US3614307A - Discharge lamp modulation system - Google Patents
Discharge lamp modulation system Download PDFInfo
- Publication number
- US3614307A US3614307A US766784A US3614307DA US3614307A US 3614307 A US3614307 A US 3614307A US 766784 A US766784 A US 766784A US 3614307D A US3614307D A US 3614307DA US 3614307 A US3614307 A US 3614307A
- Authority
- US
- United States
- Prior art keywords
- signal
- discharge
- discharge lamp
- lamps
- lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/405—Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
- H04N1/4055—Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a clustered dots or a size modulated halftone pattern
- H04N1/4056—Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a clustered dots or a size modulated halftone pattern the pattern varying in one dimension only, e.g. dash length, pulse width modulation [PWM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/40025—Circuits exciting or modulating particular heads for reproducing continuous tone value scales
- H04N1/40037—Circuits exciting or modulating particular heads for reproducing continuous tone value scales the reproducing element being a laser
Definitions
- US. Cl 178/6, ABSTRACT A discharge lamp modulation system in which a 178/66 R, 178/7.6 signal such as a picture signal is amplitude-modulated or Int. Cl H04n 1/22, pulsed with a frequency higher than the frequency of the pic- H04n 1/40 ture signal, and the converted or modulated signal is used to Field of Search 178/6,6.6 energize a high-brightness discharge lamp such as a xenon R, 6.7 R, 6.7 A, 7.1, 7.2, 7.6, DIG. 27; 250/199; discharge lamp for obtaining an optical reproduced signal 332/751, 3 which is an exact reproduction of the original signal.
- a high-brightness discharge lamp such as a xenon R, 6.7 R, 6.7 A, 7.1, 7.2, 7.6, DIG. 27; 250/199
- discharge lamp for obtaining an optical reproduced signal 332/751, 3 which is an exact reproduction of the original signal.
- An error occurs generally between the waveform of an electrical signal input and the waveform of an optical signal output when a discharge lamp such as a xenon short are lamp or mercury-vapor discharge lamp is employed for the modulation of light.
- a discharge lamp such as a xenon short are lamp or mercury-vapor discharge lamp is employed for the modulation of light.
- the above error is attributable to the discharge characteristics of the luminous discharge lamp and manifests the defeet that a picture reproduced at the receiver of a facsimile or like system of telephotography involves a tone different from that of the original picture or a tailing, resulting in an undesirable reduction in the quality and property of the reproduced picture.
- Another object of the present invention is to provide a modulation system of the above character which is adapted for amplitude modulation.
- a further object of the present invention is to provide a modulation system of the above character which is adapted for pulse modulation.
- a still further object of the present invention is to provide a modulation system which can be utilized in a color facsimile system so that three xenon lamps can be triggered to energize simultaneously by a single manipulation.
- FIG. 1 is a schematic diagram of an embodiment of the discharge tube modulation system according to the present inventron; I
- FIG. 2a and 2b, FIGS. 3a and 3b, and FIGS. 40 through 4d are graphic representations of various waveforms for the illustration of the operation of the system according to the present invention as compared with the operation of a prior art system of this kind;
- FIG. 5 is a circuit diagram of another embodiment of the discharge lamp modulation system according to thepresent invention.
- FIGS. 6a through 6e are graphic representations of waveforms at various parts of the circuit shown in FIG. 5;
- FIG. 7 is a graphic illustration of the operating characteristics of the circuit shown in FIG. 5.
- FIG. 8 is a circuit diagram of a power supply unit in a further embodiment of the discharge lamp modulation system according to the present invention.
- an original picture to be transmitted is wrapped around a cylindrical member or revolving drum 1 which is illuminated with light coming from a source of light 2.
- a photoelectric means 3 is disposed adjacent to the drum 1 so as to receive the light reflected back from a specific point of the original picture carried by the drum 1.
- the output from the photoelectric means 3 is supplied to a ring modulator 4 for amplitude modulation.
