US3607788A - Liquid electrode material - Google Patents

Liquid electrode material Download PDF

Info

Publication number
US3607788A
US3607788A US687955A US3607788DA US3607788A US 3607788 A US3607788 A US 3607788A US 687955 A US687955 A US 687955A US 3607788D A US3607788D A US 3607788DA US 3607788 A US3607788 A US 3607788A
Authority
US
United States
Prior art keywords
electrode material
skin
wire lead
patient
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US687955A
Inventor
Robert J Adolph
Aribert H Bernstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARIBERT H BERNSTEIN
ROBERT J ADOLPH
Original Assignee
ARIBERT H BERNSTEIN
ROBERT J ADOLPH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARIBERT H BERNSTEIN, ROBERT J ADOLPH filed Critical ARIBERT H BERNSTEIN
Application granted granted Critical
Publication of US3607788A publication Critical patent/US3607788A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • A61B5/259Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes using conductive adhesive means, e.g. gels

Definitions

  • a novel electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom to be secured to the skin of a patient is provided.
  • the electrode material is a viscous, adhesive, electrically conductive liquid which dries on the skin. Upon application the electrode material will envelope the wire lead, and after drying will assure that dependable and durable electrical contact between skin and wire lead has been made.
  • the heart, muscles and brain of the human skin generate small voltages which are measurable on the skin of a person.
  • the precise and accurate recording of these voltages form the basis of electrocardiography, electromyography, and electroencephalography, respectively.
  • the recorded potentials are valuable aids in the diagnosis of normality and disease of the tissues from whence they originate. It is sometimes necessary to continue such measurements for prolonged periods of time, sometimes three days or longer.
  • long-term monitoring of bioelectrical potentials originating from the heart has provided lifesaving in patients who have had or are suspected of having had a myocardial infarction (heart attack).
  • a potentiometric device for receiving and recording electrical signals.
  • a wire lead between the device and patient is required for purposes of conducting the signal from patient to device, and the wire lead terminates at an electrode, the term electrode in this context signifying the means by which electrical connection between wire lead and skin of the patient is made.
  • Standard clinical electrodes currently in use with electrocardiographic, oscillographic-monitoring, and recording devices are usually large and cumbersome metal plates, mesh, or recessed wells in which electrical contact with the skin is made by means of hypertonic salt solution in the form of a paste or gel.
  • Mechanical contact with the skin is maintained by elastic straps, suction cups, adhesive tape, or other mechanical means.
  • the conductive paste or gel dries up after several minutes or hours and electrical resistance between the skin and metal plate increases. In electrocardiography this may result in spurious electrical signals, or motion artefacts. If the patient is connected to a monitor-alarm system in a coronary care unit, frequent false alarms may be initiated which falsely simulate an absence of electrical activity of the heart or a serious cardiac arrhythmia. This results in frequent harassment of patient, physician and nursing personnel.
  • Such electrodes are also unsuitable in the unrestrained and ambulatory subject. As the subject moves, there is considerable variation in the area of direct contact between the skin and the metallic electrode as well as variation in the amount of electrolyte paste or gel between the skin and the electrode. Thus the electrical resistance between the skin and electrode varies considerably with body movement and the desired bioelectrical potential is obscured by reduced voltage and unwanted electrical noise and artefact. Heavy shielded leads and cables and constricting bands, straps and adhesive tape as used in all prior devices all lead to patient discomfort and inconvenience. It is necessary to clean and reapply electrode paste to such electrodes at relatively frequent intervals.
  • Adhesive tapes which have been use to bind metal electrodes to skin tend to lose their adhesiveness under conditions of patient perspiration, humid environment or when the electrode paste has wet them.
  • the hypodermic salt solution incorporated into the electrode paste is an irritant to the skin resulting in considerable discomfort and even inflammation and ulceration of the skin.
  • Needle electrodes make good electrical contact with the body but are painful to the patient and hence their use is undesirable in the critically ill coronary patient. They are impractical in the ambulatory subject because of pain attendant upon muscle movement, and because needles penetrate the skin there is always a risk of infection.
  • the electrode material which we provide is a viscous, adhesive, electrically conductive liquid which dries on the skin, bonding firmly to the skin and to a lead wire from the record ing device.
  • the consistency of the liquid electrode material should be such that it is easily applied to the skin from a tube or by any applicator stick. It is contemplated that the electrode material be applied on top of an exposed end of a flexible wire lead and to the adjacent skin, where it will dry in a short period of time forming a-firm mechanical bond between the skin and the wire lead.
  • collodion with carbon particles suspended therein to provide an effective electrode.
  • Collodion is available in flexible" and nonflexible grades. When the term collodion is used herein, we mean the flexible grade.
  • the solvent in the collodion quickly evaporates on exposure to air.
  • Other liquid substances which are nontoxic to human tissues yet which upon drying adhere firmly to human skin may also be employed in place of collodion and conductive particles of materials other than carbon may be used as will be dealt with more fully hereafter.
  • Another object herein is to provide an improved wire lead terminus structure which is especially useful in connection with our inventive electrode material.
  • FIG. 1 is a top view of our novel wire lead terminus structure
  • FIG. 2 is a sectional view taken at 2-2 in FIG. 1;
  • FIG. 3 depicts a wire lead between a receiving and recording device for electrical signals, and the body of a patient when the embodiment of FIG. 2 is employed;
