US3603221A - Multilayered structure - Google Patents
Multilayered structure Download PDFInfo
- Publication number
- US3603221A US3603221A US771993A US3603221DA US3603221A US 3603221 A US3603221 A US 3603221A US 771993 A US771993 A US 771993A US 3603221D A US3603221D A US 3603221DA US 3603221 A US3603221 A US 3603221A
- Authority
- US
- United States
- Prior art keywords
- membrane
- multilayered structure
- ethylene
- parts
- propylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 claims abstract description 53
- 239000004567 concrete Substances 0.000 claims abstract description 25
- 239000011398 Portland cement Substances 0.000 claims abstract description 12
- 229920001971 elastomer Polymers 0.000 claims description 19
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 15
- 239000000806 elastomer Substances 0.000 claims description 13
- 239000010426 asphalt Substances 0.000 claims description 10
- 150000001993 dienes Chemical class 0.000 claims description 7
- -1 ethylene, propylene Chemical group 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 7
- 239000002985 plastic film Substances 0.000 claims description 7
- 229920006255 plastic film Polymers 0.000 claims description 7
- 230000015556 catabolic process Effects 0.000 claims description 5
- 238000006731 degradation reaction Methods 0.000 claims description 5
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 238000010276 construction Methods 0.000 abstract description 9
- 230000000149 penetrating effect Effects 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 8
- 239000005977 Ethylene Substances 0.000 description 8
- 229920002943 EPDM rubber Polymers 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 229920001084 poly(chloroprene) Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 235000019241 carbon black Nutrition 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 3
- 238000010525 oxidative degradation reaction Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 150000003335 secondary amines Chemical class 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- RYPKRALMXUUNKS-UHFFFAOYSA-N 2-Hexene Natural products CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910001588 amesite Inorganic materials 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000013536 elastomeric material Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- DPUXQWOMYBMHRN-UHFFFAOYSA-N hexa-2,3-diene Chemical compound CCC=C=CC DPUXQWOMYBMHRN-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011338 soft pitch Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- LBBVUHNMASXJAH-UHFFFAOYSA-N 3-ethylbicyclo[2.2.1]hepta-2,5-diene Chemical compound C1C2C(CC)=CC1C=C2 LBBVUHNMASXJAH-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 241000276489 Merlangius merlangus Species 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical class C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910001864 baryta Inorganic materials 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012967 coordination catalyst Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001198 elastomeric copolymer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- 238000012994 industrial processing Methods 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- VCAFTIGPOYBOIC-UHFFFAOYSA-N phenyl dihydrogen phosphite Chemical class OP(O)OC1=CC=CC=C1 VCAFTIGPOYBOIC-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/08—Damp-proof or other insulating layers; Drainage arrangements or devices ; Bridge deck surfacings
- E01D19/083—Waterproofing of bridge decks; Other insulations for bridges, e.g. thermal ; Bridge deck surfacings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/32—Coherent pavings made in situ made of road-metal and binders of courses of different kind made in situ
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/32—Coherent pavings made in situ made of road-metal and binders of courses of different kind made in situ
- E01C7/325—Joining different layers, e.g. by adhesive layers; Intermediate layers, e.g. for the escape of water vapour, for spreading stresses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
Definitions
- MULTILAYERED STRUCTURE ABSTRACT A multilayered structure com risin a base su m 1 Drawing port, an unvulcanized elastomeric membrzne a t least 0.55
- the base support is UNITED T T PATENTS normally Portland cement concrete
- the intermediate layer is 1,862,0ll 6/1932 Gage 94/24 the elastomeric membrane
- the exposed cover layer is 2,210,252 8/ 1940 Neeld 14/73 asphaltic concrete.
- PATENTEUSEP Hm 3.603221 INVENTORS ROBERT HALL BARRON MARTIN LUTHER BROWN ANDREW MITCHELL MULTILAYERED STRUCTURE FIELD OF THE INVENTION
- This invention relates to the use of elastomers in a multilayered structure particularly useful in highway and bridge construction.
- U.S. Pat. No. 1,512,125 discloses a process of making a monolithic roadbed by cleaning, drying and heating the substratum, covering the substratum with a film of soft pitch and laying down a wearing surface over the soft pitch thereby effecting a knitting together of three layers into one monolithic mass.
- U.S. Pat. No. 2,183,253 discloses a method of road construction wherein the grade line is established, a water soluble electrolyte is mixed into the soil below the grade line to constitute a subbase with waterproof material to prevent escape of the electrolyte and thereafter overcoating with a wearing surface.
- the prior art does not provide a method of protecting roadways and bridges that is economical, easy to construct, and durable over a long period of time while subjected to varied weather conditions and constant use.
- This invention provides a multilayered roadway comprising essentially;
- the drawing shows a typical embodiment of this invention in which an uncured elastomeric membrane is sandwiched between a base layer and a traffic-bearing layer of concrete.
- the multistructure element of this invention comprises a base support, an elastomeric membrane, and a traffic-bearing layer.
- the attached drawing shows a typical embodiment of this invention in which the base support 1 is Portland cement concrete and intermediate layer 2 is an uncured elastomeric membrane and the trafiic-bearing layer 3 is asphalt cement concrete.
