US3612189A - Well perforating and treating apparatus - Google Patents

Well perforating and treating apparatus Download PDF

Info

Publication number
US3612189A
US3612189A US869156A US3612189DA US3612189A US 3612189 A US3612189 A US 3612189A US 869156 A US869156 A US 869156A US 3612189D A US3612189D A US 3612189DA US 3612189 A US3612189 A US 3612189A
Authority
US
United States
Prior art keywords
chamber
unit
conduit
fluid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US869156A
Inventor
Fred A Brooks
Leroy H Simons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Application granted granted Critical
Publication of US3612189A publication Critical patent/US3612189A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/117Shaped-charge perforators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • E21B43/11852Ignition systems hydraulically actuated

Definitions

  • This invention relates to an apparatus for placing a treating fluid in a formation surrounding a wellbore.
  • the migration of formation fines can be controlled by a variety of sand control techniques, all of which in effect establish a sand exclusion zone through which the formation fluids must pass en route to the wellbore.
  • the sand exclusion zone can be provided by mechanical means, e.g., liners, screens, gravel packs, or by consolidation with plastics.
  • the present invention is concerned with fluid-treating subterranean formations and has particular application in the placement of sand consolidating plastics.
  • the concept of forming a coherent permeable sheath about the wellbore by use of thermosetting plastics has long been known.
  • widespread application of the plastic consolidating principle awaited development of techniques and tools for performing the consolidation process.
  • One such tool recently developed is the so called shoot-and-inject tool. This tool obviated many of the problems previously experienced in performing sand consolidation treatment, particularly in the placement of the plastic.
  • the tool is designed to selectively and incrementally place plastic in the formation.
  • Its components include a perforator for forming a single isolated perforation in the casing and an assembly for injecting the treating fluids through the perforation-hence, the name shoot-and-injects tool.
  • the assembly for injecting the chemicals includes a reservoir provided with a valve system for maintaining the chemical components segregated during running and injection operations. All of the components are self-contained, permitting running and operation on conventional wire line equipment.
  • the self-containment construction of the shoot-and-inject" tool limits the treatment volume to the relatively small capacity of the reservoir.
  • Field experience has indicated that the success of a plastic consolidation treatment depends to a large extent upon the volume of plastic injected. Generally the recommended chemical volume is in the range from to 50 gallons for each foot of formation to be treated.
  • This size of treatment requires that the chemicals be placed in the formation by the conventional through-tubing" technique. This technique places the chemical in the formation by surface pumping through the tubing and permits surface control of injection volumes, rates, and pressures. However, it sacrifices the selectivity feature offered by the shoot-and-inject tool.
  • the shoot-and-inject tool presents certain operational problems. It is essential to the operation of the tool that the target area be isolated prior to the actuation of the perforator.
  • Target isolation generally is provided by an annular sealing member which, when pressed against the interior surface of the casing by the action of a hydraulic ram, establishes a pressure seal between the passage formed by the perforator and the wellbore.
  • the sealing member, hydraulic ram, and ram actuator 'increase the complexity of the tool construction and tool operation.
  • the well completion apparatus constructed according to the present invention combines the selectivity of the shootchamber and the formation permitting the injection of treating fluid into the chamber via the conduit, the unit chamber, and the passage.
  • a plurality of the body units can be arranged in stacked relation and selectively actuated so that the formation is treated in vertically adjacent intervals.
  • the injection volume is controlled by surface facilities, the dimensions of the tool are restricted only to that which will house the internal components, e.g., perforating means.
  • the outside diameter of each unit can be sized to pass readily through 2% inch casing.
  • the shootland-inject technique can be used in tubingless completions.
  • the apparatus does not require the isolation of the target area, the annular seal and hydraulic ram required on the presently known shoot-and-inject" tools can be eliminated, thereby greatly simplifying the structure and operation of the tool.
  • FIG. 1 is a sectional view of a wellbore showing the completion apparatus constructed according to the present invention disposed opposite an unconsolidated fon'nation.
  • FIGS. 2 and 3 are views similar to FIG. 1 showing the apparatus and hole conditions at various stages in the treating process.
  • FIG. 4 is an enlarged longitudinal sectional view of the unit shown in FIGS. 1 through 3.
  • FIG. 5 is a transverse sectional view of FIG. 4 taken generally along the cutting plane indicted by the line 55 thereof.
  • FIG. 6 is a wiring diagram for the perforating means used in the assembly of units shown in FIGS. 1 through 3.
  • the well completion apparatus referred to generally as 10, is shown suspended in a cased wellbore l1 opposite an unconsolidated formation 12.
  • the wellbore 11 has been drilled from the earhs surface and is provided with a casing string 13 surrounded by a cement sheath l4.
  • the casing is filled with a light completion fluid, e.g., diesel oil, with a lower section (rat hole 16) remaining occupied with salt water.
  • the apparatus 10 includes generally an assembly comprising a conduit 17 and a plurality of body units, e.g., a first unit 18, a second unit 19, and a third unit 20.
  • the units 18, I9, and 20 are arranged in axially aligned and stacked relation so that when the assembly is located opposite the formation 12, the units confront vertically spaced intervals thereof.
  • each unit is identical in structure to permit interchangeable use, only the lower unit 18 will be described, with like-primed and double-primed reference numerals being assigned to corresponding parts of the middle and upper units, 19 and 20 respectively.
  • each unit e.g., 18, includes a cylindrical hollow body 22 having top and bottom closure members 23 and 24.
  • the assembled body 22 defines an enclosed chamber 25.
  • An angulated tube 26 extends through the chamber 25 terminating in threaded ends on either side of closure members 23 and 24.
