US3612360A - Apparatus for fluid handling and sampling - Google Patents

Apparatus for fluid handling and sampling Download PDF

Info

Publication number
US3612360A
US3612360A US753199A US3612360DA US3612360A US 3612360 A US3612360 A US 3612360A US 753199 A US753199 A US 753199A US 3612360D A US3612360D A US 3612360DA US 3612360 A US3612360 A US 3612360A
Authority
US
United States
Prior art keywords
fluid
valve
chamber
piston
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US753199A
Other languages
English (en)
Inventor
William J Ambrose
James E Mcerlane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3612360A publication Critical patent/US3612360A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0203Burettes, i.e. for withdrawing and redistributing liquids through different conduits
    • B01L3/0206Burettes, i.e. for withdrawing and redistributing liquids through different conduits of the plunger pump type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0289Apparatus for withdrawing or distributing predetermined quantities of fluid
    • B01L3/0293Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • F04B13/02Pumps specially modified to deliver fixed or variable measured quantities of two or more fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B5/00Machines or pumps with differential-surface pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0073Piston machines or pumps characterised by having positively-driven valving the member being of the lost-motion type, e.g. friction-actuated members, or having means for pushing it against or pulling it from its seat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples

Definitions

  • Wolfson ABSTRACT An apparatus and a method for handling and sampling fluids which comprises principally a nonpumping valve designed so that in operation it moves less than a microliter of fluid, and a pumping valve designed to aspirate a precisely determined amount of fluid into the body of the valve with no more motion than is inherent in the operation of the valve itself and with no change in the physical dimensions of the valve.
  • the field of this invention is a fluid handling and sampling system, or more particularly the invention is concerned with the design of a fluid handling and sampling system for use in an analytic instrument.
  • fluid handling and sampling systems are not restricted to use in analytic research, the demands on such systems are frequently greatest in such research.
  • Technological advances have increased the precision of analytic instruments to the point where chemical analysis can now be performed on minute samples.
  • any fluid handling and sampling system used in such analysis must be designed with care to insure precision in the transfer of the fluids involved and to insure that the sample does not become contaminated or diluted.
  • human error is always present.
  • many analytic tests have been standardized to the point where they can be performed on automatic analytic instruments. Human error is no longer present, but the demands on the instrument to reach the level of manual precision, are exacting.
  • a typical fluid handling and sampling system for use in analytic research would include a pump which will handle precise quantities of fluid, a valve connected to a transfer probe which is designed to dip into the fluid to be sampled; and a series of secondary valves connected to a series of secondary fluid sources.
  • a secondary fluid such as a buffer solution
  • the requirements for the components of such a system are not particularly stringent. If, however, the amounts of fluid involved are in the microliter range, then the requirements become stringent.
  • the sampling system is designed to function in an automatic instrument which operates continuously there are additional requirements on the durability of the components.
  • the pump for such a system must be capable of handling small quantities of fluid precisely. It is not difficult to design a pump which will do this for a short period of time, but after a few hundred thousand cycles, wear usually causes leakage. This leakage is on the order of microliters. Hence, to insure precision in the microliter range the pumps must be replaced or repaired. This is time-consuming and expensive.
  • This invention includes a novel solution to this problem wherein the pump is designed to compensate externally for variations in its dimensions due to constant wear.
  • the intake valves for such a system which are designed to introduce the secondary fluids, are also a source of error.
  • a valve with moving parts will move fluid as well as control the flow of fluid.
  • the movement of the fluid can be referred to as pumping the fluid.
  • pumping the fluid When large quantities of fluid are involved, the small amount of fluid pumped by the valve in its operation will not introduce appreciable error in the amount of fluid passing through the valve.
  • microliters of fluid When microliters of fluid are involved, the pumping action of the valve will introduce an appreciable error. If the amount of fluid transferred is constant, this error would be of a type for which compensation can be made. In many applications, however, the amount of fluid transferred is variable and the constant error introduced by the pumping action of the valve is superimposed on a variable volume.
