US3613779A - Apparatus for obtaining high transfer rates in falling water film evaporators and condensers - Google Patents

Apparatus for obtaining high transfer rates in falling water film evaporators and condensers Download PDF

Info

Publication number
US3613779A
US3613779A US864092A US3613779DA US3613779A US 3613779 A US3613779 A US 3613779A US 864092 A US864092 A US 864092A US 3613779D A US3613779D A US 3613779DA US 3613779 A US3613779 A US 3613779A
Authority
US
United States
Prior art keywords
heat exchange
exchange element
substrate
fluid
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US864092A
Inventor
Clinton E Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLINTON E BROWN
Original Assignee
CLINTON E BROWN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLINTON E BROWN filed Critical CLINTON E BROWN
Application granted granted Critical
Publication of US3613779A publication Critical patent/US3613779A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/911Vaporization
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/913Condensation

Definitions

  • Heat transfer in a fluid evaporation or condensation system is generally limited by the low thermal conductivity of the fluid relative to the conductivity of the heat exchange surfaces of the system. Because the heat flux of a heat exchange surface is inversely proportional to the thickness of fluid on the surface, the average thickness of the heat flow path through the fluid must be held to a minimum to obtain a maximum heat transfer rate.
  • Dropwise condensation and evaporation are also employed in heat exchange systems to achieve the desirable effects of nonuniform fluid thickness.
  • the water path for heat transfer goes to zero at the drop edge, and it is at the edge that greatest heat transfer takes place.
  • Drop formation is enhanced by partial or complete coating of a heat exchange surface with a hydrophobic, or nonwettable, substance such as a fluorinated hydrocarbon polymer e.g. tetrafloroethylene), gold, or palladium.
  • a hydrophobic, or nonwettable, substance such as a fluorinated hydrocarbon polymer e.g. tetrafloroethylene), gold, or palladium.
  • the microscopic pits or depressions in a hydrophilic heat exchange surface are filled with a hydrophobic material, yielding a heterogeneous heat transfer surface with an improved heat transfer coefficient.
  • a plurality of spots of hydrophobic material are bonded to a hydrophilic substrate to the same effect.
  • optimum results are achieved when the hydrophobic coatings cover minute isolated areas of the heat exchange surface or, alternatively, completely cover the entire surface.
  • This invention is a heat exchange element for use in falling fluid film evaporators or condensers. It consists of a sheet of hydrophilic material of high thermal conductivity on which are bonded narrow strips of very thin, hydrophobic, or nonwetting, material such as fluorinated hydrocarbon polymers (e.g. tetrafluoroethylene), gold, or palladium.
  • the strips are arranged parallel to one another on the heat exchange surface and are oriented along with the surface in a vertical direction.
  • the fluid rivulets formed by this invention improve the heat transfer characteristics of an evaporation or condensation surface in several respects. At the edges of the rivulets near the hydrophobic strips the fluid layer is very thin, and heat transmission is, therefore, increased. Temperature gradients within the rivulets themselves result from the difference in heat transmission across the rivulet cross section, causing internal mixing of the fluid. This mixing enhances heat transfer by continually renewing the fluid in the most effective edge area of the rivulet. In the case of evaporation of a solution such as salt water, vortical motion within the rivulets is caused by surface tension gradients which result from variations in concentration between the edges and center of the rivulets. In addition to the above effects, the convective heat transfer characteristics of the system are improved by the increase in effective fluid surface area which results from the wavelike cross section of the rivulets.
  • an object of this invention is a heat exchange surface having a high heat transfer coefficient.
  • a further object of this invention is a heat exchange surface on which alternate, contiguous parallel rows of hydrophobic and hydrophilic surfaces interact to channel an evaporating or condensing fluid into spaced rivulets of arcuate cross section.
  • FIG. I is a plan view of a heat exchange surface including altemate, contiguous, parallel rows of hydrophobic and hydrophilic surfaces.
  • FIG. 2 is a cross section of the heat exchange surface shown in FIG. 1, including fluid rivulets formed between the hydrophobic surfaces.
  • FIG. 3 is a cross section of a single fluid rivulet of FIG. 2, illustrating the effect of vortical fluid motion.
  • FIG. I shows a representative portion of a heat exchange plate 10 for use in a falling fluid film evaporator or condenser.
  • the plate 10 includes a hydrophilic, or wettable, metallic substrate 12, such as titanium, having a high thermal conductivity.
  • a hydrophilic, or wettable, metallic substrate 12 such as titanium, having a high thermal conductivity.
  • An operational heat exchange plate 10 is longer and wider than the portion shown, in accord with wellknown construction principles of falling fluid film heat exchangers.
  • the plate 10 In operation in a evaporator or condenser, the plate 10 is oriented in a vertical plane with the parallel strips 14 aligned to divide the plate into a series of alternating, vertical, hydrophobic and hydrophilic surfaces.
  • a fluid 16 contacts the surface of plate 10
  • rivulets are formed on the wettable metal surfaces 18 between the strips I4 of nonwettable material, as shown in FIGS. 2 and 3.
