asm America, Inc. Method of processing wafers with low mass support
US6284048B1 (en) 1997-11-03 2001-09-04 Asm America, Inc Method of processing wafers with low mass support
US9885123B2 (en) 2011-03-16 2018-02-06 Asm America, Inc. Rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow
US10480095B2 (en) 2011-03-16 2019-11-19 Asm America, Inc. System for rapid bake of semiconductor substrate with upper linear heating elements perpendicular to horizontal gas flow

Also Published As

Publication number Publication date
NL6919180A (en) 1970-06-30
NL168892C (en) 1982-05-17
DE1965258B2 (en) 1978-10-26
DE1965258C3 (en) 1979-06-21
JPS4930557B1 (en) 1974-08-14
NL168892B (en) 1981-12-16
SE361828B (en) 1973-11-19
GB1270550A (en) 1972-04-12
DE1965258A1 (en) 1970-07-16
FR2027188A1 (en) 1970-09-25
BE743687A (en) 1970-05-28

Similar Documents

Publication Publication Date Title
US3615931A (en) Technique for growth of epitaxial compound semiconductor films
US3751310A (en) Germanium doped epitaxial films by the molecular beam method
US3956032A (en) Process for fabricating SiC semiconductor devices
US4368098A (en) Epitaxial composite and method of making
US4146774A (en) Planar reactive evaporation apparatus for the deposition of compound semiconducting films
US4404265A (en) Epitaxial composite and method of making
US3979271A (en) Deposition of solid semiconductor compositions and novel semiconductor materials
US3619283A (en) Method for epitaxially growing thin films
EP0202329B1 (en) Chemical beam deposition method
JPH0834180B2 (en) Method for growing compound semiconductor thin film
US3316130A (en) Epitaxial growth of semiconductor devices
US3139361A (en) Method of forming single crystal films on a material in fluid form
US3666553A (en) Method of growing compound semiconductor films on an amorphous substrate
US4801557A (en) Vapor-phase epitaxy of indium phosphide and other compounds using flow-rate modulation
US3551312A (en) Vacuum evaporation deposition of group iii-a metal nitrides
US3441453A (en) Method for making graded composition mixed compound semiconductor materials
GB1598051A (en) Molecular-beam epitaxy
US4622083A (en) Molecular beam epitaxial process
US3406048A (en) Epitaxial deposition of gallium arsenide from an atmosphere of hydrogen and ga2h6+ascl3+ash3 vapors
US3172792A (en) Epitaxial deposition in a vacuum onto semiconductor wafers through an in- teracttgn between the wafer and the support material
US4239584A (en) Molecular-beam epitaxy system and method including hydrogen treatment
US3823043A (en) Method of manufacturing semiconductor body
US3677228A (en) Crystal growth apparatus
US4591408A (en) Liquid phase growth of crystalline polyphosphide
EP0285834B1 (en) Allyltellurides and their use in the mocvd growth of group ii-vi epitaxial films