- the amplitude-modulated signal is transmitted by way of a transmission path 5 which may be a wired path such as a telephone line or a wireless path employ" ing a radio wave in the form of a television signal or stereosignal or an independent radio wave.
- the signal received at the receiving end is detected by a detector means 6, the detected output delivered from the detector means 6 being supplied to a means 7 which energizes a high-brightness luminous discharge tube 8 such as a xenon lamp while effecting the modulation control of the latter.
- the optical output from the discharge lamp 8 is passed through an optical system 9 and is reflected by an oscillating mirror 10 to be recorded on a recording sheet 11.
- a signal havinga waveform 3' received by the photoelectric means 3 is amplitude-modulated by the ring modulator 4 to appear as a waveform 4' which is then sent to the receiving end by way of the transmission path 5.
- the signal is detected by the detector means 6 to appear as a detected output having a waveform 6', and the detected output drives the means 7 to energize the high-brightness luminous discharge lamp 8 to effect the modulation control thereof.
- the optical output 8' delivered from the discharge lamp 8 is proportional to the output waveform 6' delivered from the detector means 6 and has an envelope which coincides with the waveform 3'.
- the optical output 8' from the discharge lamp 8 is passed through the optical system 9 and is reflected by the oscillating mirror 10 to produce a spot 12 on the recording sheet 11 at a position corresponding to a point on the original picture to be transmitted.
- the oscillating mirror 10 is caused to oscillate in one direction and another in synchronism with one revolution of the drum so that the moving beam of light can sweep across the recording sheet II in exact coincidence with the subscanning speed at the transmitter.
- the original picture can exactly be reproduced on the recording sheet I l.
- the chief aim of the present invention is to have an exactly and directly proportional relationship between the waveform 3' and the envelope of the optical output 8' from the highbrightness luminous discharge lamp 8.
- the input has a waveform as shown in FIG. 2a.
- the optical output from the discharge lamp such as a xenon discharge lamp has a waveform as shown in FIG. 21;. That is, the optical output has such a nature that an abrupt luminescence takes place at the rising portion of a waveform with which luminescence should persist over a certain period, and the Iuminescence decreases transiently in about 20 msec. and does not show any appreciable increase thereafter.
- the waveform seen in FIG. 2b differs conspicuously from the transmitted waveform seen in FIG. 2a and can not therefore be used in the existing form.
- FIG. 3b A method for overcoming the above drawback is shown in FIG. 3.
- the resultant waveform is free from an abrupt change in its rising portion which is sufficiently made dull.
- the undesirable rising characteristic seen in FIG. 2b can be obviated and the reduction in the vicinity of 20 msec. is not so appreciable.
- this method has the disadvantage of reducing the high-frequency components of an original picture to be transmitted, which is followed by deterioration of the resolution.
- the present invention overcoming the prior defect proposes a novel method according to which a waveform as shown in FIG. 4a is subjected to modulation by a carrier wave, and the carrier wave which is left to give a waveform as shown in FIG. 4b or 4c is used to energize a discharge lamp such as a xenon discharge lamp so as to obtain an output which takes the waveform of FIG. 40 again.
- This method is advantageous in that any reduction in the optical output at its rising portion as seen in FIG. 2b does not occur. Since the luminescent characteristic of the lamp can be fully developed and steep pulses of light can thereby be obtained, the quantity of the optical output does not show an appreciable reduction even though the carrier wave is left in the signal. Furthermore, any practical inconvenience would not be caused when the carrier wave is selected to have a frequency such that there are more than l0 pulses per mm. of a reproduced picture.
- the system comprises a DC power supply 13, a high-voltage generator means 14 for igniting a lamp, a relay 16, an arc discharge luminous lamp 17 such as a xenon lamp connected to the high-voltage generator means 14, and a variable resistor 20 connected at one of its terminals with the luminous lamp 17 through a resistor 18.
- the other terminal of the variable resistor 20 is grounded.
- a switch 19 is connected in parallel with the variable resistor 20. The switch 19 is connected mechanically through the relay 16 with a starting switch for the high-voltage generator means 14 for interlocked operation with the starting switch 15.