  • Surface tension forces form the outer surface of the fluid 16 into an arcuate cross section between the strips [4, increasing the exposed fluid surface area over that of a uniform thickness, two-dimensional fluid film.
  • the increased fluid surface area enhances the convective heat transfer characteristics of the plate 10 in comparison with the plain metallic substrate 12 acting alone.
  • the desirability of minimizing the thickness of the hydrophobic strips 14 on the metallic substrate 12 is evident from an operational analysis of the heat exchange plate 10.
  • the rate of heat transfer is limited by the low thermal conductivity of the fluid relative to the metalic heat exchange plate.
  • An increase of heat transfer results when the fluid path for heat flow is minimized. lt follows that the greatest heat transfer through the plate will occur where the fluid thickness is smallest.
  • the thinnest fluid surface is adjacent to the strips.
  • the fluid surface adjacent to the strips is drawn close to the metallic surface 12, and the heat transfer through the plate 10 is increased.
  • a strip thickness on the order of one-quarter mil or less has been found to be effective.
  • the optimum spacing between the hydrophobic strips 14 on the substrate l2, and the width of the strips, themselves, are variable design parameters dependent upon the construction materials of the plate 10 and upon the fluid 16 which is operated upon.
  • Surface tension forces within the fluid 16 govern the tendency of the fluid to form rivulets between the strips; the construction materials of the substrate 12 and the strips 14 govern the relative rates of heat transfer as the size and spacing of the strips is varied.
  • the spacing between the strips 14 is too great, the surface tension is insufficient to conform the fluid surface to a semiarcuate shape.
  • the spacing is too small the fluid thickness differential is minimized, and the effective surface area of the substrate 12 is also minimized, so that the evaporation or condensation rate is decreased.
  • the width of the hydrophobic strips 14 is a compromise between opposing effects.
  • the width of the low thermal conductivity strips should be held to a minimum.
  • the strip width should exceed the value at which flooding between adjacent rivulets occurs.
  • the heat exchange plate 10 improves convective and conductive heat transfer efficiency in several other respects. Because maximum heat transfer occurs at the rivulet edges near the strips 14, temperature gradients arise across the rivulets, promoting mixing of the fluid within the rivulets. In this way the operating fluid at the most efficient edge area of the rivulet is continually renewed.
  • Fabrication of the heat exchange plate 10 can be accomplished by any of the known processes for selectively coating one material upon the surface of another.
  • a photoetch process for example, is suitable for coating tetrafluoroethylene strips upon a titanium heat exchange substrate.
  • a clean titanium surface is coated with a light-sensitive polyester coating a few mils thick.
  • a photographic negative made by reducing a ruled set of parallel lines is placed over the coating and the polymer is exposed to ultraviolet light in the 3,600 A. region.
  • the coating is then developed, leaving a polymerized resin on the exposed areas and a bare etched metal surface on the areas which were shielded by the opaque lines of the negative.
  • the entire plate surface is sprayed with a tetrafluoroethylene suspension, allowed to dry and baked in an oven at 725 F. to adhere and coalesce the tetrafluorethylene particles.
  • a tetrafluoroethylene suspension allowed to dry and baked in an oven at 725 F. to adhere and coalesce the tetrafluorethylene particles.
  • the tetrafluoroethylene adheres to the bare etched metal, but on regions covered with resin the bond is poor.
  • Final brushing removes the resin, while the bonded tetrafluoroethylene remains to form the spaced parallel strips 14.
  • a heat exchange element comprising:
  • a heat exchange element is claimed in claim I in which: the rows of hydrophilic surfaces are spaced portions of a substrate having a continuous hydrophilic surface, and
  • the rows of hydrophobic surfaces are a series of thin, spaced strips of hydrophobic material arranged parallel to one another and bonded to the hydrophilic surface of the substrate.
  • the substrate is metallic and has a high coefficient of thermal conductivity
  • the hydrophobic material is metallic. 4.
  • a heat exchange element as claimed in claim 2 in which:
  • the substrate is metallic and has a high coefficient of thermal conductivity
  • the hydrophobic material is nonmetallic.
  • a heat exchange element as claimed in claim 3 in which:
  • the hydrophobic material is gold.
  • the hydrophobic material is palladium.
  • the hydrophobic material is a fluorinated hydrocarbon polymer.
  • a heat exchange element is claimed in claim 2 in which:
  • the substrate is in the form of a plane surface plate.
  • a heat exchange element as claimed in claim 3 in which:
  • the substrate is in the form of a plane surfaced plate.
  • the substrate is in the form of a plane surfaced plate.
  • the substrate is in the form of a plane surfaced plate.

Abstract

Narrow strips of very thin hydrophobic material are arranged in parallel rows on a hydrophilic heat exchange substrate for use in fluid evaporation or condensation. Fluid rivulets of arcuate cross section form on the hydrophilic substrate between the hydrophobic strips, resulting in an improved heat transfer coefficient relative to systems employing a uniform fluid thickness. Increased fluid surface area and vertical motion of the rivulets account in part for the improved coefficient.