  • FIG. 4 is a top view of a second embodiment of our novel wire lead terminus structure
  • FIG. Si a section at 5-5 ofFIG. 4;
  • FIG. 6 depicts a wire lead in place upon the skin of a patient as it may appear after the second embodiment of our novel wire lead terminus as shown in FIGS. 4 and 5 has been employed.
  • the symbol P represents any standard potentiometric device used in medical diagnosis such as an EKG. or ECG. machine. Interconnection between machine P and the body of a patient, 10, is made by means of wire lead ll 1. A terminal structure for such a wire lead 11 which we provide is shown in FIGS. 1 and 2 which show such a terminal structure prior to application to the skin of the patient.
  • Wire lead 11 is sandwiched between two layers of tape 12 and 13 by means of an adhesive layer 14.
  • Adhesive layer 15 is also provided at the under surface of bottom tape 13. So that the tackiness of adhesive 15 will be maintained until it is desired to attach the end of the wire lead to the body of a patient, nontacky protective strips 16 and 17 are placed upon adhesive layer 15. Flaps 20 and 21 are integral parts of protective strips 16 and 17 respectively and provide finger grips whereby the protective strips 16 and 17 may readily be removed when desired.
  • An aperture 22 through tapes l2 and 13 is provided, and a portion 23 of wire lead 11 crosses such aperture.
  • An electrode 24, in accordance with our present invention, is provided to make contact between the skin of a patient and the terminus of a wire lead 11, and thus the measuring device P.
  • the procedure for connecting patient and measuring device is first for the operator to grasp flaps 20 and 21 and by manipulating such flaps, pull away protective strips 16 and 17, thus exposing adhesive 15 at the bottom of tape 13.
  • the terminus of wire lead 11 is then brought into close proximity with the body of the patient by placing the sandwich consisting of tapes l2 and 13 against the patients body, and then assuring that the wire leads terminus remains in position by pressing the sandwich against the patients body whereupon adhesive 15 will hold the wire lead terminus close to the body.
  • Dependable electrical contact, of course, between the patients skin and wire lead terminus is not thus made.
  • viscous liquid electrode material is disposed over the sandwich consisting of tapes 12 and 13, and particularly in aperture 22, there reaching the skin of the patient and also engulfing portion 23 of wire lead 11.
  • the solvent in the conductive electrode material will quickly evaporate, electrode 24 will result, and thereupon connection between measuring device P and patient is achieved, which connection will serve to provide accurate measurements of electrical voltages for extended periods of time.
  • the wire lead be taped to the body of the patient at point 25 located between electrode 24 and device P (preferably near electrode 24) to prevent unnecessary tension thereon.
  • the liquid electrode material which we provide essentially comprises two constituents, a liquid component and particles of an electrical conductor suspended therein, the constituents being combined by mixing them together.
  • a variety of liquid components may be used and different electrical conductor particles may also be used.
  • the electrode material should be nontoxic, relatively quick drying, flexible when dry, and preferably of the viscosity of a thick free-flowing syrup. We have found the following to be suitable liquid components, and each will be seen to consist of a polymeric adhesive in a highly volatile solvent:
  • Vinyl chloride and acetone (vinyl chloride 30 percent by weight).
  • Natural rubber and hexane Natural rubber 35 percent by weight.
  • the criteria for the electrical conductor employed is that it be available in comminuted form, that it be a good electrical conductor, that it be nontoxic, and that it not be unduly susceptible to polarization.
  • the electrode material should contain approximately 40-70 percent by weight conductor, with the balance being liquid adhesive.
  • Examples of electrodes embodying our invention which have been used and which gave consistently accurate reading over a period of five days, and from which patients suffered no toxic effects are:
  • Example 1 Adhesive: Collodion. Conductor: Carbon. Carbon 45 percent by weight in the mixture.
  • Example 2 Adhesive: Vinyl chloride and acetone (vinyl chloride 30 percent by weight). Conductor: Carbon. Carbon 53 percent by weight in the mixture.
  • Example 3 Adhesive: Collodion. Conductor: German silver. German silver 57 percent by weight in the mixture.
  • Example 4 Adhesive: Natural rubber and hexane (natural rubber 35 percent by weight). Conductor: Nickel. Nickel 50 percent by weight in the mixture.
  • top tape 12 and bottom tape 13 While we have shown the use of a sandwich made up of top tape 12 and bottom tape 13 which it is contemplated will remain in place upon the skin of the patient during the measurement period, it is also possible that a single apertured tape could be employed and such tape removed after liquid electrode material had been applied and had dried. Such an embodiment is illustrated in FIGS. 4-5.
  • the second embodiment of our novel wire lead terminus structure has wire lead 27 which, it will be understood, is connected to a medical diagnostic potentiometric device, the portion of wire lead 27 crossing aperture 28 in tape 29 being designated 30.
  • the terminal portion of wire lead 27 is held to the underside of tape 29 by adhesive layer 31.
  • Protective strips 32 and 33 with flap portions 34 and 35 respective] overlay adhesive layer 31 to maintain tackmess unti used.
  • the second embodiment in FIG. 4 is employed, protective strips 32 and 33 are first peeled away by grasping finger-grip portions 34 and 35 and pulling.
  • Tape 29 is then placed against the body 10 of a patient, holding lead portion 30 against the skin.
  • Our inventive liquid electrode material 36 is then applied at the aperture 28 in tape 29. When said material dries the liquid electrode tape 29 may be stripped away leaving an electrical connective condition as illustrated in FIG. 6.
  • a liquid electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom, said electrode material consisting essentially of collodion and a comminuted, electrical conductor selected from the group consisting of carbon, nickel, German silver, gold, silver and platinum.
  • a liqu d electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom, said electrode material consisting essentially of collodion and comminuted carbon.

