US3612933A - Method and apparatus for stabilizing an arc - Google Patents
Method and apparatus for stabilizing an arc Download PDFInfo
- Publication number
- US3612933A US3612933A US878775A US3612933DA US3612933A US 3612933 A US3612933 A US 3612933A US 878775 A US878775 A US 878775A US 3612933D A US3612933D A US 3612933DA US 3612933 A US3612933 A US 3612933A
- Authority
- US
- United States
- Prior art keywords
- arc
- cathode
- hollow cathode
- zone
- inside surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B31/00—Electric arc lamps
- H05B31/0018—Electric arc lamps in a closed vessel
- H05B31/0021—Construction, in particular closure, of the vessel
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3436—Hollow cathodes with internal coolant flow
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3478—Geometrical details
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/28—Cooling arrangements
Definitions
- ABSTRACT A method and apparatus for stabilizing an are established in an arc device having two axially spaced electrodes, at least one being a hollow electrode wherein a cooling fluid is passed along the outside surface of the hollow electrode at varying speeds to create a hot surface on wow PATENTEUum 12 I971 v INVENTOR DEN H TROUE ATTORNEY METHOD ANB APPARATUS FOR STABIILIZING AN ARC
- This invention relates to a method and apparatus for stabilizing an are. More particularly, this invention relates to such a method and apparatus wherein an arc is struck between two axially spaced electrodes at least one of said electrodes being a hollow cooled electrode with the space therebetween being surrounded by a chamber.
- Apparatus for producing an are having two axially spaced electrodes, either one or both electrodes being hollow with a surrounding arc chamber have been known for some time. Devices of this type are shown for example in US. Pat. No. 3,364,387. These devices are used for example as gas heaters and as a source of radiation.
- the swirling gas usually argon or some other insert gas such as krypton and xenon, tends to drive the arc termination point deeply into the hollow cathode.
- the arc tends to wander back out of the hollow cathode and is driven back by the swirling gas setting up an oscillatory movement of the arc which in turn causes the problem of arc instability.
- Another object is to provide a method for cooling a hollow cathode in an are producing device whereby a very hot arc termination zone is created in said hollow cathode.
- Another object is to provide an arc apparatus for producing extremely stable arcs.
- l is a view partially in cross section of the device incorporating the invention.
- MG. 2 is an enlarged view of the hollow cathode shown in liG. ll cooled according to the method of the invention.
- a typical arc radiation device is shown at T.
- These devices generally have two electrodes, 1 and 3, one of which is a ho]- low cathode electrode.
- electrode 3 is connected so that it is the cathode.
- a quartz envelope E Surrounding the space between the electrodes 1 and 3 is a quartz envelope E which consists of an inner quartz tube 11 and an outer quartz tube iii.
- cooling fluid such as water, enters through inlet 8, is passed between the tubes it) and 11 and leaves through outlet lid. It should be understood that other cooling fluids may be used in place of water.
- Arc gas is introduced into the space between the electrodes 1 and 3 through inlet 7, passes through passage 9, (see H6.
- the electrode 3 consists of a body 17 usually made from copper having an insert material l9, usually tungsten or thoriated tungsten on its inside surface near the mouth of said body 17.
- a cooling jacket 21 Surrounding the body 17 is a cooling jacket 21.
- a cooling liquid divider 23 Positioned in the cooling jacket 21 is a cooling liquid divider 23, having a tapered section 22.
- the taper section extends from the end of the divider 23 nearest the mouth of the body 17 rearwardly to the back section of the electrode body 17.
- the tapered section 22, in conjunction with the outside surface 24 of electrode body 17 forms a passage 25 of varying cross section.
- the area of largest cross section is at the mouth end of electrode with the cross-sectional area gradually decreasing toward the rear of the electrode body 17.
- Cooling fluid such as water enters the device through inlet 26, passes into water jacket 21 and flows around divider 23. Since the largest area of the cooling passage 25 is at the mouth end of the electrode body 17, the water will have a lower velocity than it will have at the smaller area of the cooling passage 25. Thus, the cooling effect will be less at the mouth end of the electrode body l7 causing this section to be at a higher temperature than any other zone on the inside surface of the electrode 3, thereby creating an arc termination zone from which the arc will not wander.
- variable cooling fluid velocity divider establishes a well defined short axial region along the inside surface of the hollow electrode which operates constantly at a temperature conducive to electron emission. This stabilization of the location of the cathode termination produces stable current, voltage, power and brightness. Thus, the minimum power is much closer to the average power level of the arc and in application requiring short exposure to the radiant energy source, the utility of the arc device is significantly increased. If the are power fluctuated, as was the case with a conventional constant velocity-type water divider, only the minimum power could be used and not the average power because of the danger of under exposing some sections of the workpiece.
- a method for stabilizing an arc in an arc device having a pair of axially spaced electrodes at least one of which is a hollow liquid cooled cathode having an insert material on its inside surface positioned in a chamber of greater diameter than and surrounding the space between said electrodes, said method comprising passing cooling liquid along the outside surface of said hollow cathode and varying the velocity of said cooling liquid as it passes along the outside wall of said hollow cathode to create a zone on the insert material on said inside surface of said hollow cathode which is at a substantially higher temperature than any other zone on said inside surface, thereby creating an arc termination zone from which the arc will not wander.