  • the angulated configuration of tube 26 provides clearance within chamber 25 for the perforating means.
  • the tube has port means in the form of a perforated section 27 communicating with the chamber 25. As described below, the perforated section 27 provides fluid communication between the conduit 17 and the chamber 25.
  • the angular portions of the tube 26 are smoothly rounded to permit the passage of sealing members through the interior of the tube 26.
  • a perforator gun 28 mounted in chamber 25 is detonated by an electric firing mechanism 29 comprising a battery 30, a detonator 31, and a pressure switch 32.
  • the perforator gun 28 can be of any conventional construction but preferably the perforators shown as 33 and 34 are jet perforators contained in an enclosed carrier 36 so that the firing thereof will not damage other unit components. With the carrier 36 secured to the inner wall of body 22, the perforators 33 and 34 are oriented to fire in a direction which lies in a plane passing through the axes of body 22 and carrier 36 away from tube 26.
  • the units 18-20 are identical in structure and operations. Therefore any number of units can be assembled in any order by merely coupling together the exposed threaded ends of the respective tubes 26 (see FIG. 1).
  • the upper exposed end of tube 26" can be coupled to the conduit 17 for running-in operations, the lower exposed end of member 26 being provided with a perforated cap 37.
  • the conduit 17 in fluid communication with each unit chamber 25, 25, 25" through tubes 26, 26' and 26" provides fluid conductor means for delivering treating fluid to each of the units 18-20 and to the wellbore 11.
  • the total number of units in the assembly will depend upon the thickness of the zone to be treated.
  • the spacing of the perforators 33, 34; 33', 34'; etc. of the entire assembly preferably should provide a perforation density of about one hole per foot. If the thickness of the zone to be consolidated approximates 6 feet, the assembly will normally comprise three units as shown in FIGS. 1-3.
  • the pressure switch 32 wired into the electric firing circuit as shown in FIG. 6, serves the dual function of detonating the associated perforating gun 28 and arming the firing mechanism of the vertically adjacent unit. Each pressure switch 32 closes in response to a predetermined fluid pressure in its associated chamber 25.
  • the pressure switch 32 of the bottom unit 18 is preset to close at a pressure substantially above the wellbore static pressure.
  • the fluid pressure in the chambers 25, 25, 25" is gradually increased by means described below.
  • the pressure in the bottom chamber 25 reaches the preset pressure of switch 32, the electric circuit for the perforating means enclosed therein is completed, causing the perforator gun 28 thereof to fire.
  • the closing the switch 32 establishes a ground connection for the firing circuit of the vertically adjacent the unit 19 thereby placing it in condition for firing. Firing of the middle unit perforator gun 28' is occasioned by the continued increase in system pressure, the preset pressure of the middle unit switch 32' being sufficiently greater than that of the bottom unit switch 32 to ensure independent and selective response.
  • the closing of the middle unit switch 32' fires the middle unit perforator gun 28 and arms the top unit firing mechanism 29" in the manner described above.
  • the preset pressure of switch 32 is sufficiently greater than that of the preset pressure of 32' to ensure independent and selective response to increase in pressure in chamber 25".
  • the pressure switches can be conventional single-pole, single-throw switches provided with a -10 second time delay to prevent premature actuation by explosive shock waves.
  • a pressure gap of 30-50 p.s.i. in the settings of switches 32 and 32" is normally sufficient to enable independent and selective actuation of the firing mechanisms 28, 28', and 28".
  • the switches 32, 32, and 32" can be differential pressure switches set to close at a predetermined pressure above the wellbore pressure.
  • the tubes 26, 26, and 26" are connected in series, and with the conduit 17 provide conductor means from the surface to and through each unit 18-20.
  • circulation can be maintained between the conduit 17 and the wellbore 11 through the passage provided by the perforated cap 37.
  • sealing members 38 are pumped through the conduit l7 and the tubes 26", 26', and 26.
  • the member 38 is received in sealing relation on a suitable seat provided in the lower end of tube 26. This interrupts fluid communication with the wellbore so that pressure buildup in the chambers 25 and 25" can be effected by the operation of surface pumps.
  • the pressure is gradually increased in the system until the lowest preset pressure (switch 32) is reached.
  • perforators 33 an 34 forms two fluid passages 39, 39 between the chamber 25 and the formation 12. This permits the injection of treating fluids into the formation 12 via conduit 17, tubes 26", 26', 26 chamber 25 and flow passages 39 by the surface pumps.
  • the sealing member 38 While a variety of wipers or plugs can satisfactorily serve as the sealing member 38, it is preferred that the sealing member be spherical in configuration and composed of a resilient material such as hard rubber or neoprene.
  • the resilient balls provide adequate separation between different chemicals used in the treatment and yet are deformable under differential pressure to sealingly engage the internal wall of the tubes 26, 26', and 26".
  • the closing of the lower chamber 25 permits pressuring-up of the middle chamber 25 by operation of surface facilities.
  • the pressure is gradually increased to the preset pressure of switch 32'.
  • the resulting actuation of the middle unit perforating means forms flow passages 39' between the formation 12 and middle unit chamber 25'.
  • This interval which is vertically spaced from the lower treated interval then can be treated by operation of surface facilities.
  • a sufficient number of sealing members are introduced into the treating stream to effect closure of the perforated section 27'.
  • each unit can be actuated in a steplike order permitting the sequential treatment of the formation I2 in vertically adjacent intervals.
  • the separate firing mechanism for each unit permits the firing of their associated perforators at selected time intervals.
  • the treating fluid density is lighter than or equal to the completion fluid density, it may be necessary to provide packing members on either side of the zone to be treated.
  • flexible, annularly shaped rubber wipers 40 can be mounted on the top of unit 20 and the bottom of unit 18. During running-in, pulling-out, and circulation operations, the flexible wipers 40 fold back, permitting the passage of fluid thereby.
  • the operations of the apparatus constructed according to the present invention will be briefly described with reference to FIGS. 1, 2, and 3.