Abstract

A novel electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom to be secured to the skin of a patient, is provided. The electrode material is a viscous, adhesive, electrically conductive liquid which dries on the skin. Upon application the electrode material will envelope the wire lead, and after drying will assure that dependable and durable electrical contact between skin and wire lead has been made.

Description

United States Patent Inventors Robert J. Adolph 7933 Glen Orchard Drive; Aribert H. Bernstein, 6127 Graceland Ave., both of Cincinnati, Ohio 45237 Appl. No. 687,955
Filed Nov. 20,1967
Patented Sept. 21, 1971 LIQUID ELECTRODE MATERIAL 3 Claims, 6 Drawing Figs.
US. Cl 252/510, 252/513, 252/514, 128/418 Int. Cl 1101b 1/06, A61n 1/18 Field of Search 252/500,
502,503,510,511,512,513,514,518; 128/206, 2.l,404,405,4l7,4l8,416
[56 References Cited UNITED STATES PATENTS 3,027,333 3/1962 Friedman 252/518 3,083,169 3/1963 Ueda 252/511 3,111,495 11/1963 Murphy.. 252/510 3,162,551 12/1964 Short 252/514 3,265,638 8/1966 Goodman et a1. 252/518 3,412,043 11/1968 Gilliland 252/518 Primary Examiner-Douglas J. Drummond Attorney Burton Perlman ABSTRACT: A novel electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom to be secured to the skin of a patient, is provided. The electrode material is a viscous, adhesive, electrically conductive liquid which dries on the skin. Upon application the electrode material will envelope the wire lead, and after drying will assure that dependable and durable electrical contact between skin and wire lead has been made.
PATENTEBSEPZI IQYI 3507; 788
INVENTORS. ROBERT J. ADOLPH FIG. 5 BY ARIBERT H. BERNSTEIN ATTORNEY LIQUID ELECTRODE MATERIAL This invention relates to devices for measuring small electrical voltages generated in the human body as is commonly done in medical diagnosis, and more particularly to an improved electrode for use with electrocardiographic, oscilloscopic-monitoring and like recording devices.
The heart, muscles and brain of the human skin generate small voltages which are measurable on the skin of a person. The precise and accurate recording of these voltages form the basis of electrocardiography, electromyography, and electroencephalography, respectively. The recorded potentials are valuable aids in the diagnosis of normality and disease of the tissues from whence they originate. It is sometimes necessary to continue such measurements for prolonged periods of time, sometimes three days or longer. Specifically, long-term monitoring of bioelectrical potentials originating from the heart has provided lifesaving in patients who have had or are suspected of having had a myocardial infarction (heart attack). In addition, there is a need for continuous recording of heart rate and heart rhythm and changes thereof in humans subjected to the stresses of exercise, aerospace, ocean depths and supersonic speeds.
In making such measurements, a potentiometric device for receiving and recording electrical signals is employed. A wire lead between the device and patient is required for purposes of conducting the signal from patient to device, and the wire lead terminates at an electrode, the term electrode in this context signifying the means by which electrical connection between wire lead and skin of the patient is made.
Standard clinical electrodes currently in use with electrocardiographic, oscillographic-monitoring, and recording devices are usually large and cumbersome metal plates, mesh, or recessed wells in which electrical contact with the skin is made by means of hypertonic salt solution in the form of a paste or gel. Mechanical contact with the skin is maintained by elastic straps, suction cups, adhesive tape, or other mechanical means. The conductive paste or gel dries up after several minutes or hours and electrical resistance between the skin and metal plate increases. In electrocardiography this may result in spurious electrical signals, or motion artefacts. If the patient is connected to a monitor-alarm system in a coronary care unit, frequent false alarms may be initiated which falsely simulate an absence of electrical activity of the heart or a serious cardiac arrhythmia. This results in frequent harassment of patient, physician and nursing personnel.
Such electrodes are also unsuitable in the unrestrained and ambulatory subject. As the subject moves, there is considerable variation in the area of direct contact between the skin and the metallic electrode as well as variation in the amount of electrolyte paste or gel between the skin and the electrode. Thus the electrical resistance between the skin and electrode varies considerably with body movement and the desired bioelectrical potential is obscured by reduced voltage and unwanted electrical noise and artefact. Heavy shielded leads and cables and constricting bands, straps and adhesive tape as used in all prior devices all lead to patient discomfort and inconvenience. It is necessary to clean and reapply electrode paste to such electrodes at relatively frequent intervals. Adhesive tapes which have been use to bind metal electrodes to skin tend to lose their adhesiveness under conditions of patient perspiration, humid environment or when the electrode paste has wet them. In many patients, particularly with prolonged usage, the hypodermic salt solution incorporated into the electrode paste is an irritant to the skin resulting in considerable discomfort and even inflammation and ulceration of the skin. Needle electrodes make good electrical contact with the body but are painful to the patient and hence their use is undesirable in the critically ill coronary patient. They are impractical in the ambulatory subject because of pain attendant upon muscle movement, and because needles penetrate the skin there is always a risk of infection.
Against the foregoing background, it is the primary object of this invention to provide a novel electrode material and technique for use in the recording of bioelectrical potentials. The electrode material which we provide is a viscous, adhesive, electrically conductive liquid which dries on the skin, bonding firmly to the skin and to a lead wire from the record ing device. The consistency of the liquid electrode material should be such that it is easily applied to the skin from a tube or by any applicator stick. It is contemplated that the electrode material be applied on top of an exposed end of a flexible wire lead and to the adjacent skin, where it will dry in a short period of time forming a-firm mechanical bond between the skin and the wire lead. As an example, we have found collodion, with carbon particles suspended therein to provide an effective electrode. Collodion is available in flexible" and nonflexible grades. When the term collodion is used herein, we mean the flexible grade. The solvent in the collodion quickly evaporates on exposure to air. Other liquid substances which are nontoxic to human tissues yet which upon drying adhere firmly to human skin may also be employed in place of collodion and conductive particles of materials other than carbon may be used as will be dealt with more fully hereafter.
Another object herein is to provide an improved wire lead terminus structure which is especially useful in connection with our inventive electrode material.
How these and many other objects are to be achieved by employment of the present invention will become clear through a consideration of the accompanying drawings wherein:
FIG. 1 is a top view of our novel wire lead terminus structure;
FIG. 2 is a sectional view taken at 2-2 in FIG. 1;