  • a ball valve with its fluid shearing motion is one possible design for such a valve, but for many applications here leakage must be kept to a minimum a positive seating valve is preferable. It is impossible to make a positive seating valve which does not move fluid, but it is possible to make such a valve which moves less than a certain amount of fluid. Since we are dealing with microliters of fluid, a nonpumping valve will be, by definition, one that pumps less than a microliter of fluid.
  • the present invention includes a valve which is designed to be a nonpumping valve.
  • the pump and the intake valves for secondary fluid comprise the main sources of error and the precision of the sampling system.
  • the other problem is to keep the sampling system from contaminating the sample fluid. This is a particular problem when the sampling system is designed with a transfer probe with dips into the sample fluid. In the operation of such a system there is often a drop offluid left on the lip of the transfer probe after the discharge of fluids previously handled. Hence, when the transfer probe is dipped into the sample fluid, the drop on the lip of the transfer probe will contaminate the sample system. Part of this problem can be overcome if the transfer probe is cleaned between each use. However, whether the system has been cleaned or not, a drop of fluid still remains to dilute the sample.
  • This problem is particularly acute if the transfer probe is dipped into the sample fluid a number of times, or if the sample volume is small.
  • the sampling system must be designed so that no fluid remains on the lip of the transfer probe.
  • This invention relates to a valve or valve assembly designed to aspirate a set amount of fluid from the lip of the transfer probe into the transfer probe so that no contamination or dilution results.
  • the present invention comprises a nonpumping valve assembly; a pumping valve assembly adapted to aspirate a precise and predetermined amount of liquid from the lip of its intake-output opening into the body of the valve; and a precision pump adapted to handle small quantities of liquid continuously over a long period of time without the introduction of error caused by leakage in the pump due to continuous wear.
  • the nonpumping valve assembly comprises: an enclosed valve chamber with at least two orifices; at least one movable support means; and a closing means.
  • the support means and the closing means are disposed within the valve chamber and the support means is adapted to move the closing means to close off at least one of the openings in the valve chamber without obstructing the remaining openings.
  • the support means is further adapted so that the free volume in the valve chamber remains substantially constant when the closing means is moved, so that no fluid is pumped by the motion of the closing means and its associated support means.
  • the pumping or aspirating valve is composed of the same elements as the nonpumping valve, the difference being that the support means is adapted so that the free volume in the valve chamber changes when the closing means is moved. This causes suction at the intake-output opening of the valve, so the valve can be said to pump.
  • the change in free volume can be carefully controlled in the design of the valve so that the valve can be made to pump the precise amount of fluid desired.
  • the pump is a piston pump comprising: a cylindrical chamber; a piston disposed within the chamber; and a means for moving the piston.
  • the piston itself is comprised of a support means and a deformable cap supported on the support means in such manner that the deformable cap can be deformed externally to conform to the walls of the cylindrical chamber. In this way, even though constant wear occurs, the effect of this wear can be overcome by externally deforming the cap.
  • the aspirating valve referred to as the intake-output valve
  • the intake-output valve is generally but not necessarily connected to a transfer probe on the intake-output side and to a pump on the opposite side.
  • it can be connected to a series of nonpumping valves, referred to as intake valves, which are connected directly to a plurality of secondary fluid sources, containing fluids such as a ash fluid and/or a buffer solution.
  • intake valves connected in seriatim, are in turn connected directly to the pump.
  • the system can be composed of a single intake-output valve and the pump with no intake valves.
  • the system can be composed of a intake-output valve, as many intake valves as required, and the pump.
  • FIGS. 1A and 1B illustrate one possible embodiment of a nonpumping valve which can be used as the intake valve of a fluid handling and sampling system.
  • FIG. 2 illustrates one possible embodiment of a valve which will pump a precisely predetermined volume of fluid and can be used as the intake-output valve of a fluid handling and sampling system.
  • FIG. 3 illustrates a second possible embodiment of a pumping valve.
  • FIG. 4 illustrates a possible embodiment of a pump for use in a fluid handling and sampling system.