  • the number of units 18-20 assembled and wired together in the manner described above is determined by the length of the interval to be consolidated. In this embodiment three units 18-20 are so assembled.
  • the assembly is attached to the conduit 17, run in the wellbore l1, and located opposite the zone to be treated.
  • the initial treatment volume is pumped into the conduit 17 while taking returns on the casing 13.
  • the leading portion of the treating fluid is provided with a plurality of sealing balls 38 such that when the fluid reaches the perforated section 27 of unit 18, the final ball is located slightly below the perforated section. This condition will be reflected at the surface by a slight increase in pump pressure since the leading ball is sealingly received in the lower end of tube 26.
  • the pressure-responsive perforating means is actuated forming a fluid passage 39 between the formation 12 and chamber 25. This permits the injection of treating fluid into the formation 12 forming a generally spherically shaped invaded zone.
  • the trailing portion of the treating fluid is provided with a sufficient number of balls 38 to pressure seal the bottom unit perforated section 27. Again the pressure is gradually increased, actuating the pressure responsive perforating means of the middle unit 19.
  • the middle unit is treated as previously described, the trailing portion of the treating fluid being provided with a plurality of balls 38 which upon completion of the treatment seals the middle unit perforated section.
  • the invaded zone of the formation will be of general cylindrical shape as depicted in FIG. 3.
  • a plugging solution such as an oil base mud can be used following each treatment so that the fluid passages 39, 39', and 39" are temporarily plugged. These plugs can be removed by producing the well.
  • the well completion apparatus of this invention has particular application in plastic, sand consolidation treatments.
  • Each vertically adjacent interval can be treated with a plurality of chemicals comprising a preflush, a plastic resin, a hardener or catalyst, and a plugging solution.
  • the various solutions can be separated by one or more of the sealing balls 38 which can be collected in stacked relationship in the tubes 26, 26', and 2
  • the apparatus can be used in the placement of any the presently known sand-consolidating plastics, the most important of which are the epoxy resins, the phenol-formaldehyde resins, and the furan resins. It can be used in premixed system (resin and catalyst mixed before placement) or the in situ mixed system (resin and catalyst mixed in the formation).
  • An apparatus for treating a subterranean formation surrounding a wellbore comprising a conduit, a body unit supported on said conduit and defining an enclosed chamber, said conduit having fluid conductor means in fluid communication with said chamber and in fluid communica: tion with said wellbore; a perforator mounted in said chamber; means for actuating said perforator in response to a predetermined pressure in said chamber; and means for closing the conductor means in fluid communication with said wellbore.
  • said fluid conductor means includes a tube extending through said chamber, said tube having a lower end communicating with said wellbore and port means communicating with said chamber.
  • said means for closing said conductor means communicating with said wellbore includes a seat formed in said lower end of said tube and a sealing member passable through said conduit and said tube and engageable with said seat in sealing relationship.
  • a well completion apparatus for fluid treating a subterranean formation surrounding a cased wellbore comprising: a lower body unit defining an enclosed chamber; an upper body unit defining an enclosed chamber, said units being assembled in vertically spaced relationship; a conduit in fluid communication with each of said chambers and adapted to conduct a treating fluid to each of said chambers; perforating means mounted in each of said chambers;
  • each of said perforating means includes a perforator gun and firing mechanism operatively responsive to a predetermined fluid pressure in said conduit, the predetermined fluid pressure for actuating the lower unit firing mechanism being substantially lower than the predetermined fluid pressure for actuating the upper unit firing mechanism, and said means for actuating said perforating means includes means for increasing the pressure in said conduit to actuate said lower unit firing mechanism and then to increase the pressure in said conduit to actuate said upper unit firing mechanism.
  • said lower unit perforating means includes means for arming said upper unit firing mechanism responsive to actuation of said first unit firing mechanism.
  • said means for increasing the pressure in said conduit includes a sealing member passable through said conduit and lodgeable in said lower unit to interrupt fluid communication between said lower unit chamber and said conduit.
  • conduit includes a tube extending through said upper unit chamber and being connected in fluid communication with said lower unit chamber, said tube having port means communicating with said upper unit chamber, said sealing member being adapted to lodge in said tube to interrupt fluid communication between said upper unit chamber and said lower unit chamber.
  • each unit perforator gun includes a plurality of vertically spaced jet perforators, the unit spacing and jet perforator spacing being such to provide a shot density of about one shot per foot of thickness of the formation to be treated.
  • a well completion apparatus for fluid treating a subterranean formation surrounding a cased wellbore comprising: a lower body unit defining an enclosed lower chamber; at least one upper body unit defining an enclosed upper chamber; means for assembling said lower body unit and said upper body unit in axial and spaced-a art alignment; a conduit adapted to support and locate the assembled units opposite said formation and providing conductor means for delivering treating fluid to each of said chambers; perforating means mounted in each of said chambers; means for first actuating said perforating means of said lower unit to form a fluid passage between said lower chamber and said formation, and then actuating said perforating means of said upper unit to form a fluid passage between said upper chamber and said formation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A well completion apparatus for perforating and injecting a fluid into a formation surrounding a cased wellbore. The apparatus includes a body unit defining an enclosed chamber, a perforator mounted in the chamber, a conduit in fluid communication with the chamber and adapted to conduct fluid from the surface to the chamber, and a mechanism for firing the perforator to form a flow passage between the formation and the chamber.