FIG. 3 depicts a wire lead between a receiving and recording device for electrical signals, and the body of a patient when the embodiment of FIG. 2 is employed; and
FIG. 4 is a top view of a second embodiment of our novel wire lead terminus structure;
FIG. Sis a section at 5-5 ofFIG. 4;
FIG. 6 depicts a wire lead in place upon the skin of a patient as it may appear after the second embodiment of our novel wire lead terminus as shown in FIGS. 4 and 5 has been employed.
In the drawings the symbol P" represents any standard potentiometric device used in medical diagnosis such as an EKG. or ECG. machine. Interconnection between machine P and the body of a patient, 10, is made by means of wire lead ll 1. A terminal structure for such a wire lead 11 which we provide is shown in FIGS. 1 and 2 which show such a terminal structure prior to application to the skin of the patient.
Wire lead 11 is sandwiched between two layers of tape 12 and 13 by means of an adhesive layer 14. Adhesive layer 15 is also provided at the under surface of bottom tape 13. So that the tackiness of adhesive 15 will be maintained until it is desired to attach the end of the wire lead to the body of a patient, nontacky protective strips 16 and 17 are placed upon adhesive layer 15. Flaps 20 and 21 are integral parts of protective strips 16 and 17 respectively and provide finger grips whereby the protective strips 16 and 17 may readily be removed when desired. An aperture 22 through tapes l2 and 13 is provided, and a portion 23 of wire lead 11 crosses such aperture.
An electrode 24, in accordance with our present invention, is provided to make contact between the skin of a patient and the terminus of a wire lead 11, and thus the measuring device P. The procedure for connecting patient and measuring device is first for the operator to grasp flaps 20 and 21 and by manipulating such flaps, pull away protective strips 16 and 17, thus exposing adhesive 15 at the bottom of tape 13. The terminus of wire lead 11 is then brought into close proximity with the body of the patient by placing the sandwich consisting of tapes l2 and 13 against the patients body, and then assuring that the wire leads terminus remains in position by pressing the sandwich against the patients body whereupon adhesive 15 will hold the wire lead terminus close to the body. Dependable electrical contact, of course, between the patients skin and wire lead terminus is not thus made. To make such electrical contact viscous liquid electrode material is disposed over the sandwich consisting of tapes 12 and 13, and particularly in aperture 22, there reaching the skin of the patient and also engulfing portion 23 of wire lead 11. The solvent in the conductive electrode material will quickly evaporate, electrode 24 will result, and thereupon connection between measuring device P and patient is achieved, which connection will serve to provide accurate measurements of electrical voltages for extended periods of time. For long-term use, it is desirable that the wire lead be taped to the body of the patient at point 25 located between electrode 24 and device P (preferably near electrode 24) to prevent unnecessary tension thereon.
The liquid electrode material which we provide essentially comprises two constituents, a liquid component and particles of an electrical conductor suspended therein, the constituents being combined by mixing them together. A variety of liquid components may be used and different electrical conductor particles may also be used. The electrode material should be nontoxic, relatively quick drying, flexible when dry, and preferably of the viscosity of a thick free-flowing syrup. We have found the following to be suitable liquid components, and each will be seen to consist of a polymeric adhesive in a highly volatile solvent:
1, Collodion (A viscous solution of pyroxylin in a mixture of alcohol and ether).
2. Vinyl chloride and acetone (vinyl chloride 30 percent by weight).
3. Vinyl chloride and methyl ethyl ketone (vinyl chloride 30 percent by weight).
4. Natural rubber and hexane (natural rubber 35 percent by weight). The criteria for the electrical conductor employed is that it be available in comminuted form, that it be a good electrical conductor, that it be nontoxic, and that it not be unduly susceptible to polarization. The following are specific examples of suitable conductors:
l. Carbon 2. Nickel 3. German silver 4. Gold 5. Silver 6. Platinum The electrode material should contain approximately 40-70 percent by weight conductor, with the balance being liquid adhesive.
Examples of electrodes embodying our invention which have been used and which gave consistently accurate reading over a period of five days, and from which patients suffered no toxic effects are:
Example 1. Adhesive: Collodion. Conductor: Carbon. Carbon 45 percent by weight in the mixture.
Example 2. Adhesive: Vinyl chloride and acetone (vinyl chloride 30 percent by weight). Conductor: Carbon. Carbon 53 percent by weight in the mixture.
Example 3. Adhesive: Collodion. Conductor: German silver. German silver 57 percent by weight in the mixture.
Example 4. Adhesive: Natural rubber and hexane (natural rubber 35 percent by weight). Conductor: Nickel. Nickel 50 percent by weight in the mixture.
While we have shown the use of a sandwich made up of top tape 12 and bottom tape 13 which it is contemplated will remain in place upon the skin of the patient during the measurement period, it is also possible that a single apertured tape could be employed and such tape removed after liquid electrode material had been applied and had dried. Such an embodiment is illustrated in FIGS. 4-5.
The second embodiment of our novel wire lead terminus structure has wire lead 27 which, it will be understood, is connected to a medical diagnostic potentiometric device, the portion of wire lead 27 crossing aperture 28 in tape 29 being designated 30. The terminal portion of wire lead 27 is held to the underside of tape 29 by adhesive layer 31. Protective strips 32 and 33 with flap portions 34 and 35 respective] overlay adhesive layer 31 to maintain tackmess unti used. hen the second embodiment in FIG. 4 is employed, protective strips 32 and 33 are first peeled away by grasping finger- grip portions 34 and 35 and pulling. Tape 29 is then placed against the body 10 of a patient, holding lead portion 30 against the skin. Our inventive liquid electrode material 36 is then applied at the aperture 28 in tape 29. When said material dries the liquid electrode tape 29 may be stripped away leaving an electrical connective condition as illustrated in FIG. 6.
In addition, of course, the end of a wire lead could be applied to the skin of a patient and maintained there solely by use of the electrode resulting upon unemployment of our novel electrode material. Thus, it is apparent that while we have shown specific embodiments of our invention, changes and modifications may be made therein without departing from the spirit thereof, and though so changed or modified the material and method of using it may still fall within the ambit of our invention.
We claim:
1. A liquid electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom, said electrode material consisting essentially of collodion and a comminuted, electrical conductor selected from the group consisting of carbon, nickel, German silver, gold, silver and platinum.
2. A liquid electrode material as claimed in claim 1 wherein said electrode material contains approximately 4040-70 percent by weight electrical conductor.
3. A liqu d electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom, said electrode material consisting essentially of collodion and comminuted carbon.