  • FIG. 5 is a schematic diagram of one possible embodiment of the fluid handling and sampling system.
  • FIGS. 1A and 1B The pump illustrated in FIGS. 1A and 1B is a nonpumping valve which will pump less than I microliter of fluid, and can be used as the intake valve of the fluid handling and sampling system.
  • FIG. 1A is a side view of the nonpumping valve.
  • the body of valve 11, forming the cylindrical valve chamber 12, is in the shape of a cylinder which has been flattened on its side in two places so that the flat sides are parallel to one another.
  • the closing means is in the form of a cylindrical plug or piston 13 which is disposed concentrically within the valve chamber and supported therein by support rods 14 and 15 which in turn are disposed along the extended axis of the valve cylinder.
  • Support rod 14 passes through the end of the valve chamber 16, through the body of the valve 11, and through the end plug 17 to the exterior of the valve.
  • Support rod 15 passes through end plug 18 to the exterior of the valve.
  • the valve chamber 12 has an opening 19 in end 16 through which support rod 14 passes. This opening is expanded into a channel 20 which extends into the valve cylinder and is concentric with support rod 14.
  • Channel 20 is connected by two other channels, 21 and 22, to the flattened sides of the valve cylinder.
  • the expanded portion of these channels adjacent to the flat surface of the valve cylinder are adapted to hold a gasket which will seal one of these, channel 21, to a similar channel in either another intake valve or the pump, as will be discussed later, and the other channel 22 to a similar channel in the intakeoutput valve, as will be discussed later.
  • the valve chamber 12 also has an opening 23 in its side with a channel leading to the outside of the valve.
  • FIG. 1B is a top view of this embodiment of the nonpumping valve.
  • the opening 23 is connected through channel 24 to the outside of the valve and normally to a source of secondary fluid, not shown, through tube 25.
  • this opening 23 and the channel 24 will be referred to collectively as the intake opening.
  • the cylindrical plug 13 has a diameter less than that of the valve chamber 12 so that it can be moved freely within the valve chamber without blocking the intake opening 23.
  • the diameter of the cylindrical plug 13 is greater than the diameter of the opening 19 so that when the plug is seated at the end of the valve chamber 16 in which the opening is located, the opening will be blocked, effectively closing the valve.
  • the position of the plug 13 in the valve chamber can be manipulated externally either manually or by any suitable device which can be made to operate on the end of either support rod 14 or support rod 15.
  • the system can optionally be spring loaded as shown in FIG. 1A, where spring 25 will cause the cylindrical plug 13 to return to the closed position when the force is removed from whichever support rod is being used to manipulate the valve.
  • the spring can be positioned so that the closing means will return to the open position.
  • the novel feature of this valve is the fact that in operation it will not pump fluid.
  • the two support rods 14 and 15 are of substantially identical diameters so that, in the motion of the closing means 13, as one rod moves out of the chamber 12 it is replaced with an equal volume of the other rod. In this way the free volume in the chamber remains constant and no fluid is pumped.
  • Nonpumping has been defined, herein, to be movement of less than 1 microliter of fluid.
  • the support rods could be made to be exactly equal, so that there would be absolutely no change in the free volume in chamber 12 when the closing means 13 is moved.
  • the support rods can only be made equal to within certain tolerances. A volume change less than 1 microliter can be achieved. A smaller change could be achieved with greater difficulties and higher cost if desired, but within the requirements of the sampling system it was not deemed necessary.
  • FIG. 2 is almost identical to that in FIG. 1 in that it contains a cylindrical valve chamber 28 in a valve body 29, and a closing means supported on two support rods 31 and 32.
  • Support rod 311 extends through the body of the valve 29 and through end plug 33 to the exterior of the valve, and support means 32 extends through end plug 34 to the exterior of the valve.
  • the valve chamber 23 has an opening 35 in one end of the chamber, and this opening expands into a channel 36 which is connected through a second channel 37 to one of the flattened sides of the valve body. In this case there is only one channel 37 leading to one of the flattened surfaces. In other designs, as will be discussed below, there can be two such channels.
  • the end of channel 37 adjacent to the flattened surface is again expanded to house a gasket which will allow sealing either to a pump or to a similar channel, such as channel 22, in the nonpumping valve of FIG. II.
  • the valve chamber 23 also contains an opening 38 in its side which is connected to the outside of the valve by a channel, not shown, in much the same way as that shown in FIG. llB for the nonpumping valve.
  • the valve can be spring loaded with a spring 39 to be normally opened, as shown, or normally closed.