- a method for stabilizing an arc in an arc device having a pair of axially spaced electrodes at least one of which is a hollow liquid cooled cathode having an insert material on its inside surface positioned in a chamber of greater diameter than and surrounding the space between said electrodes and means for introducing gas to create swirl flow in said chamber; wherein said swirling gas flow tends to drive the arc termination point deeply into said hollow cathode; said method comprising passing cooling liquid along the outside surface of said hollow cathode and increasing the velocity of said cooling liquid as it passes along said outside surface from one end to the other to create a zone on the insert material at one end of the inside surface of said hollow cathode which is at a substantially higher temperature than any other zone in said inside surface, thereby creating an arc termination zone from which the arc will not wander.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Geometry (AREA)
- Discharge Heating (AREA)
- Plasma Technology (AREA)
- Arc Welding In General (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87877569A | 1969-11-21 | 1969-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3612933A true US3612933A (en) | 1971-10-12 |
Family
ID=25372814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US878775A Expired - Lifetime US3612933A (en) | 1969-11-21 | 1969-11-21 | Method and apparatus for stabilizing an arc |
Country Status (14)
Country | Link |
---|---|
US (1) | US3612933A (fr) |
JP (1) | JPS4916467B1 (fr) |
AT (1) | AT314686B (fr) |
BE (1) | BE759245A (fr) |
BR (1) | BR7024021D0 (fr) |
CA (1) | CA921550A (fr) |
DE (1) | DE2057125A1 (fr) |
ES (2) | ES385741A1 (fr) |
FR (1) | FR2069814A5 (fr) |
GB (1) | GB1334379A (fr) |
NL (1) | NL7017046A (fr) |
NO (1) | NO129825B (fr) |
SE (1) | SE376531B (fr) |
ZA (1) | ZA707847B (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3995187A (en) * | 1971-09-07 | 1976-11-30 | Telic Corporation | Electrode type glow discharge apparatus |
WO2001054166A1 (fr) * | 2000-01-21 | 2001-07-26 | Vortek Industries Ltd. | Appareil et procede de rayonnement electromagnetique a intensite elevee |
US20050179354A1 (en) * | 2004-02-12 | 2005-08-18 | Camm David M. | High-intensity electromagnetic radiation apparatus and methods |
DE102010040759A1 (de) * | 2010-09-14 | 2012-03-15 | Von Ardenne Anlagentechnik Gmbh | Kühlsystem für Targets von Sputterquellen |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54142683U (fr) * | 1978-03-24 | 1979-10-03 | ||
CN113932602B (zh) * | 2021-09-02 | 2023-10-31 | 山东晶盾新材料科技有限公司 | 一种用于快速热压烧结的自动化连续生产装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3280360A (en) * | 1963-02-28 | 1966-10-18 | Westinghouse Electric Corp | High intensity radiation source |
US3292028A (en) * | 1962-06-20 | 1966-12-13 | Giannini Scient Corp | Gas vortex-stabilized light source |
US3360682A (en) * | 1965-10-15 | 1967-12-26 | Giannini Scient Corp | Apparatus and method for generating high-enthalpy plasma under high-pressure conditions |
US3378713A (en) * | 1965-06-08 | 1968-04-16 | Westinghouse Electric Corp | High-intensity radiation source comprising rotating arc |
US3418524A (en) * | 1965-11-29 | 1968-12-24 | Giannini Scient Corp | Apparatus and method for generating high-intensity light |
US3480829A (en) * | 1965-03-08 | 1969-11-25 | Geotel Inc | Electric arc light source and method |
-
0
- BE BE759245D patent/BE759245A/fr unknown
-
1969
- 1969-11-21 US US878775A patent/US3612933A/en not_active Expired - Lifetime
-
1970
- 1970-11-16 CA CA098178A patent/CA921550A/en not_active Expired
- 1970-11-20 ZA ZA707847A patent/ZA707847B/xx unknown
- 1970-11-20 FR FR7041872A patent/FR2069814A5/fr not_active Expired
- 1970-11-20 ES ES385741A patent/ES385741A1/es not_active Expired
- 1970-11-20 JP JP45102051A patent/JPS4916467B1/ja active Pending
- 1970-11-20 BR BR224021/70A patent/BR7024021D0/pt unknown
- 1970-11-20 NL NL7017046A patent/NL7017046A/xx unknown
- 1970-11-20 SE SE7015748A patent/SE376531B/xx unknown
- 1970-11-20 DE DE19702057125 patent/DE2057125A1/de active Pending
- 1970-11-20 AT AT1047370A patent/AT314686B/de active
- 1970-11-20 NO NO04462/70A patent/NO129825B/no unknown
- 1970-11-20 GB GB5689270A patent/GB1334379A/en not_active Expired
-
1971