Description

United States. Patent a te J t a g t. J M m w n m m mw w w mm .WKBYBBS 9461278 3456666 9999999 7 1111111 8262152 11 1 60 3 7 H7645382 6 5 -9 0 9 4oo 644 6 22223333 L h v. n m m n. m m m C h o m h t w M m .9 H mm 0 m 9 m... 67 c rs 99u B 11M dm muw m FLSOOE S 0. 06 r e w n n dmh W Wet-.8 n Ha 1 AFPA 11:1] 2 253 7 2247 [1.1.1
NE QKNKMW l75/4.54, l66/55.l,166/297, 175/4.55, 17514.59
.xt wfise xa [54] WELL PERFORATING AND TREATING APPARATUS 10 Claims, 6 Drawing Figs.
[51] Int. 43/117, E2lb 43/119 [50] Field of 298, 55, 55.1; 175/4.52, 454-46 [56] References Cited UNITED STATES PATENTS PATENTED am 1 2 l9?l 3 L 1 2. 1 89 sum 1 or 2 FIG. 2
FIG. I
:" l: 52'; 5 :2 INVEN'I'ORS FRED A. BROOKS, JR. LEROY H. SIMONS ATTORNEY WELL PERFORATING AND TREATING APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an apparatus for placing a treating fluid in a formation surrounding a wellbore.
2. Description of the Prior Art In completing wells in unconsolidated formations, con sideration must be given to the sand problems likely to arise during operation of the wells. The migration of formation fines can be controlled by a variety of sand control techniques, all of which in effect establish a sand exclusion zone through which the formation fluids must pass en route to the wellbore. The sand exclusion zone can be provided by mechanical means, e.g., liners, screens, gravel packs, or by consolidation with plastics.
The present invention is concerned with fluid-treating subterranean formations and has particular application in the placement of sand consolidating plastics. The concept of forming a coherent permeable sheath about the wellbore by use of thermosetting plastics has long been known. However, widespread application of the plastic consolidating principle awaited development of techniques and tools for performing the consolidation process. One such tool recently developed is the so called shoot-and-inject tool. This tool obviated many of the problems previously experienced in performing sand consolidation treatment, particularly in the placement of the plastic. The tool is designed to selectively and incrementally place plastic in the formation. Its components include a perforator for forming a single isolated perforation in the casing and an assembly for injecting the treating fluids through the perforation-hence, the name shoot-and-injects tool. The assembly for injecting the chemicals includes a reservoir provided with a valve system for maintaining the chemical components segregated during running and injection operations. All of the components are self-contained, permitting running and operation on conventional wire line equipment.
The self-containment construction of the shoot-and-inject" tool limits the treatment volume to the relatively small capacity of the reservoir. Field experience has indicated that the success of a plastic consolidation treatment depends to a large extent upon the volume of plastic injected. Generally the recommended chemical volume is in the range from to 50 gallons for each foot of formation to be treated. This size of treatment requires that the chemicals be placed in the formation by the conventional through-tubing" technique. This technique places the chemical in the formation by surface pumping through the tubing and permits surface control of injection volumes, rates, and pressures. However, it sacrifices the selectivity feature offered by the shoot-and-inject tool.
In addition to the capacity limitation described above, the shoot-and-inject tool presents certain operational problems. It is essential to the operation of the tool that the target area be isolated prior to the actuation of the perforator. Target isolation generally is provided by an annular sealing member which, when pressed against the interior surface of the casing by the action of a hydraulic ram, establishes a pressure seal between the passage formed by the perforator and the wellbore. The sealing member, hydraulic ram, and ram actuator'increase the complexity of the tool construction and tool operation.
SUMMARY OF THE INVENTION The well completion apparatus constructed according to the present invention combines the selectivity of the shootchamber and the formation permitting the injection of treating fluid into the chamber via the conduit, the unit chamber, and the passage. A plurality of the body units can be arranged in stacked relation and selectively actuated so that the formation is treated in vertically adjacent intervals. Moreover, since the injection volume is controlled by surface facilities, the dimensions of the tool are restricted only to that which will house the internal components, e.g., perforating means. Using conventional-shaped charges as the perforating means, the outside diameter of each unit can be sized to pass readily through 2% inch casing. Thus the shootland-inject technique can be used in tubingless completions.
Since the apparatus does not require the isolation of the target area, the annular seal and hydraulic ram required on the presently known shoot-and-inject" tools can be eliminated, thereby greatly simplifying the structure and operation of the tool.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a wellbore showing the completion apparatus constructed according to the present invention disposed opposite an unconsolidated fon'nation.
FIGS. 2 and 3 are views similar to FIG. 1 showing the apparatus and hole conditions at various stages in the treating process.
FIG. 4 is an enlarged longitudinal sectional view of the unit shown in FIGS. 1 through 3.
FIG. 5 is a transverse sectional view of FIG. 4 taken generally along the cutting plane indicted by the line 55 thereof.
FIG. 6 is a wiring diagram for the perforating means used in the assembly of units shown in FIGS. 1 through 3.
DESCRIPTION OF THE PREFERRED EMBODIMENTS With reference to FIG. 1, the well completion apparatus, referred to generally as 10, is shown suspended in a cased wellbore l1 opposite an unconsolidated formation 12. The wellbore 11 has been drilled from the earhs surface and is provided with a casing string 13 surrounded by a cement sheath l4. Preparatory to completing the well, the casing is filled with a light completion fluid, e.g., diesel oil, with a lower section (rat hole 16) remaining occupied with salt water.
The apparatus 10 includes generally an assembly comprising a conduit 17 and a plurality of body units, e.g., a first unit 18, a second unit 19, and a third unit 20. The units 18, I9, and 20 are arranged in axially aligned and stacked relation so that when the assembly is located opposite the formation 12, the units confront vertically spaced intervals thereof.
Since each unit is identical in structure to permit interchangeable use, only the lower unit 18 will be described, with like-primed and double-primed reference numerals being assigned to corresponding parts of the middle and upper units, 19 and 20 respectively.
As shown in FIGS. 4 and 5 each unit, e.g., 18, includes a cylindrical hollow body 22 having top and bottom closure members 23 and 24. The assembled body 22 defines an enclosed chamber 25. An angulated tube 26 extends through the chamber 25 terminating in threaded ends on either side of closure members 23 and 24. The angulated configuration of tube 26 provides clearance within chamber 25 for the perforating means. The tube has port means in the form of a perforated section 27 communicating with the chamber 25. As described below, the perforated section 27 provides fluid communication between the conduit 17 and the chamber 25. The angular portions of the tube 26 are smoothly rounded to permit the passage of sealing members through the interior of the tube 26.