  • Support rod 311 has a larger diameter than support rod 32, which means that as the closing means 33 is moved to close the valve, the free volume in the valve chamber 23 will be increased because the volume of support rod 32 which moves into the valve chamber is less than the volume of support rod 31 which moves out of the valve chamber.
  • the desired change in the free volume in the valve chamber can be achieved.
  • the increase in free volume occurs when the valve is closed. This increase in free volume causes suction in the opening 33 which draws a volume of fluid from the opening, and the channel which connects it to the outside of the valve, into the valve chamber. This aspiration can effectively remove any excess fluid that remains on the exterior lip of the intake-output opening, or on the lip of a probe connected to the opening.
  • the pumping valve could have been designed to pump or aspirate when the closing means was moved to open the valve.
  • a valve designed to operate in this manner is shown in FIG. 3. This valve is similar to the valve in FIG. 2 except that the position of the support rods has been reversed.
  • the support rod 46 with the smaller diameter extends through the opening 4ll in the valve body 42, and passes through the valve body and through end plug 43 to the exterior of the valve.
  • the support rod 44 with the larger diameter, passes directly through end plug 45 to the exterior of the valve.
  • the opening 4ll is expanded into a channel 46 which is connected to one of the flat sides of the valve by another channel 47.
  • a spring 51 is included so that the valve can be spring loaded in the closed position, as shown, or in the open position.
  • the body of the pumping valve such as the one shown in FIG. 3, and the body of the nonpumping valve shown in FIG. ll differ in another respect.
  • the pumping valve has only one channel 47 leading from the expanded opening 4ll in the valve chamber. This means that in normal operation fluid enters the valve through opening 43 and passes through the valve chamber 49 and channels 46 and 47. When the closing means 50 closes the valve, all motion of fllllld through the valve ceases.
  • the nonpumping valve of FIG. ll however, has two channels leading from the expanded opening 19 so that there is a channel formed by channels 22, 20, and 211 which passes directly through the body of the valve. This means that even when the valve is closed there can be a. flow of fluid through the body of the valve.
  • valve body 42 of the pumping valve shown in FIG. 3 would have two channels leading from the expended opening 41, instead of just one. In normal operation one of these would be blocked with an end plate of some sort, but at least the valve bodies would be interchangeable.
  • valves discussed above are to be constructed from suitable material, employing considerations known to those skilled in the art. While the design of the two valves discussed above is similar, this is done merely for convenience. In these embodiments the valves are small, efficient, simple to construct and simple to clean. In addition, they are of a design which makes them readily susceptible to nesting, either with valves of a similar design or with the pump discussed below. When nested with a pump the valves form a fluid handling and sampling system, in which similarly designed valves are convenient; but this does not mean that radically different designs employing the same principals cannot be used.
  • FIG. 4 illustrates one embodiment of a pump which can be used in a precision fluid handling and sampling system.
  • a pump which can be used in a precision fluid handling and sampling system.
  • the pump cylinder 59 can be made to nest with the intake valve (or the intake-output valve if no intake valve is included) by having the channel 62, leading to the pump chamber 63, mate with one of the channels in the intake valve such as channel 46 in FIG. 3.
  • a packing gland 73 to seal the piston rod.
  • the end of the pump cylinder forming the forward wall of the pump chamber 63 is rounded so that no liquid will be trapped in the square corners inherent in a flat front wall.
  • the forward wall is conically shaped for the same purpose.
  • the piston 60 consists of a defonnable cap 64, a forward end plug 65, a hollow shaft 66, a rear end plug 67 and a screw shaft 63 running through the rear end plug 67, concentrically through hollow shaft 66, and into the deformable cap 64.
  • the purpose of such a construction is to allow the shape of the deformable cap to be changed by external means-the screw 63-to conform to the forward and sidewalls of the pump chamber.
  • the deformable cap 64 made from any suitable deformable material, e.g. Teflon, can be shaped like a mushroom with its stem protruding through the forward plug 65 into the hollow shaft 66.
  • the means 61 used to drive the piston can be any suitable means. Many are known to those skilled in the art.
  • the hollow support rod 66 is linked to a ball screw by a pair of ball nuts.
  • the ball nuts are threaded onto the ball screw, back to back, and are adjusted to take up all lost motion between the ball nuts and the ball screw.
  • the ball screw is driven through a set of pulleys and a timing belt from a stepping motor.