- the system comprises further a transistor 21 connected in parallel with the variable resistor 20, a signal input terminal 22, a sawtooth waveform generator or triangular waveform generator 27, an adder 23 for adding the signal from the sawtooth waveform generator 27 to a signal supplied tothe input terminal 22, a variable resistor 25 connected in parallel with a DC power supply 26, and a resistor 24 connected between the variable resistor 25 and the adder 23.
- a slicer 28 is connected with the adder 23 for slicing the output from the adder 23.
- a wave shaper 29 is connected with the slicer 28 and its output is supplied to the base of the transistor 21.
- the circuit shown in FIG. 5 operates in a manner as,
- a signal having a waveform as, for example, shown in FIG. 6a appearing at the input terminal 22 is supplied to theadder 23 where the signal is added to the output from the sawtooth waveform generator 27, which has a waveform as shown in FIG. 6b, so that a signal having a waveform as shown in FIG. 6c is thereby obtained.
- E represents the DC bias applied by the DC power supply 26.
- the slicer 28 the signal shown in FIG. 6 c is sliced at levels I5. andE 'The sliced signal is subjected to wave shaping in the wave shaper 29 to appear as a pulse-width modulated signal having a waveform as shown in FIG. 6d, which is supplied to the base of the transistor 21.
- the transistor 21 conducts in response to the pulses existing in the signal and is cut off in response to the absence of the pulses.
- the starting switch 15 When now the starting switch 15 is urged to its closed position, a high-voltage generated by the high-voltage generator means 14 is applied to the discharge lamp 17, and at the same time, the relay 16 is energized to urge the switch 19 to its closed position.
- the current for the discharge lamp 17 is solely limited by the resistor 18 so that a large starting current is supplied to the discharge lamp 17 to initiate an arc discharge in the lamp 17.
- the relay 16 In response to the arc discharge taking place in the discharge lamp 17, the relay 16 is deenergized to open the switch 19.
- a series circuit of the resistors l8 limits now the current to be supplied to the discharge lamp 17 whose discharge current is thereby reduced.
- a bright luminescence occurs in the discharge lamp 17 when the resistor 20 is short-circuited thereacross, while a dark luminescence occurs in the discharge lamp 17 when the resistor 20 is not short-circuited thereacross.
- the discharge lamp 17 requires a minimum holding current in order that its luminous state can be sustained, and any reduction in the discharge current from the minimum results in arc extension whereby modulation is ceased. Therefore, I, must naturally be larger than the holding current, but an excessive increase in the value of I, is undesirable since the degree of modulation of light is thereby reduced. Further, the luminous discharge at a low current density in the vicinity of the holding current is generally unstable, and persistence of such an unstable state for a long period of time may sometimes result in extinction of the arc. Because of the above fact, persistence of a no-signal state as shown by a period p-q in FIG. 6a has been undesirable in a conventional system of amplitude modulation, since the arc becomes unstable during this period. A suitable means for stabilizing the circuit is inevitably required in the conventional system in order to continuously effect a stable discharge.
- the embodiment of the present invention shown in FIG. 5 comprises a means for applying a suitable bias E, as seen in FIG. 6c, whereby to adjust the slicing levels E, and B, so that the tip portions of the FIG. 7 shows the discharge current-discharge voltage 7 sawtooth waveform can be sliced even in the absence of any signal and a pulse current consisting of a train of slender pulses having the repetition period T of the sawtooth waveform can continuously flow across the discharge lamp 17 during the no-signal period p-q.
- the luminous discharge can remarkably be stabilized since the discharge lamp 17 is energized by the slender pulses as well as by the DC component even in the no-signal period.
- the pulse width t and period T it is possible to reduce the DC component I, for. sustaining the discharge and the luminescence can stably be maintained without substantially the aid of the DC component.
- the DC component I can be regulated by the variable resistor 20 in FIG. 5.