Claims (2)

  1. 2. A liquid electrode material as claimed in claim 1 wherein said electrode material contains approximately 4040-70 percent by weight electrical conductor.
  2. 3. A liquid electrode material for use with medical diagnostic potentiometric devices having a wire lead extending therefrom, said electrode material consisting essentially of collodion and comminuted carbon.
US687955A 1967-11-20 1967-11-20 Liquid electrode material Expired - Lifetime US3607788A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US68795567A 1967-11-20 1967-11-20

Publications (1)

Publication Number Publication Date
US3607788A true US3607788A (en) 1971-09-21

Family

ID=24762523

Family Applications (1)

Application Number Title Priority Date Filing Date
US687955A Expired - Lifetime US3607788A (en) 1967-11-20 1967-11-20 Liquid electrode material

Country Status (1)

Country Link
US (1) US3607788A (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993049A (en) * 1974-12-26 1976-11-23 Kater John A R Electrodes and materials therefor
US4008721A (en) * 1975-04-14 1977-02-22 Medtronic, Inc. Tape electrode for transmitting electrical signals through the skin
US4067342A (en) * 1976-04-06 1978-01-10 Medtronic, Inc. Tape electrode
US4125110A (en) * 1975-11-25 1978-11-14 Hymes Alan C Monitoring and stimulation electrode
US4141366A (en) * 1977-11-18 1979-02-27 Medtronic, Inc. Lead connector for tape electrode
US4274420A (en) * 1975-11-25 1981-06-23 Lectec Corporation Monitoring and stimulation electrode
US4317457A (en) * 1978-03-28 1982-03-02 Jacqueline Guillot Electroconducting cast forming a cutaneous electrode for applying electrical currents to the human body for therapeutic or aesthetic treatment and method of using such electroconducting cast
US4317278A (en) * 1980-01-08 1982-03-02 Ipco Corporation Method for manufacturing a disposable electrode
US4318746A (en) * 1980-01-08 1982-03-09 Ipco Corporation Highly stable gel, its use and manufacture
US4362165A (en) * 1980-01-08 1982-12-07 Ipco Corporation Stable gel electrode
USRE31454E (en) * 1975-11-25 1983-12-06 Lectec Corporation Monitoring and stimulation electrode
US4503860A (en) * 1983-03-31 1985-03-12 Bio-Scan, Inc. Electroencephalography electrode assembly
US4543958A (en) * 1979-04-30 1985-10-01 Ndm Corporation Medical electrode assembly
US4584962A (en) * 1979-04-30 1986-04-29 Ndm Corporation Medical electrodes and dispensing conditioner therefor
US4590089A (en) * 1979-04-30 1986-05-20 Ndm Corporation Medical electrodes and dispensing conditioner therefor
US4674511A (en) * 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
USRE32724E (en) * 1979-06-21 1988-08-02 American Hospital Supply Corporation Reusable medical electrode having disposable electrolyte carrier
EP0189251A3 (en) * 1985-01-22 1988-08-10 Fukuda Denshi Co., Ltd. Electrode securement sheet
EP0188302A3 (en) * 1985-01-17 1988-08-31 Rematra Res Marketing Trading Disposable electrode for monitoring a patient
US4832036A (en) * 1985-05-13 1989-05-23 Baxter International Inc. Medical electrode
US4838273A (en) * 1979-04-30 1989-06-13 Baxter International Inc. Medical electrode
US7978064B2 (en) 2005-04-28 2011-07-12 Proteus Biomedical, Inc. Communication system with partial power source
US8036748B2 (en) 2008-11-13 2011-10-11 Proteus Biomedical, Inc. Ingestible therapy activator system and method
US8054140B2 (en) 2006-10-17 2011-11-08 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
US8055334B2 (en) 2008-12-11 2011-11-08 Proteus Biomedical, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
US8114021B2 (en) 2008-12-15 2012-02-14 Proteus Biomedical, Inc. Body-associated receiver and method
US8258962B2 (en) 2008-03-05 2012-09-04 Proteus Biomedical, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US8540633B2 (en) 2008-08-13 2013-09-24 Proteus Digital Health, Inc. Identifier circuits for generating unique identifiable indicators and techniques for producing same
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US8545402B2 (en) 2009-04-28 2013-10-01 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
US8558563B2 (en) 2009-08-21 2013-10-15 Proteus Digital Health, Inc. Apparatus and method for measuring biochemical parameters
US8597186B2 (en) 2009-01-06 2013-12-03 Proteus Digital Health, Inc. Pharmaceutical dosages delivery system
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8784308B2 (en) 2009-12-02 2014-07-22 Proteus Digital Health, Inc. Integrated ingestible event marker system with pharmaceutical product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8858432B2 (en) 2007-02-01 2014-10-14 Proteus Digital Health, Inc. Ingestible event marker systems
US8868453B2 (en) 2009-11-04 2014-10-21 Proteus Digital Health, Inc. System for supply chain management
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
US8945005B2 (en) 2006-10-25 2015-02-03 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US8956287B2 (en) 2006-05-02 2015-02-17 Proteus Digital Health, Inc. Patient customized therapeutic regimens
US8956288B2 (en) 2007-02-14 2015-02-17 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US8961412B2 (en) 2007-09-25 2015-02-24 Proteus Digital Health, Inc. In-body device with virtual dipole signal amplification
US9014779B2 (en) 2010-02-01 2015-04-21 Proteus Digital Health, Inc. Data gathering system
US9107806B2 (en) 2010-11-22 2015-08-18 Proteus Digital Health, Inc. Ingestible device with pharmaceutical product
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US9268909B2 (en) 2012-10-18 2016-02-23 Proteus Digital Health, Inc. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
US9270503B2 (en) 2013-09-20 2016-02-23 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9271897B2 (en) 2012-07-23 2016-03-01 Proteus Digital Health, Inc. Techniques for manufacturing ingestible event markers comprising an ingestible component
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
US9439599B2 (en) 2011-03-11 2016-09-13 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
US9577864B2 (en) 2013-09-24 2017-02-21 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
US9597487B2 (en) 2010-04-07 2017-03-21 Proteus Digital Health, Inc. Miniature ingestible device
US9603550B2 (en) 2008-07-08 2017-03-28 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9883819B2 (en) 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10223905B2 (en) 2011-07-21 2019-03-05 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
US11158149B2 (en) 2013-03-15 2021-10-26 Otsuka Pharmaceutical Co., Ltd. Personal authentication apparatus system and method
US11529071B2 (en) 2016-10-26 2022-12-20 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US11950615B2 (en) 2021-11-10 2024-04-09 Otsuka Pharmaceutical Co., Ltd. Masticable ingestible product and communication system therefor