  • One step of the motor moves the piston a distance equivalent to a 20 microliter volume, such that the error in this step is less than 0.5 microliter.
  • the pump draws in fluid
  • the cylinder walls are exposed to that fluid.
  • a molecular film of fluid remains on the walls even when the tightest fitting piston is used. This film would contaminate the next, fluid taken into the pump, beyond the 0.02 percent to 0.03 percent required in some tests.
  • the pump must be designed to cleanse itself.
  • the portion of the cylinder in front of the piston can be cleansed by drawing a cleansing fluid through channel 62, in a manner which will be described below. Some method, however, must be provided for cleansing the portion of the cylinder behind. the piston.
  • FIG. is a schematic diagram of the elements described above as they can be combined to form a fluid handling and sampling system.
  • This system can be part of a fully automatic analytic instrument such as the one described in Pat. application Ser. No. 753,197 wherein the operational steps of the sampling system are programmed by some sequencing circuit which in itself operates in response to a coded input, or it can be a simple manually operated system. The operation would be much the same.
  • the sampling system comprises: a single intakeoutput valve 73; an intake valve 77 connected to a source of cleansing fluid; an intake valve 78 connected to a source of buffer solution; and a pump. The system can best be described in operation.
  • the intake-output valve 73 is opened and both intake valves 77 and 78 are closed.
  • the operation begins with the closing of intake-output valve 73 and the opening of intake valve 78.
  • the buffer solution is drawn from its source 79 into the intake valve 78 through intake orifice 80, and into the pump chamber 81.
  • a debubbler 82 can be provided for this purpose; but this is optional.
  • the design of the debubbler is standard and known to those skilled in the art.
  • the capacity of the sampling system is 5 milliliters.
  • the pump draws in l milliliter of buffer solution.
  • Intake valve 78 closes, intake-output valve 73 opens, and the pump discharges the buffer solution into a drain through sample probe 74. This is the buffer flush.
  • Intake-output valve 78 opens again, and pump 75 draws in a volume of buffer solution equal to 5 milliliters, less the volume of the sample fluid which will be required.
  • the sample size usually can be varied from 20 to 500 microliters, in increments of 20 microliters.
  • Intake valve 78 closes, intakeoutput valve 73 opens, the sample transfer probe 74 moves from the drain and dips into the sample.
  • intake-output valve 73 has aspirated any excess fluid remaining on the lip of the transfer probe 74 into the transfer probe, so that no fluid remains on the lip of the transfer probe to contaminate or dilute the sample.
  • the pump then draws in the required sample volume to makeup the total 5 milliliter volume.
  • the sample probe then moves from the sample container to a position over the receptacle which is to receive the sample and buffer fluids.
  • the system can be adapted to deliver this mixture in any way desired.
  • One possi bility is to inject the mixture into the analytic pack described in application Ser. No. 545,494 now US. Pat. No. 3,476,515.
  • the transfer probe 74 can be a hypodermic needle so that it can be inserted through the rubber dam which forms the seal on the analytic pack.
  • this system can be used to transfer fluid from a container, to any location, by any means desired by and known to those skilled in the art.
  • the sample and bufl'er solution are usually discharged into the receptacle in two steps. This facilitates the use of a separation column in the receptacle; if such a column is desired. ln this embodiment most of the buffer solution is contained in the pump 81.
  • the sample is generally separate from the buffer solution, and of a volume small enough to be contained within the transfer probe and the associated transfer lines leading up to the pump chamber. In effect, this means that there is no mixing of the sample fluid and the buffer solution within the sampling system, even though the two fluids are in contact with one another.
  • the sample fluid Upon discharge, which is caused by reversing the action of the pump 75, the sample fluid is discharged first, followed by the buffer solution. This means that, if a separation column is used, the sample fluid will be washed through the separation column by the buffer solution in a manner consistent with good laboratory practice.
  • the sample probe 74 is then positioned over the drain.
  • lntake-output valve 73 closes, intake valve 77 opens and 1 milliliter of a washing fluid, which can be water, any solvent, or any fluid which will produce the desired flushing effect, is drawn from its source 83, optionally through a debubbler 84, through the intake orifice in intake valve 77 and into the pump chamber 81.
  • Intake valve 77 closes, intake-output valve 73 opens, and the pump discharges the flushing fluid into the drain.
  • This is the water flush which can be repeated as many times as desired.