- 1971-06-15 ES ES392247A patent/ES392247A1/es not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3292028A (en) * | 1962-06-20 | 1966-12-13 | Giannini Scient Corp | Gas vortex-stabilized light source |
US3280360A (en) * | 1963-02-28 | 1966-10-18 | Westinghouse Electric Corp | High intensity radiation source |
US3480829A (en) * | 1965-03-08 | 1969-11-25 | Geotel Inc | Electric arc light source and method |
US3378713A (en) * | 1965-06-08 | 1968-04-16 | Westinghouse Electric Corp | High-intensity radiation source comprising rotating arc |
US3360682A (en) * | 1965-10-15 | 1967-12-26 | Giannini Scient Corp | Apparatus and method for generating high-enthalpy plasma under high-pressure conditions |
US3418524A (en) * | 1965-11-29 | 1968-12-24 | Giannini Scient Corp | Apparatus and method for generating high-intensity light |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3995187A (en) * | 1971-09-07 | 1976-11-30 | Telic Corporation | Electrode type glow discharge apparatus |
WO2001054166A1 (fr) * | 2000-01-21 | 2001-07-26 | Vortek Industries Ltd. | Appareil et procede de rayonnement electromagnetique a intensite elevee |
US6621199B1 (en) | 2000-01-21 | 2003-09-16 | Vortek Industries Ltd. | High intensity electromagnetic radiation apparatus and method |
US20050179354A1 (en) * | 2004-02-12 | 2005-08-18 | Camm David M. | High-intensity electromagnetic radiation apparatus and methods |
US7781947B2 (en) | 2004-02-12 | 2010-08-24 | Mattson Technology Canada, Inc. | Apparatus and methods for producing electromagnetic radiation |
US20100276611A1 (en) * | 2004-02-12 | 2010-11-04 | Mattson Technology Canada, Inc. | High-intensity electromagnetic radiation apparatus and methods |
US8384274B2 (en) | 2004-02-12 | 2013-02-26 | Mattson Technology, Inc. | High-intensity electromagnetic radiation apparatus and methods |
DE102010040759A1 (de) * | 2010-09-14 | 2012-03-15 | Von Ardenne Anlagentechnik Gmbh | Kühlsystem für Targets von Sputterquellen |
DE102010040759B4 (de) * | 2010-09-14 | 2015-10-08 | Von Ardenne Gmbh | Kühlanordnung für Targets von Sputterquellen |
Also Published As
Publication number | Publication date |
---|---|
ES385741A1 (es) | 1973-04-01 |
SE376531B (fr) | 1975-05-26 |
DE2057125A1 (de) | 1971-05-27 |
NO129825B (fr) | 1974-05-27 |
ES392247A1 (es) | 1974-01-16 |
CA921550A (en) | 1973-02-20 |
ZA707847B (en) | 1971-08-25 |
NL7017046A (fr) | 1971-05-25 |
FR2069814A5 (fr) | 1971-09-03 |
AT314686B (de) | 1974-04-25 |
BE759245A (fr) | 1971-05-21 |
JPS4916467B1 (fr) | 1974-04-22 |
GB1334379A (en) | 1973-10-17 |
BR7024021D0 (pt) | 1973-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6114649A (en) | Anode electrode for plasmatron structure | |
US3064153A (en) | High intensity light source | |
US3131288A (en) | Electric arc torch | |
JP3574660B2 (ja) | プラズマトーチの電極構造 | |
US3360682A (en) | Apparatus and method for generating high-enthalpy plasma under high-pressure conditions | |
US4027185A (en) | High intensity radiation source | |
US3612933A (en) | Method and apparatus for stabilizing an arc | |
US2944140A (en) | High-intensity electrical plasma-jet torch incorporating magnetic nozzle means | |
US3073984A (en) | Toroidal arc apparatus | |
US3712996A (en) | Stabilization of plasma generators | |
EP0017201B1 (fr) | Chalumeau à plasma à courant continu | |
US2929952A (en) | Self-circulating plasma device | |
US3597650A (en) | Arc radiation sources | |
US3210518A (en) | Hollow cathode device | |
US3172000A (en) | Gas discharge light source with a recirculating gas supply | |
US3364387A (en) | Radiation torch having an electrode for supplying and exhausting gas | |
US3651358A (en) | Method and apparatus for extending the useful life of an arc radiation source | |
US3366815A (en) | High pressure arc cooled by a thin film of liquid on the wall of the envelope | |
US5239162A (en) | Arc plasma torch having tapered-bore electrode | |
US3416021A (en) | Arc apparatus employing three dimensional arc motion and dynamic balancing | |
US3118046A (en) | Electric arc torch | |
US3405305A (en) | Vortex-stabilized radiation source with a hollowed-out electrode | |
US3280360A (en) | High intensity radiation source | |
US2972698A (en) | High-intensity light source | |
US3480829A (en) | Electric arc light source and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001 Effective date: 19860106 |
|
AS | Assignment |
Owner name: UNION CARBIDE CORPORATION, Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131 Effective date: 19860925 |