Description

United States Patent Clinton E. Brown Silver Spring, Md.
Oct. 6, I969 Oct. 19, 1971 The United States of America as represented by the Secretary of the Interior Inventor App]. No. Filed Patented Assignee APPARATUS FOR OBTAINING HIGH TRANSFER RATES IN FALLING WATER FILM EVAPORATORS AND CONDENSERS 13 Claims, 3 Drawing Figs.
u.s.c1 165/133, 165/133 1111.01 F28: 13/18 FieldofSearch 165/1, 133, 135
References Cited UNITED STATES PATENTS 3,207,209 9/1965 Hummel 165/ I 33 3,211,219 10/1965 Rosenblad..... l65/166 3,301,314 l/1967 Gaertner 165/1 3,433,294 3/ l 969 Timson 165/ i Primary Examiner-Frederick L. Matteson Assistant Examiner-Theophil W. Streule Attorneys-Ernest S. Cohen and Albert A. Kashinski APPARATUS FOR OBTAINING IIIGII TRANSFER RATES IN FALLING WATER FILM EVAPORATORS AND CONDENSERS BACKGROUND OF THE INVENTION Heat transfer in a fluid evaporation or condensation system is generally limited by the low thermal conductivity of the fluid relative to the conductivity of the heat exchange surfaces of the system. Because the heat flux of a heat exchange surface is inversely proportional to the thickness of fluid on the surface, the average thickness of the heat flow path through the fluid must be held to a minimum to obtain a maximum heat transfer rate. As a result of this inverse relationship, it is well known that a nonuniform distribution of fluid thickness provides a greater heat flux than a uniform thickness distribution when in each case the mean fluid thicknesses on heat exchange surfaces are the same. This phenomenon has been successfully employed in reducing the heat transfer coefficient of fluid evaporation and condensation systems employing fluted heat exchange surfaces and in systems employing dropwise condensation and evaporation.
On fluted heat exchange surfaces, surface tension forms a fluid into a thin film on the convex ridges of the flutes, between fluid streams which flow in the flute valleys. The major heat flux occurs on the ridges where the fluid film is thin, and little heat flux occurs in the region of the flute valleys. As an alternative to fluted heat exchange surfaces, which are difficult to fabricate, small radial projections of rectangular or circular cross section, fixed to a heat exchange surface made of similar material, have been proposed. The projections draw fluid from the relatively flat surfaces between them and reduce the mean fluid thickness on the surfaces, reducing the heat transfer coefficient of the system. Both the fluted and projection bearing heat exchange surfaces rely upon the hydrophilic affinity of the fluid to the raised metal areas to form the fluid thickness differentials which produce improved operating characteristics.
Dropwise condensation and evaporation are also employed in heat exchange systems to achieve the desirable effects of nonuniform fluid thickness. In a drop of fluid the water path for heat transfer goes to zero at the drop edge, and it is at the edge that greatest heat transfer takes place. Drop formation is enhanced by partial or complete coating of a heat exchange surface with a hydrophobic, or nonwettable, substance such as a fluorinated hydrocarbon polymer e.g. tetrafloroethylene), gold, or palladium. In one application of hydrophobic coatings to a dropwise system, the microscopic pits or depressions in a hydrophilic heat exchange surface are filled with a hydrophobic material, yielding a heterogeneous heat transfer surface with an improved heat transfer coefficient. In another application, a plurality of spots of hydrophobic material are bonded to a hydrophilic substrate to the same effect. In these applications, optimum results are achieved when the hydrophobic coatings cover minute isolated areas of the heat exchange surface or, alternatively, completely cover the entire surface.
SUMMARY OF THE INVENTION This invention is a heat exchange element for use in falling fluid film evaporators or condensers. It consists of a sheet of hydrophilic material of high thermal conductivity on which are bonded narrow strips of very thin, hydrophobic, or nonwetting, material such as fluorinated hydrocarbon polymers (e.g. tetrafluoroethylene), gold, or palladium. The strips are arranged parallel to one another on the heat exchange surface and are oriented along with the surface in a vertical direction. When a fluid contacts the heat exchange surface it is repelled by the hydrophobic strips, forming rivulets upon the intermediate hydrophilic surfaces. Surface tension forces form the outer surface of the fluid into an arcuate cross section between the strips, which lie on opposite edges of the rivulets. In this way the rivulets are constrained to flow downward on the heat exchange surface.
The fluid rivulets formed by this invention improve the heat transfer characteristics of an evaporation or condensation surface in several respects. At the edges of the rivulets near the hydrophobic strips the fluid layer is very thin, and heat transmission is, therefore, increased. Temperature gradients within the rivulets themselves result from the difference in heat transmission across the rivulet cross section, causing internal mixing of the fluid. This mixing enhances heat transfer by continually renewing the fluid in the most effective edge area of the rivulet. In the case of evaporation of a solution such as salt water, vortical motion within the rivulets is caused by surface tension gradients which result from variations in concentration between the edges and center of the rivulets. In addition to the above effects, the convective heat transfer characteristics of the system are improved by the increase in effective fluid surface area which results from the wavelike cross section of the rivulets.