A perforator gun 28 mounted in chamber 25 is detonated by an electric firing mechanism 29 comprising a battery 30, a detonator 31, and a pressure switch 32. The perforator gun 28 can be of any conventional construction but preferably the perforators shown as 33 and 34 are jet perforators contained in an enclosed carrier 36 so that the firing thereof will not damage other unit components. With the carrier 36 secured to the inner wall of body 22, the perforators 33 and 34 are oriented to fire in a direction which lies in a plane passing through the axes of body 22 and carrier 36 away from tube 26.
The units 18-20 are identical in structure and operations. Therefore any number of units can be assembled in any order by merely coupling together the exposed threaded ends of the respective tubes 26 (see FIG. 1). The upper exposed end of tube 26" can be coupled to the conduit 17 for running-in operations, the lower exposed end of member 26 being provided with a perforated cap 37. Thus when the assembly is located opposite the formation 12, the conduit 17 in fluid communication with each unit chamber 25, 25, 25" through tubes 26, 26' and 26" provides fluid conductor means for delivering treating fluid to each of the units 18-20 and to the wellbore 11. The total number of units in the assembly will depend upon the thickness of the zone to be treated. The spacing of the perforators 33, 34; 33', 34'; etc. of the entire assembly preferably should provide a perforation density of about one hole per foot. If the thickness of the zone to be consolidated approximates 6 feet, the assembly will normally comprise three units as shown in FIGS. 1-3.
The pressure switch 32 wired into the electric firing circuit as shown in FIG. 6, serves the dual function of detonating the associated perforating gun 28 and arming the firing mechanism of the vertically adjacent unit. Each pressure switch 32 closes in response to a predetermined fluid pressure in its associated chamber 25. The pressure switch 32 of the bottom unit 18 is preset to close at a pressure substantially above the wellbore static pressure.
With the assembly of units 18-20 located at the proper depth, the fluid pressure in the chambers 25, 25, 25" is gradually increased by means described below. When the pressure in the bottom chamber 25 reaches the preset pressure of switch 32, the electric circuit for the perforating means enclosed therein is completed, causing the perforator gun 28 thereof to fire. In addition to firing the perforators, the closing the switch 32 establishes a ground connection for the firing circuit of the vertically adjacent the unit 19 thereby placing it in condition for firing. Firing of the middle unit perforator gun 28' is occasioned by the continued increase in system pressure, the preset pressure of the middle unit switch 32' being sufficiently greater than that of the bottom unit switch 32 to ensure independent and selective response. The closing of the middle unit switch 32' fires the middle unit perforator gun 28 and arms the top unit firing mechanism 29" in the manner described above. The preset pressure of switch 32 is sufficiently greater than that of the preset pressure of 32' to ensure independent and selective response to increase in pressure in chamber 25". The pressure switches can be conventional single-pole, single-throw switches provided with a -10 second time delay to prevent premature actuation by explosive shock waves. A pressure gap of 30-50 p.s.i. in the settings of switches 32 and 32" is normally sufficient to enable independent and selective actuation of the firing mechanisms 28, 28', and 28". The switches 32, 32, and 32" can be differential pressure switches set to close at a predetermined pressure above the wellbore pressure.
As indicated above, the tubes 26, 26, and 26" are connected in series, and with the conduit 17 provide conductor means from the surface to and through each unit 18-20. During running-in operations, circulation can be maintained between the conduit 17 and the wellbore 11 through the passage provided by the perforated cap 37. When the assembly of units 18-20 is properly located opposite the zone to be treated, sealing members 38 are pumped through the conduit l7 and the tubes 26", 26', and 26. The member 38 is received in sealing relation on a suitable seat provided in the lower end of tube 26. This interrupts fluid communication with the wellbore so that pressure buildup in the chambers 25 and 25" can be effected by the operation of surface pumps. The pressure is gradually increased in the system until the lowest preset pressure (switch 32) is reached. The ensuing detonation of perforators 33 an 34 forms two fluid passages 39, 39 between the chamber 25 and the formation 12. This permits the injection of treating fluids into the formation 12 via conduit 17, tubes 26", 26', 26 chamber 25 and flow passages 39 by the surface pumps.
While a variety of wipers or plugs can satisfactorily serve as the sealing member 38, it is preferred that the sealing member be spherical in configuration and composed of a resilient material such as hard rubber or neoprene.The resilient balls provide adequate separation between different chemicals used in the treatment and yet are deformable under differential pressure to sealingly engage the internal wall of the tubes 26, 26', and 26".
In order to increase the pressure in the vertically adjacent unit 19, a sufficient number of balls 38 are introduced into the fluid conducted to chamber 25 to seal the perforated section 27 of tube 26 (see FIG. 2).
The closing of the lower chamber 25 permits pressuring-up of the middle chamber 25 by operation of surface facilities. The pressure is gradually increased to the preset pressure of switch 32'. The resulting actuation of the middle unit perforating means forms flow passages 39' between the formation 12 and middle unit chamber 25'. This interval which is vertically spaced from the lower treated interval then can be treated by operation of surface facilities. Again a sufficient number of sealing members are introduced into the treating stream to effect closure of the perforated section 27'. Thus each unit can be actuated in a steplike order permitting the sequential treatment of the formation I2 in vertically adjacent intervals. Moreover, the separate firing mechanism for each unit permits the firing of their associated perforators at selected time intervals.
Under certain conditions, as where the treating fluid density is lighter than or equal to the completion fluid density, it may be necessary to provide packing members on either side of the zone to be treated. In this event, flexible, annularly shaped rubber wipers 40 can be mounted on the top of unit 20 and the bottom of unit 18. During running-in, pulling-out, and circulation operations, the flexible wipers 40 fold back, permitting the passage of fluid thereby.