Cited By (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993049A (en) * 1974-12-26 1976-11-23 Kater John A R Electrodes and materials therefor
US4008721A (en) * 1975-04-14 1977-02-22 Medtronic, Inc. Tape electrode for transmitting electrical signals through the skin
USRE31454E (en) * 1975-11-25 1983-12-06 Lectec Corporation Monitoring and stimulation electrode
US4274420A (en) * 1975-11-25 1981-06-23 Lectec Corporation Monitoring and stimulation electrode
US4125110A (en) * 1975-11-25 1978-11-14 Hymes Alan C Monitoring and stimulation electrode
US4067342A (en) * 1976-04-06 1978-01-10 Medtronic, Inc. Tape electrode
US4141366A (en) * 1977-11-18 1979-02-27 Medtronic, Inc. Lead connector for tape electrode
US4317457A (en) * 1978-03-28 1982-03-02 Jacqueline Guillot Electroconducting cast forming a cutaneous electrode for applying electrical currents to the human body for therapeutic or aesthetic treatment and method of using such electroconducting cast
US4590089A (en) * 1979-04-30 1986-05-20 Ndm Corporation Medical electrodes and dispensing conditioner therefor
US4838273A (en) * 1979-04-30 1989-06-13 Baxter International Inc. Medical electrode
US4674511A (en) * 1979-04-30 1987-06-23 American Hospital Supply Corporation Medical electrode
US4543958A (en) * 1979-04-30 1985-10-01 Ndm Corporation Medical electrode assembly
US4584962A (en) * 1979-04-30 1986-04-29 Ndm Corporation Medical electrodes and dispensing conditioner therefor
USRE32724E (en) * 1979-06-21 1988-08-02 American Hospital Supply Corporation Reusable medical electrode having disposable electrolyte carrier
US4317278A (en) * 1980-01-08 1982-03-02 Ipco Corporation Method for manufacturing a disposable electrode
US4362165A (en) * 1980-01-08 1982-12-07 Ipco Corporation Stable gel electrode
US4318746A (en) * 1980-01-08 1982-03-09 Ipco Corporation Highly stable gel, its use and manufacture
US4503860A (en) * 1983-03-31 1985-03-12 Bio-Scan, Inc. Electroencephalography electrode assembly
EP0188302A3 (en) * 1985-01-17 1988-08-31 Rematra Res Marketing Trading Disposable electrode for monitoring a patient
EP0189251A3 (en) * 1985-01-22 1988-08-10 Fukuda Denshi Co., Ltd. Electrode securement sheet
US4832036A (en) * 1985-05-13 1989-05-23 Baxter International Inc. Medical electrode
US9119554B2 (en) 2005-04-28 2015-09-01 Proteus Digital Health, Inc. Pharma-informatics system
US8847766B2 (en) 2005-04-28 2014-09-30 Proteus Digital Health, Inc. Pharma-informatics system
US10610128B2 (en) 2005-04-28 2020-04-07 Proteus Digital Health, Inc. Pharma-informatics system
US9597010B2 (en) 2005-04-28 2017-03-21 Proteus Digital Health, Inc. Communication system using an implantable device
US9681842B2 (en) 2005-04-28 2017-06-20 Proteus Digital Health, Inc. Pharma-informatics system
US9439582B2 (en) 2005-04-28 2016-09-13 Proteus Digital Health, Inc. Communication system with remote activation
US9649066B2 (en) 2005-04-28 2017-05-16 Proteus Digital Health, Inc. Communication system with partial power source
US9962107B2 (en) 2005-04-28 2018-05-08 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US7978064B2 (en) 2005-04-28 2011-07-12 Proteus Biomedical, Inc. Communication system with partial power source
US8816847B2 (en) 2005-04-28 2014-08-26 Proteus Digital Health, Inc. Communication system with partial power source
US10542909B2 (en) 2005-04-28 2020-01-28 Proteus Digital Health, Inc. Communication system with partial power source
US9161707B2 (en) 2005-04-28 2015-10-20 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US11476952B2 (en) 2005-04-28 2022-10-18 Otsuka Pharmaceutical Co., Ltd. Pharma-informatics system
US10517507B2 (en) 2005-04-28 2019-12-31 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8674825B2 (en) 2005-04-28 2014-03-18 Proteus Digital Health, Inc. Pharma-informatics system
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US11928614B2 (en) 2006-05-02 2024-03-12 Otsuka Pharmaceutical Co., Ltd. Patient customized therapeutic regimens
US8956287B2 (en) 2006-05-02 2015-02-17 Proteus Digital Health, Inc. Patient customized therapeutic regimens
US8054140B2 (en) 2006-10-17 2011-11-08 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
US8945005B2 (en) 2006-10-25 2015-02-03 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US11357730B2 (en) 2006-10-25 2022-06-14 Otsuka Pharmaceutical Co., Ltd. Controlled activation ingestible identifier
US10238604B2 (en) 2006-10-25 2019-03-26 Proteus Digital Health, Inc. Controlled activation ingestible identifier
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US9083589B2 (en) 2006-11-20 2015-07-14 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US9444503B2 (en) 2006-11-20 2016-09-13 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US8858432B2 (en) 2007-02-01 2014-10-14 Proteus Digital Health, Inc. Ingestible event marker systems
US10441194B2 (en) 2007-02-01 2019-10-15 Proteus Digital Heal Th, Inc. Ingestible event marker systems
US11464423B2 (en) 2007-02-14 2022-10-11 Otsuka Pharmaceutical Co., Ltd. In-body power source having high surface area electrode
US8956288B2 (en) 2007-02-14 2015-02-17 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
US10517506B2 (en) 2007-05-24 2019-12-31 Proteus Digital Health, Inc. Low profile antenna for in body device
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
US8961412B2 (en) 2007-09-25 2015-02-24 Proteus Digital Health, Inc. In-body device with virtual dipole signal amplification
US9433371B2 (en) 2007-09-25 2016-09-06 Proteus Digital Health, Inc. In-body device with virtual dipole signal amplification
US8810409B2 (en) 2008-03-05 2014-08-19 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US9060708B2 (en) 2008-03-05 2015-06-23 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US8258962B2 (en) 2008-03-05 2012-09-04 Proteus Biomedical, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US9258035B2 (en) 2008-03-05 2016-02-09 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US8542123B2 (en) 2008-03-05 2013-09-24 Proteus Digital Health, Inc. Multi-mode communication ingestible event markers and systems, and methods of using the same