Therefore, an object of this invention is a heat exchange surface having a high heat transfer coefficient.
A further object of this invention is a heat exchange surface on which alternate, contiguous parallel rows of hydrophobic and hydrophilic surfaces interact to channel an evaporating or condensing fluid into spaced rivulets of arcuate cross section. These and other objects of the invention will be apparent in the following specification and drawing which describe the preferred embodiment of the invention.
BRIEF DESCRIPTION OF TI'IE DRAWING FIG. I is a plan view of a heat exchange surface including altemate, contiguous, parallel rows of hydrophobic and hydrophilic surfaces.
FIG. 2 is a cross section of the heat exchange surface shown in FIG. 1, including fluid rivulets formed between the hydrophobic surfaces.
FIG. 3 is a cross section of a single fluid rivulet of FIG. 2, illustrating the effect of vortical fluid motion.
DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. I shows a representative portion of a heat exchange plate 10 for use in a falling fluid film evaporator or condenser. The plate 10 includes a hydrophilic, or wettable, metallic substrate 12, such as titanium, having a high thermal conductivity. On the plate 10 there are bonded narrow, parallel strips I4 of very thin hydrophobic, or nonwettable, material such as a fluorinated hydrocarbon polymer (e.g. tetrafluoroethylene), gold or palladium. An operational heat exchange plate 10 is longer and wider than the portion shown, in accord with wellknown construction principles of falling fluid film heat exchangers.
In operation in a evaporator or condenser, the plate 10 is oriented in a vertical plane with the parallel strips 14 aligned to divide the plate into a series of alternating, vertical, hydrophobic and hydrophilic surfaces. When a fluid 16 contacts the surface of plate 10, rivulets are formed on the wettable metal surfaces 18 between the strips I4 of nonwettable material, as shown in FIGS. 2 and 3. Surface tension forces form the outer surface of the fluid 16 into an arcuate cross section between the strips [4, increasing the exposed fluid surface area over that of a uniform thickness, two-dimensional fluid film. The increased fluid surface area enhances the convective heat transfer characteristics of the plate 10 in comparison with the plain metallic substrate 12 acting alone.
While the heat exchange plate 10 and the strips 14 are shown in FIGS. 1-3 with exaggerated thickness for descriptive clarity, in actual practice both the plate and the strips are very thin. For effective operation, the plate thickness is on the order of several mils, and the strip thickness is on the order of a fraction of a mi]. Of course, deviations from these exemplary values are warranted where dictated by experimental results with the many fluid systems to which this invention is applicable.
The desirability of minimizing the thickness of the hydrophobic strips 14 on the metallic substrate 12 is evident from an operational analysis of the heat exchange plate 10. In a fluid film heat exchanger, the rate of heat transfer is limited by the low thermal conductivity of the fluid relative to the metalic heat exchange plate. An increase of heat transfer results when the fluid path for heat flow is minimized. lt follows that the greatest heat transfer through the plate will occur where the fluid thickness is smallest. For the rivulet cross section resulting between the hydrophobic strips 14, the thinnest fluid surface is adjacent to the strips. By minimizing the thickness of the strips 14, the fluid surface adjacent to the strips is drawn close to the metallic surface 12, and the heat transfer through the plate 10 is increased. For saline solutions, a strip thickness on the order of one-quarter mil or less has been found to be effective.
The optimum spacing between the hydrophobic strips 14 on the substrate l2, and the width of the strips, themselves, are variable design parameters dependent upon the construction materials of the plate 10 and upon the fluid 16 which is operated upon. Surface tension forces within the fluid 16 govern the tendency of the fluid to form rivulets between the strips; the construction materials of the substrate 12 and the strips 14 govern the relative rates of heat transfer as the size and spacing of the strips is varied. When the spacing between the strips 14 is too great, the surface tension is insufficient to conform the fluid surface to a semiarcuate shape. When the spacing is too small the fluid thickness differential is minimized, and the effective surface area of the substrate 12 is also minimized, so that the evaporation or condensation rate is decreased. Similarly, the width of the hydrophobic strips 14 is a compromise between opposing effects. For maximum heat transfer through the metallic substrate 12, the width of the low thermal conductivity strips should be held to a minimum. However, for effective rivulet formation the strip width should exceed the value at which flooding between adjacent rivulets occurs. Each of these optimum values of strip width and spacing is readily determined by experimentation with a given operating fluid. For saline solutions, strip widths on the order of 2 mils, and spacings in the range of 10-20 mils are desirable.