- the embodiment shown in FIG. 5 is further advantageous in that a saving in the power consumption in the section including the transistor 21 can be realized since the transistor 21 participates only in the switching operation.
- the power supply unit comprises a plug 30 connectable with a commercial power supply.
- the plug 30 is connected through a fuse 31 and a switch 32 with a rectifier circuit 33 for obtaining a DC output and further through a switch 34 with a transformer 35.
- An airgap 36 is disposed in parallel with the secondary winding of the transformer 35.
- a series circuit including a capacitor 37 and the primary windings of transfonners 38, 39 and 40 is connected in series with the secondary winding of the transformer 35.
- the secondary windings of the transformers 38, 39 and 40 are connected at one terminal thereof with one terminal of respective discharge lamps 41, 42 and 43, while these secondary windings are connected at the other terminal thereof with a common terminal 44 which is connected with a movable blade of a switch 45.
- the switch 45 has two stationary contacts b and m, the latter contact m being connected with the output terminal of the rectifier circuit 33.
- the switch 45 takes normally such a position that the movable blade is urged to contact the stationary contact m by a spring, but the movable blade is urged into contact with the other stationary contact b when a current flows across a coil 46.
- Many switches of similar structure appearing in the later description are operative in the same manner as switch 45.
- the discharge lamps 41, 42 and 43 are grounded at the other terminal thereof through respective series circuits of resistors 47, 48; 49, 50; and 51, 52.
- Transistors 53, 54 and 55 are connected in parallel with the respective resistors 48, 50 and 52.
- Modulated red, blue and green signals are supplied to terminals 56, 57 and 58 connected to the bases of the transistors 48, 50 and 52, respectively. These signals have a waveform as shown in FIG. 6d.
- the connection point between the resistors 47 and 48 is connected directly to a stationary contact m of a switch 59, the connection point between the resistors 49 and 50 to a stationary contact m of a switch 60, and the connection point between the resistors 51 and 52 to a stationary contact m of a switch 61.
- the other stationary contacts b of all these switches 59, 60 and 61 are in the open position and their movable blades are grounded.
- the contact m of the switch 59 is further connected with the tenninal 44.
- a stationary contact b of a switch 62 is connected with the terminal 44.
- the switch 62 has its movable blade connected with a stationary contact b of a switch 63, which has its movable blade connected with a stationary contact b of a switch 64.
- the other stationary contacts m of all these switches 62, 63 and 64 are in their open positions.
- Driving coils 65, 66 and 67 are associated with the sets of switches 62, 59; 63, 60; and 64, 61, respectively. These coils 65, 66 and 67 are grounded at one terminal thereof and are connected at the other terminal thereof with the other terminal of the respective discharge lamps 41, 42 and 43.
- the terminal 44 is further connected with a stationary contact m of a switch 68 which has its movable blade connected with capacitors 71 and 72 through respective resistors 69 and 70.
- the capacitors 71 and 72 are grounded at the other terminal thereof.
- a series circuit of a resistor 73 and a coil 74 is connected in parallel with the capacitor 71, while the coil 46 is connected in parallel with the capacitor 72.
- the coil 74 is arranged to drive the switch 34 so that the switch 34 can be changed over in response to a flow of driving current through the coil 74.
- a resistor 76 is connected in series with a driving coil 75 for the switch 68, and the series circuit of the resistor 76 and the coil 75 is connected in parallel with a capacitor 77.
- the capacitor 77 is grounded at one terminal thereof and is connected at the other terminal thereof with the movable blade of the switch 64 through a resistor 78. Since the time constant circuit consisting of the resistor 70 and the capacitor 72 has a relatively large time constant, a relatively long time T is required before the switch 45 is changed over after driving current starts to flow through the coil 46. However, the switches 34 and 68 are adapted to be changed over with a time shorter than the time T. Alternatively, the elements 69, 71, 73, 74 and others may be, suitably selected and combined with one another so that the movable blade of the switch 34 can be urged and kept in contact with the stationary contact b for only a fixed period shorter than T after a voltage is applied to the terminal 44.