- the base support can be any flat surface such as a concrete bridge deck or roadbed that has been leveled by a roller.
- the base support can be asphalt, gravel,
- the base support is generally Portland cement concrete either precast or poured in place.
- the elastomeric membranes of this invention should exhibit the following characteristics.
- the membrane must not become so brittle that in cold weather it will crack and fail.
- the term cold weather is meant to include the winter conditions found in the North and South Temperate Zones.
- the desired brittle point of the membrane should be 0 C. or less as measured by the solenoid brittle point test described in ASTM
- the thickness of the membrane should be at least 0.05 inch to provide the necessary structural integrity for installation. The maximum thickness is a matter of economics and it has been found to be uneconomical and unnecessary to use a membrane more than 0.5-inch thick. Membranes 0.10 to 0.25 inch are preferred since they provide the best balance between economics and structural integrity.
- the membrane should be self-healing. This is accomplished by preparing and using the membrane is an unvulcanized state. Therefore, no sulfur or other vulcanizing agents are used in the mix, nor any agent that might cross-link the polymers.
- the membrane should desirably be very resistant to oxidative degradation. This is accomplished by using an elastomeric material that in itself is practically immune to oxidative degradation or an elastomeric material subject to oxidative degradation compounded with an antioxidant.
- Elastomers which best meet the above requirements are the saturated and low unsaturated elastomers such as ethylene/propylene (EP) copolymers, ethylene/propylene/diene (EPDM) terpolymers, butyl rubber, chlorinated polyethylenes, and the like. Natural rubber, styrene/butadiene rubber and the neoprenes can be employed when compounded with antioxidants. For economy and maximum resistance to degradation, the EP 01' EPDM elastomers are preferred.
- Representative copolymers include; ethylene/propylene, which is preferred; ethylene] l -butene; propylene/ l-butene; ethylene/5,5- dimethyll -octene; l-hexene/l-decene, ethylene/propylene ⁇ l octadene; propylene/S-methyl-1-heptene; and l-hexne/ldodecene.
- the ethylene copolymers should contain about 25 to 75 weight percent ethylene monomer units.
- EPDM terpolymers that are useful are made from at least one a-rnonoolefin and at least one nonconjugated diene having only one polymerizable double bond.
- EPDM terpolymers and procedures for making them are 'given in U.S.
- the resultant copolymer when cyclic nonconjugated dienes are employed, it is preferred that the resultant copolymer contain ethylene and at least one other a-monoolefin, e.g., propylene.
- the ethylene copolymers should contain about 20 to 70 weight percent ethylene monomer units.
- EPDM copoly'mers include: ethylene/1,4- hexadiene; ethylene/propylene] l ,4-hexadiene; ethylene/propylene/dicyclopentadiene; ethylene/propylene/S- methyiene-2-norbornene; ethylene/propylene/2-ethyl-2,5- norbornadiene; ethylene/propylene/ethylidine-2-norbornene; and ethylene/propylene/ l ,S-cyclooctadiene.
- Neoprenes are polymers and copolymers of chloroprene. These are well known and fully described in many U.S. Patents and various texts such as Introduction to Rubber Technology, edited by M. Morton, Reinhold Publishing Corp. New York, 1959, and The Neoprenes, R. M. Murray and D. C. Thompson, published by E. l. du Pont de Nemours and Co., Wilmington, Delaware, 1963. Chlorosulfonated saturated aliphatic hydrocarbon polymers are best exemplified by chlorosulfonated polyethylenes.
- chlorosulfonated polymers contain at least percent chlorine and at least 0.5 percent sulfur by weight.
- Representative preferred polymers contain about 20 to 40 percent chlorine and about i to 1.5 percent sulfur by weight.
- the polyethylene before chlorosulfonation is frequently a linear type having a density greater than 0.94 and a melt index of about 0.2 to 200.
- Neoprenes can be made by polymerizing chloroprene or copolymerizing chloroprene with up to about 50 percent of another ethyienically unsaturated copolymerizable monomer, e.g.,'acrylonitrile, styrene, acrylic and methacrylic acids and esters, l,3-butadiene isoprene and 2,3-dichlorobutadiene-l,3. These are also useable.
- another ethyienically unsaturated copolymerizable monomer e.g.,'acrylonitrile, styrene, acrylic and methacrylic acids and esters, l,3-butadiene isoprene and 2,3-dichlorobutadiene-l,3.
- SBR rubbers which can be used are characterized in the publication entitled Rubber: Natural and Synthetic by H. J. Stern, second edition, 1967.
- Antioxidants to be compounded with SBR rubber, neoprenes and natural rubber fall into three (1) secondary amines, (2) phenols, and (3) phosphites.
- Useable amines are phenyl-alphaand phenyl-beta-naphthylamines; useable phenols are those alkylated with isobutylene; and useable phosphites are those of the alkylated phenol phosphite class. These antioxidants are well known to the art.
- the elastomeric composition can contain relatively large proportions of filler which should be of the type that has a limited tendency to absorb water.
- Filler which should be of the type that has a limited tendency to absorb water.