In addition to enhancing convective heat transfer through increased film surface area and enhancing conductive heat transfer by reducing the effective film thickness, the heat exchange plate 10 improves convective and conductive heat transfer efficiency in several other respects. Because maximum heat transfer occurs at the rivulet edges near the strips 14, temperature gradients arise across the rivulets, promoting mixing of the fluid within the rivulets. In this way the operating fluid at the most efficient edge area of the rivulet is continually renewed.
In the case of evaporating solutions, vortical fluid motion arises within the rivulets. A saline solution provides an appropriate example. As the water evaporates from the solution near the rivulet edges, the concentration of the solution near the edges increases. Due to this increased concentration, the edges of the rivulet exhibit a higher surface tension than the peak of the rivulet. The surface tension gradient from the edges to the peak causes vortical flow, as shown by arrows in H6. 3, promoting heat transfer by convection as well as conduction, and increasing the heat transfer coefficient of the system. Because their concentration remains constant in evaporation or condensation, pure fluids do not exhibit this surface tension effect, or the resulting vortical motion.
Fabrication of the heat exchange plate 10 can be accomplished by any of the known processes for selectively coating one material upon the surface of another. A photoetch process, for example, is suitable for coating tetrafluoroethylene strips upon a titanium heat exchange substrate. In this process a clean titanium surface is coated with a light-sensitive polyester coating a few mils thick. After drying, a photographic negative made by reducing a ruled set of parallel lines is placed over the coating and the polymer is exposed to ultraviolet light in the 3,600 A. region. The coating is then developed, leaving a polymerized resin on the exposed areas and a bare etched metal surface on the areas which were shielded by the opaque lines of the negative. Finally, the entire plate surface is sprayed with a tetrafluoroethylene suspension, allowed to dry and baked in an oven at 725 F. to adhere and coalesce the tetrafluorethylene particles. During the heating the tetrafluoroethylene adheres to the bare etched metal, but on regions covered with resin the bond is poor. Final brushing removes the resin, while the bonded tetrafluoroethylene remains to form the spaced parallel strips 14.
While the preferred embodiment of the invention has been shown and described, modifications within the scope of this disclosure are to be expected for adapting the invention to diverse heat exchange environments. Other bonding processes can be employed with equal facility. The hydrophobic strips can be recessed into channels cut into the metallic substrate to achieve a smooth outer surface. Alternate strips of hydrophobic and hydrophilic substances can be joined at their edges or bonded to a single substrate to insure optimum properties for both heat transfer and rivulet formation. The heat exchange element can be designed in shapes other than a plane surface with equal operational effectiveness. Fluids other than water can be used with the heat exchange element. In this regard the terms hydrophobic," hydrophilic, wettable," and "nonwettable" are used to define the corresponding properties with reference to any fluid. These and other modifications of the invention within the scope of the following claims will be apparent to those of ordinary skill in the art.
What is claimed is:
l. A heat exchange element comprising:
alternate, contiguous, parallel rows of hydrophobic and hydrophilic surfaces, the rows of hydrophobic surfaces being wide enough to prevent flooding of them when fluid rivulets are caused to flow on the rows of hydrophilic surfaces yet narrow enough to maximize heat transfer through the heat exchange element, and the rows of hydrophilic surfaces being narrow enough to enable surface tension forces in fluid rivulets, which are caused to flow on the hydrophilic surfaces, to form the rivulets into an arcuate cross section between the rows of hydrophobic surfaces, yet wide enough to maximize heat transfer through the heat exchange element. 2. A heat exchange element is claimed in claim I in which: the rows of hydrophilic surfaces are spaced portions of a substrate having a continuous hydrophilic surface, and
the rows of hydrophobic surfaces are a series of thin, spaced strips of hydrophobic material arranged parallel to one another and bonded to the hydrophilic surface of the substrate.
3. A heat exchange element as claimed in claim 2 in which:
the substrate is metallic and has a high coefficient of thermal conductivity, and
the hydrophobic material is metallic. 4.
4. A heat exchange element as claimed in claim 2 in which:
the substrate is metallic and has a high coefficient of thermal conductivity, and
the hydrophobic material is nonmetallic.
5. A heat exchange element as claimed in claim 3 in which:
the hydrophobic material is gold.
6. A heat exchange element as claimed in claim 3 in which:
the hydrophobic material is palladium.
7. A heat exchange element as claimed in claim 4 in which:
the hydrophobic material is a fluorinated hydrocarbon polymer.
8. A heat exchange element is claimed in claim 2 in which:
the substrate is in the form of a plane surface plate.
9. A heat exchange element as claimed in claim 3 in which:
the substrate is in the form of a plane surfaced plate.
10. A heat exchange element as claimed in claim 4 in which:
the substrate is in the form of a plane surfaced plate.
ll. a heat exchange element as claimed in claim 5, in which:
the substrate is in the form of a plane surfaced plate.
13. A heat exchange element as claimed in claim 7, in which: v t he ih s t atc is in the fo 'm cf a plane surfaced plate.