- the circuit shown in FIG. 8 operates in a manner as described below.
- a voltage rectified by the rectifier circuit 33 appears at the terminal 44.
- This voltage is applied across the switch 68 to supply a driving current through the coils 46 and 74.
- the driving current flows quickly through the coil 74 thereby to close the switch 34.
- the closure of the switch 34 energizes the transformer 35 with the result that a high-frequency discharge takes place across the airgap 36 thereby energizing the transformers 38, 39 and 40 through the capacitor 37 and generating a high voltage of the order of several kv., across the secondary windings of these transformers.
- the discharge lamps 41, 42 and 43 are energized simultaneously.
- the resistors 48, 50 and 52 having a high resistance are short-circuited by the action of the respective switches 59, 60 and 61 so that a large current is supplied to the discharge lamps 41, 42 and 43.
- the coils 65, 66 and 67 are excited due to an increase in the terminal voltage of the resistors 47, 49 and 51, and the switches 62, 63, 64, 59, 60 and 61 are thereby changed over from the previous position.
- the resistors 48, 50 and 52 are released from the state of shortcircuit thereacross.
- the short-circuit of the resisters 48, 50 and 52 is henceforth controlled by the on-off of the transistors 53, 54 and 55 in response to the appearance of the pulse signals at the terminals 56, 57 and 58, with the result that modulated light is emitted from the discharge lamps 41, 42 and 43.
- An electrical discharge modulation system comprising a high-brightness discharge lamp; means maintaining said discharge lamp in a preliminary discharge state, including means for supplying a discharge sustaining current to said discharge lamp; means for sampling an input signal having a varying amplitude including means for generating a sampling signal having a frequency higher than the frequency of said input signal; means forming a pulse signal-representative of the sampled amplitudes of said input signal; and means employing said pulse signal for lighting said discharge lamp for pulse widths substantially equal to that of said pulse signal.
- pulse signal forming means comprises means for amplitude modulating, by said input signal, a carrier signal of a higher frequency than that of said input signal, and means forming said pulse signal from the resulting amplitude modulated signal.
- pulse signal forming means comprises means for pulse width modulating a carrier signal modulated by said input signal.
- An electrical discharge modulation system further comprising means for maintaining said discharge sustaining current at a relatively low value and means for stabilizing the maintenance of a preliminary discharge in the absence of an input signal, including means exciting said discharge lamp with a sequence of pulses of relatively small pulse width.
- a discharge lamp modulation system comprising a revolving drum having an original picture to be transmitted wrapped around the surface thereof, a light source for directing a beam of light to said drum, photoelectric means for receiving the light reflected back from said original picture carried by said drum, means for amplitude modulating, by the output of said photoelectric means, a carrier signal of a frequency higher than the frequency of said output, means for detecting the output of said modulating means, a highbrightness discharge lamp energized by the output from said detector means, an oscillating mirror for receiving the light emerging from said discharge lamp, and a recording sheet for recording the light reflected from said oscillating mirror.
- An electrical discharge lamp modulation system comprising a high-brightness discharge lamp; means for supplying a discharge sustaining current to said lamp, including a DC power source connected to one terminal of said lamp; means for applying a high voltage to said lamp for lighting it, includswitch for initiating the operation of said lamp; relay means urged with the operation of said starting switch to close said switch means-means for pulse width modulating a carrier signal modulated by said input signal at a frequency higher than that of said input signal; and means for applying the resulting pulse width modulated signal to the base of said switching transistor.
- a discharge lamp modulation system comprising a plurality of high-brightness discharge lamps; pulse signal forming means controlling the lighting state of said respective lamps, including means for sampling respective input signals at a repetition rate higher than the frequencies of said input signals; means for generating a discharge sustaining voltage on the connection of said system with a power supply; means for applying a starting high voltage to said lamps on the connection of said system with said power supply; means preventing subsequent generation of said starting high voltage when all of said lamps have been ignited, including means for controlling said high voltage applying means; and means for deenergizing said ignited lamps when at least one of said lamps fails to become ignited, said deenergizing means generating a further starting high voltage.