  • the fluid handling system is cleaned and ready for intake of the bufl'er solution for the next operation.
  • the pump 75 shown in FIG. 5 is a piston pump such as that described in FIG. 4. This is a convenient pumping system for the application described above, but it is not the only pumping system which can be used. As described above, the pump shown in FIG. 5 can be constructed so that it can automatically cleanse the portions of the pump behind the piston 86. This is done by drawing some cleansing fluid into port 87 as the volume of the pump chamber 81 is decreased, and forcing this cleansing fluid out through port 88 as the volume of the mixing chamber is increased. This double cleansing decreases contamination and insures the desired precision.
  • a fluid sampling system comprising: at least one sample fluid source containing sample fluid; at least one secondary fluid source containing secondary fluids; a pump; at least one valve connected to said pump and adapted to operate as an intake valve for the fluid from said secondary fluid source, said valve being adapted to pump not more than 1 microliter of fluid; and an intake-output valve, with an intake-output opening, connected to said intake valve and adapted to operate as an intake valve for the fluid from said sample fluid source and an output valve for the sample fluid and secondary fluid taken up; said intake-output valve being further adapted to aspirate a predetermined amount of fluid into the intake-output opening by means of a pumping action in the intake-output valve itself.
  • one of said secondary fluids is a cleansing fluid.
  • said pump comprises: a cylindrical chamber connected through an opening in its forward wall to one of said intake valves; a piston comprising a support rod and a cap, said cap being disposed within said cylindrical chamber, supported on said support rod in such manner as to form a pumping chamber between the forward wall of said cylindrical chamber and the forward end of said cap, and adapted to move within said cylindrical chamber in such manner as to vary the volume of said pumping chamber; a means for moving said piston; and a source of cleansing fluid containing cleansing fluid; said piston and said cylindrical chamber being adapted in such manner that said cleansing fluid will be drawn from its source into that portion of said cylindrical chamber behind said cap by the motion of said piston to decrease the volume of said pumping chamber, and discharged from that portion of the cylindrical chamber behind said piston by the motion of said piston to increase the volume of said pumping chamber.
  • said cylindrical chamber contains a discharge port with a one way discharge valve at the rear of said cylindrical chamber; and wherein said support rod is a tube containing an intake port, with a one way intake valve disposed on a portion of said tube external to said cylindrical chamber, and at least one opening connecting the interior of said tube to said cylindrical chamber in such manner that said cleansing fluid is drawn into said cylindrical chamber, through said intake port and said tube, and discharged through said discharge port.
  • valve assembly for precisely controlling amounts of fluid withdrawn from said fluid source: the improvement in the valve assembly comprising an enclosed cylindrical valve chamber having a piston axially mounted on supporting rods positioned for reciprocating action in said chamber, said rods being of different diameter and extending into said chamber thereby providing differential volumetric displacement within said chamber,
  • valve assembly has an enclosed cylindrical valve chamber having a piston axially mounted on supporting rods positioned for reciprocating action in said chamber, said rods being of different diameter and extending into :said chamber thereby providing differential volumetric dis lacement within said chamber, at least two orifices remote y displaced from each other along said chamber for admitting fluid into said chamber and discharging fluid therefrom, and means for reciprocating said rods and piston whereby one of said orifices is alternately in an opened and closed position
  • said pump has a cylindrical chamber with a convex forward wall, a piston disposed within said chamber, said piston comprising a support means and a substantially cylindrical deformable cap with a convex forward end supported on said support means in such manner that said deformab!e cap can be deformed to conform to the forward and side walls of said cylindrical chamber;
  • a fluid sampling system having at least one sample fluid source; pumping means for withdrawing fluid from said source; and a valve assembly for stopping the flow of fluid from said fluid source, the improvement wherein:
  • said valve assembly comprises 1. an enclosed valve chamber having a closing means mounted on a support means positioned for reciprocating action in said chamber, the combined volume of said closing and support means within said chamber being changed by a predetermined amount during said reciprocating action thereby providing differential volumetric displacement within said chamber;
  • said system further comprises 1. means for preventing the flow of fluid through said first orifice when said pumping means is nonoperating; and