US10682071B2 (en) 2008-07-08 2020-06-16 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US11217342B2 (en) 2008-07-08 2022-01-04 Otsuka Pharmaceutical Co., Ltd. Ingestible event marker data framework
US9603550B2 (en) 2008-07-08 2017-03-28 Proteus Digital Health, Inc. State characterization based on multi-variate data fusion techniques
US8721540B2 (en) 2008-08-13 2014-05-13 Proteus Digital Health, Inc. Ingestible circuitry
US8540633B2 (en) 2008-08-13 2013-09-24 Proteus Digital Health, Inc. Identifier circuits for generating unique identifiable indicators and techniques for producing same
US9415010B2 (en) 2008-08-13 2016-08-16 Proteus Digital Health, Inc. Ingestible circuitry
US8036748B2 (en) 2008-11-13 2011-10-11 Proteus Biomedical, Inc. Ingestible therapy activator system and method
US8583227B2 (en) 2008-12-11 2013-11-12 Proteus Digital Health, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8055334B2 (en) 2008-12-11 2011-11-08 Proteus Biomedical, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US8545436B2 (en) 2008-12-15 2013-10-01 Proteus Digital Health, Inc. Body-associated receiver and method
US8114021B2 (en) 2008-12-15 2012-02-14 Proteus Biomedical, Inc. Body-associated receiver and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US9149577B2 (en) 2008-12-15 2015-10-06 Proteus Digital Health, Inc. Body-associated receiver and method
US9883819B2 (en) 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US8597186B2 (en) 2009-01-06 2013-12-03 Proteus Digital Health, Inc. Pharmaceutical dosages delivery system
US8540664B2 (en) 2009-03-25 2013-09-24 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US9119918B2 (en) 2009-03-25 2015-09-01 Proteus Digital Health, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US8545402B2 (en) 2009-04-28 2013-10-01 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US10588544B2 (en) 2009-04-28 2020-03-17 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US9320455B2 (en) 2009-04-28 2016-04-26 Proteus Digital Health, Inc. Highly reliable ingestible event markers and methods for using the same
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
US8558563B2 (en) 2009-08-21 2013-10-15 Proteus Digital Health, Inc. Apparatus and method for measuring biochemical parameters
US8868453B2 (en) 2009-11-04 2014-10-21 Proteus Digital Health, Inc. System for supply chain management
US10305544B2 (en) 2009-11-04 2019-05-28 Proteus Digital Health, Inc. System for supply chain management
US9941931B2 (en) 2009-11-04 2018-04-10 Proteus Digital Health, Inc. System for supply chain management
US8784308B2 (en) 2009-12-02 2014-07-22 Proteus Digital Health, Inc. Integrated ingestible event marker system with pharmaceutical product
US9014779B2 (en) 2010-02-01 2015-04-21 Proteus Digital Health, Inc. Data gathering system
US10376218B2 (en) 2010-02-01 2019-08-13 Proteus Digital Health, Inc. Data gathering system
US9597487B2 (en) 2010-04-07 2017-03-21 Proteus Digital Health, Inc. Miniature ingestible device
US10207093B2 (en) 2010-04-07 2019-02-19 Proteus Digital Health, Inc. Miniature ingestible device
US11173290B2 (en) 2010-04-07 2021-11-16 Otsuka Pharmaceutical Co., Ltd. Miniature ingestible device
US10529044B2 (en) 2010-05-19 2020-01-07 Proteus Digital Health, Inc. Tracking and delivery confirmation of pharmaceutical products
US11504511B2 (en) 2010-11-22 2022-11-22 Otsuka Pharmaceutical Co., Ltd. Ingestible device with pharmaceutical product
US9107806B2 (en) 2010-11-22 2015-08-18 Proteus Digital Health, Inc. Ingestible device with pharmaceutical product
US9439599B2 (en) 2011-03-11 2016-09-13 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
US11229378B2 (en) 2011-07-11 2022-01-25 Otsuka Pharmaceutical Co., Ltd. Communication system with enhanced partial power source and method of manufacturing same
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US10223905B2 (en) 2011-07-21 2019-03-05 Proteus Digital Health, Inc. Mobile device and system for detection and communication of information received from an ingestible device
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US9271897B2 (en) 2012-07-23 2016-03-01 Proteus Digital Health, Inc. Techniques for manufacturing ingestible event markers comprising an ingestible component
US9268909B2 (en) 2012-10-18 2016-02-23 Proteus Digital Health, Inc. Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
US11741771B2 (en) 2013-03-15 2023-08-29 Otsuka Pharmaceutical Co., Ltd. Personal authentication apparatus system and method
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
US11158149B2 (en) 2013-03-15 2021-10-26 Otsuka Pharmaceutical Co., Ltd. Personal authentication apparatus system and method
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US10421658B2 (en) 2013-08-30 2019-09-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9270503B2 (en) 2013-09-20 2016-02-23 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US11102038B2 (en) 2013-09-20 2021-08-24 Otsuka Pharmaceutical Co., Ltd. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10097388B2 (en) 2013-09-20 2018-10-09 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9787511B2 (en) 2013-09-20 2017-10-10 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US10498572B2 (en) 2013-09-20 2019-12-03 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9577864B2 (en) 2013-09-24 2017-02-21 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US10398161B2 (en) 2014-01-21 2019-09-03 Proteus Digital Heal Th, Inc. Masticable ingestible product and communication system therefor
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US10797758B2 (en) 2016-07-22 2020-10-06 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US11529071B2 (en) 2016-10-26 2022-12-20 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
US11793419B2 (en) 2016-10-26 2023-10-24 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
US11950615B2 (en) 2021-11-10 2024-04-09 Otsuka Pharmaceutical Co., Ltd. Masticable ingestible product and communication system therefor