- a discharge lamp modulation system comprising a plurality of high-brightness discharge lamps, means for sampling the respective input signals at a repetition rate higher than the frequencies of said input sign air; and forming respective corresponding pulse signals to thereby control the respective lighting states of said lamps, means for imparting a discharge sustaining voltage to said lamps on the connection of the system with a power supply, means for applying a starting high voltage to said lamp, means operative by detecting the generation of said discharge sustaining voltage to set said high voltage applying means enable to ignite all the lamps simultaneously, means for temporarily preventing the discharge sustaining voltage from being imparted to said sustaining voltage de' tection means by detecting the nonignition of at least one of said lamps, and means for ceasing the operation of said high voltage applying means by sensing the ignition of all the lamps.
- An electrical discharge modulation system comprising a high-brightness discharge lamp; means maintaining said discharge lamp in a preliminary discharge state, including means for supplying a discharge sustaining current to said discharge lamp; means for pulse width modulating a carrier signal modulated by an input signal, including means for sam pling said modulated carrier signal at a repetition rate higher than the frequency of said input signal; and means employing said pulse signal for lighting said discharge lamp for pulse widths substantially equal to that of said pulse signal; wherein said pulse width modulation means comprises means for superposing upon said input signal a sawtooth waveform signal of a frequency higher than that of said input signal, and means for slicing the resulting superposed signal at a signal level beneath the apex of said sawtooth signal.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
- Light Sources And Details Of Projection-Printing Devices (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6709367 | 1967-10-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3614307A true US3614307A (en) | 1971-10-19 |
Family
ID=13334909
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US766784A Expired - Lifetime US3614307A (en) | 1967-10-16 | 1968-10-11 | Discharge lamp modulation system |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3614307A (enExample) |
| BR (1) | BR6803119D0 (enExample) |
| DE (1) | DE1803376B2 (enExample) |
| FR (1) | FR1587491A (enExample) |
| GB (1) | GB1249873A (enExample) |
| NL (1) | NL6814711A (enExample) |
| SU (1) | SU361610A3 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0104285A1 (en) * | 1982-09-28 | 1984-04-04 | Delta Scan Inc. | Method and apparatus for producing images on radiation sensitive recording mediums |
| EP0213949A3 (en) * | 1985-08-29 | 1988-07-13 | Canon Kabushiki Kaisha | Image processing apparatus |
| US5780207A (en) * | 1994-05-11 | 1998-07-14 | Imation Corp. | Imaging process for imaging materials |
| US20100212216A1 (en) * | 2007-03-16 | 2010-08-26 | Aradi Allen A | Supplying tungsten to a combustion system or combustion system exhaust stream containing iron |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3830967A (en) * | 1973-02-05 | 1974-08-20 | Muirhead Inc | Apparatus for half tone marking electrostatic paper |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2203882A (en) * | 1934-12-28 | 1940-06-11 | Rca Corp | Photoamplifier system |
| US3156826A (en) * | 1961-06-14 | 1964-11-10 | Engelhard Hanovia Inc | Light communication system employing superimposed currents applied to a high intensity light source |
| US3436472A (en) * | 1964-09-23 | 1969-04-01 | Derek J Kyte | Screened photo reproduction |
| US3443028A (en) * | 1964-10-13 | 1969-05-06 | Dick Co Ab | Modulated scanning system |
| US3447101A (en) * | 1964-10-29 | 1969-05-27 | Leesona Corp | Half wave photo modulator |