Claims (13)

1. A heat exchange element comprising: alternate, contiguous, parallel rows of hydrophobic and hydrophilic surfaces, the rows of hydrophobic surfaces being wide enough to prevent flooding of them when fluid rivulets are caused to flow on the rows of hydrophilic surfaces yet narrow enough to maximize heat transfer through the heat exchange element, and the rows of hydrophilic surfaces being narrow enough to enable surface tension forces in fluid rivulets, which are caused to flow on the hydrophilic surfaces, to form the rivulets into an arcuate cross section between the rows of hydrophobic surfaces, yet wide enough to maximize heat transfer through the heat exchange element.
2. A heat exchange element is claimed in claim 1 in which: the rows of hydrophilic surfaCes are spaced portions of a substrate having a continuous hydrophilic surface, and the rows of hydrophobic surfaces are a series of thin, spaced strips of hydrophobic material arranged parallel to one another and bonded to the hydrophilic surface of the substrate.
3. A heat exchange element as claimed in claim 2 in which: the substrate is metallic and has a high coefficient of thermal conductivity, and the hydrophobic material is metallic. 4.
4. A heat exchange element as claimed in claim 2 in which: the substrate is metallic and has a high coefficient of thermal conductivity, and the hydrophobic material is nonmetallic.
5. A heat exchange element as claimed in claim 3 in which: the hydrophobic material is gold.
6. A heat exchange element as claimed in claim 3 in which: the hydrophobic material is palladium.
7. A heat exchange element as claimed in claim 4 in which: the hydrophobic material is a fluorinated hydrocarbon polymer.
8. A heat exchange element is claimed in claim 2 in which: the substrate is in the form of a plane surface plate.
9. A heat exchange element as claimed in claim 3 in which: the substrate is in the form of a plane surfaced plate.
10. A heat exchange element as claimed in claim 4 in which: the substrate is in the form of a plane surfaced plate.
11. a heat exchange element as claimed in claim 5, in which: the substrate is in the form of a plane surfaced plate.
12. A heat exchange element as claimed in claim 6, in which: the substrate is in the form of a plane surfaced plate.
13. A heat exchange element as claimed in claim 7, in which: the substrate is in the form of a plane surfaced plate.
US864092A 1969-10-06 1969-10-06 Apparatus for obtaining high transfer rates in falling water film evaporators and condensers Expired - Lifetime US3613779A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86409269A 1969-10-06 1969-10-06

Publications (1)

Publication Number Publication Date
US3613779A true US3613779A (en) 1971-10-19

Family

ID=25342510

Family Applications (1)

Application Number Title Priority Date Filing Date
US864092A Expired - Lifetime US3613779A (en) 1969-10-06 1969-10-06 Apparatus for obtaining high transfer rates in falling water film evaporators and condensers

Country Status (1)