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Reciprocating Pumps (AREA)
US753199A 1968-08-16 1968-08-16 Apparatus for fluid handling and sampling Expired - Lifetime US3612360A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75319968A 1968-08-16 1968-08-16

Publications (1)

Publication Number Publication Date
US3612360A true US3612360A (en) 1971-10-12

Family

ID=25029599

Family Applications (1)

Application Number Title Priority Date Filing Date
US753199A Expired - Lifetime US3612360A (en) 1968-08-16 1968-08-16 Apparatus for fluid handling and sampling

Country Status (7)

Country Link
US (1) US3612360A (ja)
JP (1) JPS503952B1 (ja)
DE (1) DE1941481A1 (ja)
FR (1) FR2015815A1 (ja)
GB (1) GB1281349A (ja)
NL (1) NL6912494A (ja)
SE (1) SE368743B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991616A (en) * 1975-09-08 1976-11-16 Hans Noll Automatic pipetter
WO2008030180A2 (en) * 2006-09-08 2008-03-13 Norden Machinery Ab Metering pump
US20100108721A1 (en) * 2006-10-02 2010-05-06 Syngenta Crop Protection, Inc. Dispensing device for liquids
US10167183B1 (en) * 2015-04-14 2019-01-01 Sestra Systems, Inc System and method for beverage dispensing
CN110388467A (zh) * 2018-04-20 2019-10-29 梅特勒-托利多(常州)测量技术有限公司 吸液手柄控制阀门
CN110848396A (zh) * 2019-10-17 2020-02-28 保一集团有限公司 一种可进行动态取样的截止阀
US20210187525A1 (en) * 2019-12-19 2021-06-24 Graco Minnesota Inc. Isolating valve
US11192770B1 (en) * 2015-04-15 2021-12-07 Sestra Systems Self serve beverage by the glass
CN115824712A (zh) * 2022-11-30 2023-03-21 江西怡杉环保股份有限公司 一种采样计量定量全过程电数据处理方法
US11673787B1 (en) * 2015-04-15 2023-06-13 Sestra Systems Inc Empty keg detection for carbonated beverages
CN110388467B (zh) * 2018-04-20 2024-06-07 梅特勒-托利多(常州)测量技术有限公司 吸液手柄控制阀门

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108533B (zh) * 2019-05-24 2023-10-24 常州派斯杰医疗设备有限公司 组织脱水机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US928588A (en) * 1908-10-02 1909-07-20 Harry A King Apparatus for dispensing a measured quantity of beer.
US928819A (en) * 1908-12-12 1909-07-20 Prec Appliance Company Lubricator.
US994558A (en) * 1909-06-03 1911-06-06 Aspinwall Mfg Co Pump for liquid-sprayers.
US1567444A (en) * 1919-05-05 1925-12-29 Antiseptol Liquid Soap Company Liquid-soap dispenser
US2566436A (en) * 1947-10-11 1951-09-04 Cleveland Detroit Corp Beverage dispensing machine
US2675946A (en) * 1951-04-02 1954-04-20 Edward L Strempel Fluid measuring and dispensing means
US3160331A (en) * 1961-09-22 1964-12-08 Pyles Ind Inc Material dispensing device including a metering chamber
US3160105A (en) * 1963-02-18 1964-12-08 Johnstone Pump Co Inc Pump for high viscosity fluids
US3395536A (en) * 1964-10-13 1968-08-06 Nat Res Dev Method of and apparatus for transmitting energy by pressure oscillations in a fluid
US3407601A (en) * 1965-07-26 1968-10-29 Martin Tool Works Inc Air-hydraulic system and apparatus
US3492946A (en) * 1968-05-23 1970-02-03 Union Carbide Corp Dual volume fluid sample pump

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US928588A (en) * 1908-10-02 1909-07-20 Harry A King Apparatus for dispensing a measured quantity of beer.
US928819A (en) * 1908-12-12 1909-07-20 Prec Appliance Company Lubricator.
US994558A (en) * 1909-06-03 1911-06-06 Aspinwall Mfg Co Pump for liquid-sprayers.
US1567444A (en) * 1919-05-05 1925-12-29 Antiseptol Liquid Soap Company Liquid-soap dispenser
US2566436A (en) * 1947-10-11 1951-09-04 Cleveland Detroit Corp Beverage dispensing machine
US2675946A (en) * 1951-04-02 1954-04-20 Edward L Strempel Fluid measuring and dispensing means
US3160331A (en) * 1961-09-22 1964-12-08 Pyles Ind Inc Material dispensing device including a metering chamber
US3160105A (en) * 1963-02-18 1964-12-08 Johnstone Pump Co Inc Pump for high viscosity fluids
US3395536A (en) * 1964-10-13 1968-08-06 Nat Res Dev Method of and apparatus for transmitting energy by pressure oscillations in a fluid
US3407601A (en) * 1965-07-26 1968-10-29 Martin Tool Works Inc Air-hydraulic system and apparatus
US3492946A (en) * 1968-05-23 1970-02-03 Union Carbide Corp Dual volume fluid sample pump