Similar Documents

Publication Publication Date Title
US3607788A (en) Liquid electrode material
Neuman Biopotential electrodes
US5133356A (en) Biomedical electrode having centrally-positioned tab construction
US5507290A (en) Electrodeless EKG sensor sheet
US3565059A (en) Biological electrode and method of making same
US4226247A (en) Biological electrode
JPH0536404Y2 (en)
US5865740A (en) Electrodeless EKG sensor sheet
JP2003520093A (en) Electrodes for measuring weak bioelectric signals
AU5423798A (en) Method and device for sensing bioelectrical signals
Sudharsan et al. An analysis of different biopotential electrodes used for electromyography
US3464404A (en) Bio-medical instrumentation electrode
US5226225A (en) Method of making a biomedical electrode
CN110337268A (en) Organism electrode slice
JPH052163Y2 (en)
Hanish et al. Technical aspects of monitoring the heart rate of active persons
Spekhorst et al. Radiotransparent carbon electrode for ECG recordings in the catheterization laboratory
Gavrilescu et al. The monophasic action potential of the right atrium
AU1108197A (en) Method and electrodes for bioimpedance measurements
Kosierkiewicz Dry and flexible elastomer electrodes outperform similar hydrogel and Ag/AgCl electrodes
US20230309888A1 (en) Apparatus and method for hybrid biosensors
JP7236733B2 (en) Electrocardiographic sheet, electrocardiographic measurement electrode unit, electrocardiographic electrode selection evaluation circuit, method of using electrocardiographic sheet, and method of manufacturing electrocardiographic sheet
US20230293077A1 (en) Patch Type Electrocardiogram Sensor
JPH0536403Y2 (en)
Gersak et al. Comparison of the ST-40 ms isointegral maps prior to and after aortocoronary revascularisation