The operations of the apparatus constructed according to the present invention will be briefly described with reference to FIGS. 1, 2, and 3. The number of units 18-20 assembled and wired together in the manner described above is determined by the length of the interval to be consolidated. In this embodiment three units 18-20 are so assembled. The assembly is attached to the conduit 17, run in the wellbore l1, and located opposite the zone to be treated. The initial treatment volume is pumped into the conduit 17 while taking returns on the casing 13. The leading portion of the treating fluid is provided with a plurality of sealing balls 38 such that when the fluid reaches the perforated section 27 of unit 18, the final ball is located slightly below the perforated section. This condition will be reflected at the surface by a slight increase in pump pressure since the leading ball is sealingly received in the lower end of tube 26. Fluid is slowly pumped into the conduit 17 causing an increase in pressure in the lower chamber 25. The pressure-responsive perforating means is actuated forming a fluid passage 39 between the formation 12 and chamber 25. This permits the injection of treating fluid into the formation 12 forming a generally spherically shaped invaded zone. The trailing portion of the treating fluid is provided with a sufficient number of balls 38 to pressure seal the bottom unit perforated section 27. Again the pressure is gradually increased, actuating the pressure responsive perforating means of the middle unit 19. The middle unit is treated as previously described, the trailing portion of the treating fluid being provided with a plurality of balls 38 which upon completion of the treatment seals the middle unit perforated section. Again the pressure in the column is gradually increased, actuating the perforating means of the top unit 20 forming passages 39". This permits treatment of the top interval. At the conclusion of the treatment, the invaded zone of the formation will be of general cylindrical shape as depicted in FIG. 3.
in order to ensure the sequential treatment of the vertically spaced intervals, a plugging solution such as an oil base mud can be used following each treatment so that the fluid passages 39, 39', and 39" are temporarily plugged. These plugs can be removed by producing the well.
The well completion apparatus of this invention has particular application in plastic, sand consolidation treatments. Each vertically adjacent interval can be treated with a plurality of chemicals comprising a preflush, a plastic resin, a hardener or catalyst, and a plugging solution. In treating each interval the various solutions can be separated by one or more of the sealing balls 38 which can be collected in stacked relationship in the tubes 26, 26', and 2 The apparatus can be used in the placement of any the presently known sand-consolidating plastics, the most important of which are the epoxy resins, the phenol-formaldehyde resins, and the furan resins. It can be used in premixed system (resin and catalyst mixed before placement) or the in situ mixed system (resin and catalyst mixed in the formation).
lclaim:
1. An apparatus for treating a subterranean formation surrounding a wellbore, said apparatus comprising a conduit, a body unit supported on said conduit and defining an enclosed chamber, said conduit having fluid conductor means in fluid communication with said chamber and in fluid communica: tion with said wellbore; a perforator mounted in said chamber; means for actuating said perforator in response to a predetermined pressure in said chamber; and means for closing the conductor means in fluid communication with said wellbore.
2. The invention as recited in claim 1 wherein said fluid conductor means includes a tube extending through said chamber, said tube having a lower end communicating with said wellbore and port means communicating with said chamber.
3. The invention as recited in claim 2 wherein said means for closing said conductor means communicating with said wellbore includes a seat formed in said lower end of said tube and a sealing member passable through said conduit and said tube and engageable with said seat in sealing relationship.
4. A well completion apparatus for fluid treating a subterranean formation surrounding a cased wellbore, said apparatus comprising: a lower body unit defining an enclosed chamber; an upper body unit defining an enclosed chamber, said units being assembled in vertically spaced relationship; a conduit in fluid communication with each of said chambers and adapted to conduct a treating fluid to each of said chambers; perforating means mounted in each of said chambers;
and means for actuating said perforating means in said upper and lower units at selected times.
5. The invention as recited in claim 4 wherein each of said perforating means includes a perforator gun and firing mechanism operatively responsive to a predetermined fluid pressure in said conduit, the predetermined fluid pressure for actuating the lower unit firing mechanism being substantially lower than the predetermined fluid pressure for actuating the upper unit firing mechanism, and said means for actuating said perforating means includes means for increasing the pressure in said conduit to actuate said lower unit firing mechanism and then to increase the pressure in said conduit to actuate said upper unit firing mechanism.
6. The invention as recited in claim 5 wherein said lower unit perforating means includes means for arming said upper unit firing mechanism responsive to actuation of said first unit firing mechanism.
7. The invention as recited in claim 6 wherein said means for increasing the pressure in said conduit includes a sealing member passable through said conduit and lodgeable in said lower unit to interrupt fluid communication between said lower unit chamber and said conduit.
8. The invention as recited in claim 8 wherein said conduit includes a tube extending through said upper unit chamber and being connected in fluid communication with said lower unit chamber, said tube having port means communicating with said upper unit chamber, said sealing member being adapted to lodge in said tube to interrupt fluid communication between said upper unit chamber and said lower unit chamber.
9. The invention as recited in claim 8 wherein each unit perforator gun includes a plurality of vertically spaced jet perforators, the unit spacing and jet perforator spacing being such to provide a shot density of about one shot per foot of thickness of the formation to be treated.
10. A well completion apparatus for fluid treating a subterranean formation surrounding a cased wellbore, said apparatus comprising: a lower body unit defining an enclosed lower chamber; at least one upper body unit defining an enclosed upper chamber; means for assembling said lower body unit and said upper body unit in axial and spaced-a art alignment; a conduit adapted to support and locate the assembled units opposite said formation and providing conductor means for delivering treating fluid to each of said chambers; perforating means mounted in each of said chambers; means for first actuating said perforating means of said lower unit to form a fluid passage between said lower chamber and said formation, and then actuating said perforating means of said upper unit to form a fluid passage between said upper chamber and said formation.