Country Link
US (1) US3613779A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082140A (en) * 1972-11-14 1978-04-04 Austral-Erwin Engineering Company Heat exchange method
US4127164A (en) * 1972-11-14 1978-11-28 Austral-Erwin Engineering Co. Heat exchange apparatus
US4156419A (en) * 1976-06-11 1979-05-29 Hawthorne Industries, Inc. Solar collector
US4211276A (en) * 1977-06-29 1980-07-08 Hitachi, Ltd. Method of making fin elements for heat exchangers
US4285395A (en) * 1978-08-03 1981-08-25 Hisaka Works, Limited Structure of fluid condensing and heat conducting surface of condenser
US4582121A (en) * 1977-06-09 1986-04-15 Casey Charles B Apparatus for and method of heat transfer
US5544696A (en) * 1994-07-01 1996-08-13 The United States Of America As Represented By The Secretary Of The Air Force Enhanced nucleate boiling heat transfer for electronic cooling and thermal energy transfer
EP0817947A1 (en) * 1995-04-04 1998-01-14 Ashland Inc. Process for increasing cooling tower's thermal capability
US5800673A (en) * 1989-08-30 1998-09-01 Showa Aluminum Corporation Stack type evaporator
US20050061024A1 (en) * 1997-12-04 2005-03-24 Korea Institute Of Science And Technology And Lg Electronics Inc. Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
EP2028432A1 (en) * 2007-08-06 2009-02-25 Université de Mons-Hainaut Devices and method for enhanced heat transfer
US20100096113A1 (en) * 2008-10-20 2010-04-22 General Electric Company Hybrid surfaces that promote dropwise condensation for two-phase heat exchange
WO2010011687A3 (en) * 2008-07-21 2011-01-13 Idalex Technologies, Inc. Heat exchanger plate for indirect evaporative cooler and its method of fabrication
DE10344653B4 (en) * 2003-09-25 2013-06-13 Hans Güntner GmbH Fan-operated air cooler for cooling the air in rooms
US20140238645A1 (en) * 2013-02-25 2014-08-28 Alcatel-Lucent Ireland Ltd. Hierarchically structural and biphillic surface energy designs for enhanced condensation heat transfer
US8842435B2 (en) 2012-05-15 2014-09-23 Toyota Motor Engineering & Manufacturing North America, Inc. Two-phase heat transfer assemblies and power electronics incorporating the same
WO2014179733A1 (en) * 2013-05-02 2014-11-06 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Functional coatings enhancing condenser performance
WO2014205204A1 (en) * 2013-06-19 2014-12-24 Coolerado Corporation Reduction of scale build-up in an evaporative cooling apparatus
RU2542253C2 (en) * 2013-03-18 2015-02-20 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук Intensification method of heat exchange at boiling on smooth surface
RU2588917C1 (en) * 2014-12-15 2016-07-10 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Apparatus for generating of channelized liquid flow in micro-and mini-channels (versions)
RU2629516C2 (en) * 2015-12-28 2017-08-29 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Device for generating micro-flow liquid flow in micro- and minichannels
US20180007814A1 (en) * 2016-06-30 2018-01-04 Ford Global Technologies, Llc Coolant flow distribution using coating materials
CN108036658A (en) * 2017-12-15 2018-05-15 青岛海尔智能技术研发有限公司 Heat exchanger tube and heat exchanger and air conditioner and heat pump unit for falling-film heat exchanger
US20180245863A1 (en) * 2017-02-24 2018-08-30 Toyota Jidosha Kabushiki Kaisha Heat exchanger, heat exchange method using heat exchanger, heat transport system using heat exchanger, and heat transport method using heat transport system
US20180283526A1 (en) * 2017-03-29 2018-10-04 Ford Global Technologies, Llc Coolant system pressure drop reduction
US10921072B2 (en) 2013-05-02 2021-02-16 Nbd Nanotechnologies, Inc. Functional coatings enhancing condenser performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207209A (en) * 1962-12-28 1965-09-21 Dept Of Chemical Engineering & Means for increasing the heat transfer coefficient between a wall and boiling liquid
US3211219A (en) * 1964-03-30 1965-10-12 Curt F Rosenblad Flexible plate heat exchangers with variable spacing
US3301314A (en) * 1964-03-02 1967-01-31 Gen Electric Method and means for increasing the heat transfer coefficient between a wall and boiling liquid
US3433294A (en) * 1963-12-06 1969-03-18 Union Carbide Corp Boiling heat transfer system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207209A (en) * 1962-12-28 1965-09-21 Dept Of Chemical Engineering & Means for increasing the heat transfer coefficient between a wall and boiling liquid
US3433294A (en) * 1963-12-06 1969-03-18 Union Carbide Corp Boiling heat transfer system
US3301314A (en) * 1964-03-02 1967-01-31 Gen Electric Method and means for increasing the heat transfer coefficient between a wall and boiling liquid
US3211219A (en) * 1964-03-30 1965-10-12 Curt F Rosenblad Flexible plate heat exchangers with variable spacing