| US3471701A (en) * | 1967-07-19 | 1969-10-07 | Magnavox Co | Radiation sensitive transducing system |
-
1968
- 1968-10-11 US US766784A patent/US3614307A/en not_active Expired - Lifetime
- 1968-10-14 FR FR1587491D patent/FR1587491A/fr not_active Expired
- 1968-10-14 GB GB48670/68A patent/GB1249873A/en not_active Expired
- 1968-10-14 BR BR203119/68A patent/BR6803119D0/pt unknown
- 1968-10-15 NL NL6814711A patent/NL6814711A/xx unknown
- 1968-10-16 DE DE19681803376 patent/DE1803376B2/de not_active Withdrawn
- 1968-10-16 SU SU1275557A patent/SU361610A3/ru active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2203882A (en) * | 1934-12-28 | 1940-06-11 | Rca Corp | Photoamplifier system |
| US3156826A (en) * | 1961-06-14 | 1964-11-10 | Engelhard Hanovia Inc | Light communication system employing superimposed currents applied to a high intensity light source |
| US3436472A (en) * | 1964-09-23 | 1969-04-01 | Derek J Kyte | Screened photo reproduction |
| US3443028A (en) * | 1964-10-13 | 1969-05-06 | Dick Co Ab | Modulated scanning system |
| US3447101A (en) * | 1964-10-29 | 1969-05-27 | Leesona Corp | Half wave photo modulator |
| US3471701A (en) * | 1967-07-19 | 1969-10-07 | Magnavox Co | Radiation sensitive transducing system |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0104285A1 (en) * | 1982-09-28 | 1984-04-04 | Delta Scan Inc. | Method and apparatus for producing images on radiation sensitive recording mediums |
| EP0213949A3 (en) * | 1985-08-29 | 1988-07-13 | Canon Kabushiki Kaisha | Image processing apparatus |
| US4811037A (en) * | 1985-08-29 | 1989-03-07 | Canon Kabushiki Kaisha | Image processing apparatus |
| US5780207A (en) * | 1994-05-11 | 1998-07-14 | Imation Corp. | Imaging process for imaging materials |
| US20100212216A1 (en) * | 2007-03-16 | 2010-08-26 | Aradi Allen A | Supplying tungsten to a combustion system or combustion system exhaust stream containing iron |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1249873A (en) | 1971-10-13 |
| DE1803376B2 (de) | 1971-07-01 |
| NL6814711A (enExample) | 1969-04-18 |
| FR1587491A (enExample) | 1970-03-20 |
| SU361610A3 (enExample) | 1972-12-07 |
| DE1803376A1 (de) | 1970-03-26 |
| BR6803119D0 (pt) | 1973-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3472958A (en) | Facsimile system | |
| US3614307A (en) | Discharge lamp modulation system | |
| US2182000A (en) | Synchronizing system | |
| US2571306A (en) | Cathode-ray tube focusing system | |
| GB1589846A (en) | Video signal reproducing apparatus | |
| US2219120A (en) | Facsimile system | |
| US2137039A (en) | Method and apparatus for communication by television | |
| FR2505592A1 (fr) | Circuit de deviation horizontale avec correction de la linearite | |
| GB1575604A (en) | Colour television receivers | |
| US4287531A (en) | Deflection control apparatus for a beam index color cathode ray tube | |
| US5046152A (en) | Ignition circuit for a gas discharge lamp | |
| JPS581593B2 (ja) | テレビジヨンガゾウ ノ センエイドカイゼンホウホウ | |
| US3745234A (en) | Video reproduction system for photographic and other images | |
| US2928993A (en) | Flat picture screen and methods and means for operating the same | |
| US4275338A (en) | Anti-spot burn protection for CRT | |
| US3977022A (en) | Cathode-ray tube image presentation system of the indexing type and timing system useful therewith | |
| US3096395A (en) | Velocity-modulated colour television receivers | |
| US3424939A (en) | Voltage switching apparatus for color kinescopes | |
| US4166281A (en) | Video image highlight suppression circuit with delayed compensation | |
| US3938060A (en) | Device for modulating intensity of light rays generated from gas laser | |
| USRE28132E (en) | Circuit arrangement including a colour display cathode-ray tube of the index type | |
| US4439713A (en) | Deflection control circuit for image pick-up tube | |
| US2256364A (en) | Phasing system | |
| US2058898A (en) | Electrooptical image production | |
| US2109339A (en) | Variable speed television |