Claims (10)

1. An apparatus for treating a subterranean formation surrounding a wellbore, said apparatus comprising a conduit, a body unit supported on said conduit and defining an enclosed chamber, said conduit having fluid conductor means in fluid communication with said chamber and in fluid communication with said wellbore; a perforator mounted in said chamber; means for actuating said perforator in response to a predetermined pressure in said chamber; and means for closing the conductor means in fluid communication with said wellbore.
2. The invention as recited in claim 1 wherein saiD fluid conductor means includes a tube extending through said chamber, said tube having a lower end communicating with said wellbore and port means communicating with said chamber.
3. The invention as recited in claim 2 wherein said means for closing said conductor means communicating with said wellbore includes a seat formed in said lower end of said tube and a sealing member passable through said conduit and said tube and engageable with said seat in sealing relationship.
4. A well completion apparatus for fluid treating a subterranean formation surrounding a cased wellbore, said apparatus comprising: a lower body unit defining an enclosed chamber; an upper body unit defining an enclosed chamber, said units being assembled in vertically spaced relationship; a conduit in fluid communication with each of said chambers and adapted to conduct a treating fluid to each of said chambers; perforating means mounted in each of said chambers; and means for actuating said perforating means in said upper and lower units at selected times.
5. The invention as recited in claim 4 wherein each of said perforating means includes a perforator gun and firing mechanism operatively responsive to a predetermined fluid pressure in said conduit, the predetermined fluid pressure for actuating the lower unit firing mechanism being substantially lower than the predetermined fluid pressure for actuating the upper unit firing mechanism, and said means for actuating said perforating means includes means for increasing the pressure in said conduit to actuate said lower unit firing mechanism and then to increase the pressure in said conduit to actuate said upper unit firing mechanism.
6. The invention as recited in claim 5 wherein said lower unit perforating means includes means for arming said upper unit firing mechanism responsive to actuation of said first unit firing mechanism.
7. The invention as recited in claim 6 wherein said means for increasing the pressure in said conduit includes a sealing member passable through said conduit and lodgeable in said lower unit to interrupt fluid communication between said lower unit chamber and said conduit.
8. The invention as recited in claim 8 wherein said conduit includes a tube extending through said upper unit chamber and being connected in fluid communication with said lower unit chamber, said tube having port means communicating with said upper unit chamber, said sealing member being adapted to lodge in said tube to interrupt fluid communication between said upper unit chamber and said lower unit chamber.
9. The invention as recited in claim 8 wherein each unit perforator gun includes a plurality of vertically spaced jet perforators, the unit spacing and jet perforator spacing being such to provide a shot density of about one shot per foot of thickness of the formation to be treated.
10. A well completion apparatus for fluid treating a subterranean formation surrounding a cased wellbore, said apparatus comprising: a lower body unit defining an enclosed lower chamber; at least one upper body unit defining an enclosed upper chamber; means for assembling said lower body unit and said upper body unit in axial and spaced-apart alignment; a conduit adapted to support and locate the assembled units opposite said formation and providing conductor means for delivering treating fluid to each of said chambers; perforating means mounted in each of said chambers; means for first actuating said perforating means of said lower unit to form a fluid passage between said lower chamber and said formation, and then actuating said perforating means of said upper unit to form a fluid passage between said upper chamber and said formation.
US869156A 1969-10-24 1969-10-24 Well perforating and treating apparatus Expired - Lifetime US3612189A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86915669A 1969-10-24 1969-10-24

Publications (1)

Publication Number Publication Date
US3612189A true US3612189A (en) 1971-10-12

Family

ID=25353029

Family Applications (1)

Application Number Title Priority Date Filing Date
US869156A Expired - Lifetime US3612189A (en) 1969-10-24 1969-10-24 Well perforating and treating apparatus

Country Status (1)

Country Link
US (1) US3612189A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939927A (en) * 1974-11-04 1976-02-24 Dresser Industries, Inc. Combined gravel packing and perforating method and apparatus for use in well bores
US4009757A (en) * 1975-02-03 1977-03-01 Vann Roy Randell Sand consolidation method
US4544034A (en) * 1983-03-31 1985-10-01 Geo Vann, Inc. Actuation of a gun firing head
US4619333A (en) * 1983-03-31 1986-10-28 Halliburton Company Detonation of tandem guns
EP0288237A2 (en) * 1987-04-20 1988-10-26 Halliburton Company Method and apparatus for perforating a gun
US5007344A (en) * 1988-12-01 1991-04-16 Dresser Industries, Inc. Dual firing system for a perforating gun
US5067568A (en) * 1990-04-25 1991-11-26 Baker Hughes Incorporated Well perforating gun
US5103912A (en) * 1990-08-13 1992-04-14 Flint George R Method and apparatus for completing deviated and horizontal wellbores
WO1994010422A1 (en) * 1992-10-28 1994-05-11 Baker Hughes Incorporated Thermal safety switch for use with electrically actuated wellbore tools
US5571986A (en) * 1994-08-04 1996-11-05 Marathon Oil Company Method and apparatus for activating an electric wireline firing system
US5598894A (en) * 1995-07-05 1997-02-04 Halliburton Company Select fire multiple drill string tester
US5887654A (en) * 1996-11-20 1999-03-30 Schlumberger Technology Corporation Method for performing downhole functions
US6095258A (en) * 1998-08-28 2000-08-01 Western Atlas International, Inc. Pressure actuated safety switch for oil well perforating
US6491098B1 (en) * 2000-11-07 2002-12-10 L. Murray Dallas Method and apparatus for perforating and stimulating oil wells
US20050061506A1 (en) * 2000-03-02 2005-03-24 Schlumberger Technology Corporation Well Treatment System and Method
US20080053658A1 (en) * 2006-08-31 2008-03-06 Wesson David S Method and apparatus for selective down hole fluid communication
US20090078420A1 (en) * 2007-09-25 2009-03-26 Schlumberger Technology Corporation Perforator charge with a case containing a reactive material
WO2015118087A1 (en) * 2014-02-07 2015-08-13 Paradigm Technology Services B.V. System and method for performing an operation
US11834934B2 (en) 2019-05-16 2023-12-05 Schlumberger Technology Corporation Modular perforation tool
RU2812325C2 (en) * 2019-05-16 2024-01-29 Шлюмбергер Текнолоджи Б.В. Device for perforation of well and perforation tool for perforation of well (embodiments)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029490A (en) * 1932-12-20 1936-02-04 Technicraft Engineering Corp Method and means for controlling deep well gunfire for perforating casings
US2169671A (en) * 1936-06-22 1939-08-15 Vera E Yarbrough Casing perforator
US2340966A (en) * 1941-03-07 1944-02-08 Phillips Petroleum Co Perforating method and apparatus
US2749840A (en) * 1950-09-11 1956-06-12 Exxon Research Engineering Co Gun perforators for wells
US3011551A (en) * 1958-11-06 1961-12-05 Halliburton Co Fracturing gun
US3064733A (en) * 1959-10-29 1962-11-20 Continental Oil Co Apparatus and method for completing wells
US3318381A (en) * 1964-09-30 1967-05-09 Chevron Res Method and apparatus for injecting fluids into earth formations
US3417827A (en) * 1967-01-09 1968-12-24 Gulf Research Development Co Well completion tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2029490A (en) * 1932-12-20 1936-02-04 Technicraft Engineering Corp Method and means for controlling deep well gunfire for perforating casings
US2169671A (en) * 1936-06-22 1939-08-15 Vera E Yarbrough Casing perforator
US2340966A (en) * 1941-03-07 1944-02-08 Phillips Petroleum Co Perforating method and apparatus
US2749840A (en) * 1950-09-11 1956-06-12 Exxon Research Engineering Co Gun perforators for wells
US3011551A (en) * 1958-11-06 1961-12-05 Halliburton Co Fracturing gun
US3064733A (en) * 1959-10-29 1962-11-20 Continental Oil Co Apparatus and method for completing wells
US3318381A (en) * 1964-09-30 1967-05-09 Chevron Res Method and apparatus for injecting fluids into earth formations
US3417827A (en) * 1967-01-09 1968-12-24 Gulf Research Development Co Well completion tool