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991616A (en) * 1975-09-08 1976-11-16 Hans Noll Automatic pipetter
WO2008030180A2 (en) * 2006-09-08 2008-03-13 Norden Machinery Ab Metering pump
WO2008030180A3 (en) * 2006-09-08 2008-04-24 Norden Machinery Ab Metering pump
US20100196178A1 (en) * 2006-09-08 2010-08-05 Norden Machinery Ab Metering pump
CN101512148B (zh) * 2006-09-08 2011-09-07 诺登机械公司 计量泵
US8366422B2 (en) 2006-09-08 2013-02-05 Norden Machinery Ab Metering pump
US20100108721A1 (en) * 2006-10-02 2010-05-06 Syngenta Crop Protection, Inc. Dispensing device for liquids
US10167183B1 (en) * 2015-04-14 2019-01-01 Sestra Systems, Inc System and method for beverage dispensing
US11192770B1 (en) * 2015-04-15 2021-12-07 Sestra Systems Self serve beverage by the glass
US11673787B1 (en) * 2015-04-15 2023-06-13 Sestra Systems Inc Empty keg detection for carbonated beverages
CN110388467A (zh) * 2018-04-20 2019-10-29 梅特勒-托利多(常州)测量技术有限公司 吸液手柄控制阀门
CN110388467B (zh) * 2018-04-20 2024-06-07 梅特勒-托利多(常州)测量技术有限公司 吸液手柄控制阀门
CN110848396A (zh) * 2019-10-17 2020-02-28 保一集团有限公司 一种可进行动态取样的截止阀
CN110848396B (zh) * 2019-10-17 2021-06-29 保一集团有限公司 一种可进行动态取样的截止阀
US20210187525A1 (en) * 2019-12-19 2021-06-24 Graco Minnesota Inc. Isolating valve
CN115824712A (zh) * 2022-11-30 2023-03-21 江西怡杉环保股份有限公司 一种采样计量定量全过程电数据处理方法
CN115824712B (zh) * 2022-11-30 2023-08-11 江西怡杉环保股份有限公司 一种采样计量定量全过程电数据处理方法

Also Published As

Publication number Publication date
DE1941481A1 (de) 1970-02-26
FR2015815A1 (ja) 1970-04-30
SE368743B (ja) 1974-07-15
GB1281349A (en) 1972-07-12
JPS503952B1 (ja) 1975-02-12
NL6912494A (ja) 1970-02-18
DE1941481C3 (ja) 1974-10-03
DE1941481B2 (ja) 1974-02-07

Similar Documents

Publication Publication Date Title
US5474744A (en) Automatic pipetting device with cleaning mechanism
US7459128B2 (en) Microfluidic mixing and dispensing
US3612360A (en) Apparatus for fluid handling and sampling
US3882899A (en) Pinch valve construction
US3915652A (en) Means for transferring a liquid in a capillary open at both ends to an analyzing system
US4941808A (en) Multi-mode differential fluid displacement pump
US3932065A (en) Pneumatically controlled liquid transfer system
US4457339A (en) Multiprogrammable pinch valve module
US3607094A (en) Apparatus for pipetting and adding a liquid
USRE26055E (en) Automatic sample handling apparatus
US4120661A (en) Sampling device
US4818706A (en) Reagent-dispensing system and method
US4503012A (en) Reagent dispensing system
EP0718619A2 (en) Particle measuring apparatus
US3719087A (en) Pipetting apparatus and method
US3273402A (en) Specimen sampling and diluting apparatus
US4470316A (en) Apparatus and method for withdrawing fluid from a source of fluid such as a pipeline
US3976429A (en) Backwash system for diluting apparatus
US3780984A (en) Apparatus and method for fluid handling and sampling
US4418581A (en) Apparatus and method for sampling a liquid
US3752197A (en) Apparatus and method for fluid handling and sample
US3225645A (en) Cuvette and supply system therefor
JPH09257666A (ja) 流体の同時の吸引及び分与を行う注射装置及び方法
US3401591A (en) Analytical cuvette and supply system wherein the cuvette inlet and outlet are located on the bottom of the cuvette
US3877609A (en) Measured dosing dispenser utilizing flow line deformer and method of dispensing