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082140A (en) * 1972-11-14 1978-04-04 Austral-Erwin Engineering Company Heat exchange method
US4127164A (en) * 1972-11-14 1978-11-28 Austral-Erwin Engineering Co. Heat exchange apparatus
US4156419A (en) * 1976-06-11 1979-05-29 Hawthorne Industries, Inc. Solar collector
US4582121A (en) * 1977-06-09 1986-04-15 Casey Charles B Apparatus for and method of heat transfer
US4211276A (en) * 1977-06-29 1980-07-08 Hitachi, Ltd. Method of making fin elements for heat exchangers
US4285395A (en) * 1978-08-03 1981-08-25 Hisaka Works, Limited Structure of fluid condensing and heat conducting surface of condenser
US5800673A (en) * 1989-08-30 1998-09-01 Showa Aluminum Corporation Stack type evaporator
US5544696A (en) * 1994-07-01 1996-08-13 The United States Of America As Represented By The Secretary Of The Air Force Enhanced nucleate boiling heat transfer for electronic cooling and thermal energy transfer
EP0817947A1 (en) * 1995-04-04 1998-01-14 Ashland Inc. Process for increasing cooling tower's thermal capability
EP0817947A4 (en) * 1995-04-04 1999-08-04 Ashland Inc Process for increasing cooling tower's thermal capability
US20050061024A1 (en) * 1997-12-04 2005-03-24 Korea Institute Of Science And Technology And Lg Electronics Inc. Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
US7178584B2 (en) * 1997-12-04 2007-02-20 Korea Institute Of Science And Technology Plasma polymerization enhancement of surface of metal for use in refrigerating and air conditioning
DE10344653B4 (en) * 2003-09-25 2013-06-13 Hans Güntner GmbH Fan-operated air cooler for cooling the air in rooms
EP2028432A1 (en) * 2007-08-06 2009-02-25 Université de Mons-Hainaut Devices and method for enhanced heat transfer
WO2010011687A3 (en) * 2008-07-21 2011-01-13 Idalex Technologies, Inc. Heat exchanger plate for indirect evaporative cooler and its method of fabrication
US20100096113A1 (en) * 2008-10-20 2010-04-22 General Electric Company Hybrid surfaces that promote dropwise condensation for two-phase heat exchange
US8842435B2 (en) 2012-05-15 2014-09-23 Toyota Motor Engineering & Manufacturing North America, Inc. Two-phase heat transfer assemblies and power electronics incorporating the same
US20140238645A1 (en) * 2013-02-25 2014-08-28 Alcatel-Lucent Ireland Ltd. Hierarchically structural and biphillic surface energy designs for enhanced condensation heat transfer
RU2542253C2 (en) * 2013-03-18 2015-02-20 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук Intensification method of heat exchange at boiling on smooth surface
WO2014179733A1 (en) * 2013-05-02 2014-11-06 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Functional coatings enhancing condenser performance
US10921072B2 (en) 2013-05-02 2021-02-16 Nbd Nanotechnologies, Inc. Functional coatings enhancing condenser performance
US10525504B2 (en) 2013-05-02 2020-01-07 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Functional coatings enhancing condenser performance
CN105393069B (en) * 2013-06-19 2018-09-11 F·F·西里茂米尼有限公司 Reduce the incrustation scale accumulation in cooling evaporative cooler
CN105393069A (en) * 2013-06-19 2016-03-09 F·F·西里茂米尼有限公司 Reduction of scale build-up in an evaporative cooling apparatus
EP3011239A4 (en) * 2013-06-19 2017-03-22 F.F. Seeley Nominees Pty Ltd. Reduction of scale build-up in an evaporative cooling apparatus
WO2014205204A1 (en) * 2013-06-19 2014-12-24 Coolerado Corporation Reduction of scale build-up in an evaporative cooling apparatus
US9851155B2 (en) 2013-06-19 2017-12-26 F.F. Seeley Nominees Pty Ltd. Reduction of scale build-up in an evaporative cooling apparatus
US10352622B2 (en) 2013-06-19 2019-07-16 F.F. Seeley Nominees Pty. Ltd. Reduction of scale build-up in an evaporative cooling apparatus
RU2588917C1 (en) * 2014-12-15 2016-07-10 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Apparatus for generating of channelized liquid flow in micro-and mini-channels (versions)
RU2629516C2 (en) * 2015-12-28 2017-08-29 Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) Device for generating micro-flow liquid flow in micro- and minichannels
US10568240B2 (en) * 2016-06-30 2020-02-18 Ford Global Technologies, Llc Coolant flow distribution using coating materials
US20180007814A1 (en) * 2016-06-30 2018-01-04 Ford Global Technologies, Llc Coolant flow distribution using coating materials
US20180245863A1 (en) * 2017-02-24 2018-08-30 Toyota Jidosha Kabushiki Kaisha Heat exchanger, heat exchange method using heat exchanger, heat transport system using heat exchanger, and heat transport method using heat transport system
US10816283B2 (en) * 2017-02-24 2020-10-27 Toyota Jidosha Kabushiki Kaisha Heat exchanger, heat exchange method using heat exchanger, heat transport system using heat exchanger, and heat transport method using heat transport system
US20180283526A1 (en) * 2017-03-29 2018-10-04 Ford Global Technologies, Llc Coolant system pressure drop reduction
US10760672B2 (en) * 2017-03-29 2020-09-01 Ford Global Technologies, Llc Coolant system pressure drop reduction
CN108036658A (en) * 2017-12-15 2018-05-15 青岛海尔智能技术研发有限公司 Heat exchanger tube and heat exchanger and air conditioner and heat pump unit for falling-film heat exchanger

Similar Documents

Publication Publication Date Title
US3613779A (en) Apparatus for obtaining high transfer rates in falling water film evaporators and condensers
US3099607A (en) Vapor recirculation distillation process and apparatus
US3840070A (en) Evaporator-condenser
US4246962A (en) Device for use in connection with heat exchangers for the transfer of sensible and/or latent heat
SE8008594L (en) Plate evaporator
US5718848A (en) Intensification of evaporation and heat transfer
US4258784A (en) Heat exchange apparatus and method of utilizing the same
EP0177474B1 (en) Insertable contact body
GB1290050A (en)
ES8603066A1 (en) Expanded metal packing and method of manufacture.
US3523577A (en) Heat exchange system
US3129145A (en) Means and method for mass and heat transfer
US4269796A (en) Wet/dry cooling tower and method
KR20010015539A (en) Coated substrate drying system with magnetic particle orientation
IL22945A (en) Heat transfer surface
EP3473315A1 (en) Evaporative media pad with reduced internal spacing
US3206381A (en) Dropwise condensation distillation apparatus
CA1299090C (en) Heat and mass transfer rates by liquid spray impingement
US4314605A (en) Condenser
SE8008595L (en) Plate evaporator
RU2294504C2 (en) Heat exchange plate, plate stack, and plate heat exchanger
US4260015A (en) Surface condenser
GB1426971A (en) Gas-liquid heat exchangers
US4452300A (en) Method for the exchange of heat between liquid and air and an apparatus for carrying the method into effect
GB2037974A (en) Heat transfer tube