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939927A (en) * 1974-11-04 1976-02-24 Dresser Industries, Inc. Combined gravel packing and perforating method and apparatus for use in well bores
US4009757A (en) * 1975-02-03 1977-03-01 Vann Roy Randell Sand consolidation method
US4544034A (en) * 1983-03-31 1985-10-01 Geo Vann, Inc. Actuation of a gun firing head
US4619333A (en) * 1983-03-31 1986-10-28 Halliburton Company Detonation of tandem guns
EP0288237B1 (en) * 1987-04-20 1993-06-23 Halliburton Company Method and apparatus for perforating a gun
EP0288237A2 (en) * 1987-04-20 1988-10-26 Halliburton Company Method and apparatus for perforating a gun
US5007344A (en) * 1988-12-01 1991-04-16 Dresser Industries, Inc. Dual firing system for a perforating gun
US5067568A (en) * 1990-04-25 1991-11-26 Baker Hughes Incorporated Well perforating gun
US5103912A (en) * 1990-08-13 1992-04-14 Flint George R Method and apparatus for completing deviated and horizontal wellbores
WO1994010422A1 (en) * 1992-10-28 1994-05-11 Baker Hughes Incorporated Thermal safety switch for use with electrically actuated wellbore tools
GB2276768A (en) * 1992-10-28 1994-10-05 Baker Hughes Inc Thermal safety switch for use with electrically actuated wellbore tools
US5571986A (en) * 1994-08-04 1996-11-05 Marathon Oil Company Method and apparatus for activating an electric wireline firing system
US5598894A (en) * 1995-07-05 1997-02-04 Halliburton Company Select fire multiple drill string tester
US6354374B1 (en) * 1996-11-20 2002-03-12 Schlumberger Technology Corp. Method of performing downhole functions
US5887654A (en) * 1996-11-20 1999-03-30 Schlumberger Technology Corporation Method for performing downhole functions
US6182750B1 (en) 1996-11-20 2001-02-06 Schlumberger Technology Corporation Device for performing downhole functions
US6213203B1 (en) 1996-11-20 2001-04-10 Schlumberger Technology Corporation Lock mechanism for use with a downhole device
US6095258A (en) * 1998-08-28 2000-08-01 Western Atlas International, Inc. Pressure actuated safety switch for oil well perforating
US20050061506A1 (en) * 2000-03-02 2005-03-24 Schlumberger Technology Corporation Well Treatment System and Method
US7287589B2 (en) * 2000-03-02 2007-10-30 Schlumberger Technology Corporation Well treatment system and method
US6491098B1 (en) * 2000-11-07 2002-12-10 L. Murray Dallas Method and apparatus for perforating and stimulating oil wells
US20080053658A1 (en) * 2006-08-31 2008-03-06 Wesson David S Method and apparatus for selective down hole fluid communication
WO2008027982A3 (en) * 2006-08-31 2008-11-06 Marathon Oil Co Method and apparatus for selective down hole fluid communication
US8540027B2 (en) * 2006-08-31 2013-09-24 Geodynamics, Inc. Method and apparatus for selective down hole fluid communication
US8684084B2 (en) 2006-08-31 2014-04-01 Geodynamics, Inc. Method and apparatus for selective down hole fluid communication
AU2007289222B2 (en) * 2006-08-31 2014-07-03 Geodynamics, Inc. Method and apparatus for selective down hole fluid communication
US20090078420A1 (en) * 2007-09-25 2009-03-26 Schlumberger Technology Corporation Perforator charge with a case containing a reactive material
WO2015118087A1 (en) * 2014-02-07 2015-08-13 Paradigm Technology Services B.V. System and method for performing an operation
US11834934B2 (en) 2019-05-16 2023-12-05 Schlumberger Technology Corporation Modular perforation tool
RU2812325C2 (en) * 2019-05-16 2024-01-29 Шлюмбергер Текнолоджи Б.В. Device for perforation of well and perforation tool for perforation of well (embodiments)

Similar Documents

Publication Publication Date Title
US3612189A (en) Well perforating and treating apparatus
US7984761B2 (en) Openhole perforating
US5131472A (en) Overbalance perforating and stimulation method for wells
US9689240B2 (en) Firing mechanism with time delay and metering system
CN108368736B (en) System and method for perforating a wellbore
US7428921B2 (en) Well treatment system and method
US5598891A (en) Apparatus and method for perforating and fracturing
EP0925423B1 (en) Apparatus and method for perforating and stimulating a subterranean formation
US5669448A (en) Overbalance perforating and stimulation method for wells
US20030188871A1 (en) Single trip method for selectively fracture packing multiple formations traversed by a wellbore
US3118501A (en) Means for perforating and fracturing earth formations
US3174547A (en) Well bore apparatus
US3589453A (en) Shaped charge perforating apparatus and method
US20060070740A1 (en) System and method for fracturing a hydrocarbon producing formation
US3347314A (en) Methods for well completion
CA2486824A1 (en) Propellant ignition assembly and process
CA2896228C (en) Perforating gun for underbalanced perforating
US4009757A (en) Sand consolidation method
US3447607A (en) Method for sand control in wells
US5205360A (en) Pneumatic well tool for stimulation of petroleum formations
GB2093500A (en) Method for controlling subsurface blowout
US3347322A (en) Apparatus for well completion
US3391739A (en) Method and apparatus for well flow stimulation
US3690379A (en) Placement and detonation method for explosive fracturing
SU1102903A1 (en) Filter-safety valve