- Carbon black, whiting (calcium carbonate) and baryta (barium sulfate) are suitable fillers.
- At least 100 parts of filler per 100 parts of elastomeric is suggested for use. However, as much as 500 parts can be used. Preferably 200 to 400 parts are used to give the best workable consistency to the membrane.
- a petroleum oil is usually included in the present elastomeric membrane composition in order to lower the materials cost and to improve the ease of processing.
- Plasticizing oils can be used at concentrations of 100 to 300 phr (parts per hundred parts of elastomer by weight). These oils should be a permanent nonvolatile type compatible with the particular elastomer used. Aromatic and naphthenic petroleum oils have been found useful.
- Stabilizing agents such as metal oxides, or extrusion aids such as waxes and stearic acid can be employed if desired.
- a membrane is formed by conventional calendering or extrusion techniques.
- the membrane When it has an inherently sticky nature, the membrane must be protected by a release paper or plastic film if it is to be stored or transported.
- the plastic film may be polyethylene terephthalate, polypropylene or the: like. It is sometimes desirable to leave the plastic film in place as part of the finished structure.
- During construction it can be used as a walking surface for workmen and it protects the membrane until the cover layer is applied. For large scale installations it is practical to extrude the membrane directly into the base layer of the roadway or bridge during construction.
- the trafiic-bearing layer can be any of the conventional types known to the art of highway and bridge construction. Some examples are sheet asphalt, a dense mix of bituminous concrete or Portland cement concrete pavement
- the traffic bearing layer is applied over the membrane by conventional methods known in the art of highway and bridge construction. y it is sometimes necessary to roll or compress the trafficbearing layer particularly when it is asphalt. During the compression operation aggregate may be forced into the membrane and perhaps rupture it. Due to the self-Healing qualities of the membrane it seals around the aggregate maintaining its protective shield.
- the multilayered structure of this invention has been particularly defined in terms of its use as a roadway or bridgedeck. Nevertheless, with a few simple modifications it can be adapted to other uses. it can be used as a roof wherein the base layer is wood, plastic, paper, cloth, metal plating, etc.; the intermediate layer is the unvulcanized elastomeric membrane described above; and the exposure layer is conventional roofing such as pebbles, tile, etc.
- This membrane would keep water from penetrating the roof and should a crack develop, e. g., from settling of the structure or someone walking on the roof, the self-healing healing properties of the membrane would operate to seal itself and prevent leakage or damage from the weather.
- Another use maybe weather guarding for basement walls where the base layer is cinder block, concrete, or brick; the intermediate layer is the membrane described above and the outer layer can be wood, sheet metal, gravel drain or the earth. Still other uses may be in sidewalls, racetracks or athletic fields.
- the EPDM copolymer is made by copolymerizing ethylene with propylene and 1,4-hexadiene in solution in tetrachloroethylene in the presence of a coordination catalyst in accordance with the general procedures of U.S. Pat. No. 2,933,480. Hydrogen modification is employed during the preparation in accordance with U.S. Pat. No. 3,05 L690.
- This copolymer has a Mooney viscosity of about 45 (MM/250 F.) and contains about 0.33 g.-mol of ethylenic unsaturation per kilogram.
- the following monomer unit composition is present by weight: 63 percent ethylene, 33 percent propylene, 4 percent 1,4-hexadiene.
- the inherent viscosity is about 2.2.
- FEF Carbon Black is characterized in the ASTM manual under Standard Specifications for Carbon Blacks Used in Rubber Products. This material is identified as ASTM: D-l 765-, Type PEP 30.
- Austin Carbon Black is a finely pulverized bituminous coal of specific gravity 1.25, containing 77 percent carbon and 17 percent volatile components. It is commercially available from the Chemical Products Division of Slab Fork Coal Company, Slab Fork, West Virginia.
- Sundex 790 is a process oil sold commercially by the Sun Oil Company. Its standard designation is ASTM D-2226, Type 102. This oil is characterized as follows: specific gravity at 60 F. of 0.9806; density 0.9769; molecular weight 37.5 and a viscosityZgravity constant of 0.932.
- the composition After mixing, the composition is calendered into a sheet 50 inches wide and 0.100-inch thick. It is installed as the sealing membrane on a heavily traveled bridge deck, over an 8-inch thick Portland cement concrete base, and under a l /-inch thick asphaltic concrete traffic bearing layer. After 6 months of service the membrane is intact and is giving full protection to the Portland cement concrete base layer. Core borings are taken and analyzed. The structural integrity of the roadway is as good as it was in the beginning.
- EXAMPLE ii A multilayered structure comprising a base layer of Portland cement concrete, and intermediate layer of elastomeric membrane prepared as described in Example I and a top layer of amesite is constructed in the following manner.
- a concrete slab having a surface area of 8X16 inches is poured and curved according to conventional methods.
- An elastomeric membrane is placed on top of the concrete slab with the ends turned up to form a pan.
- Hot amesite, 2 inches thick, is placed in the pan and compressed under a 200 p.s.i. hydraulic press to complete the structure.
- the structure is cracked in half, the pan formed by the elastomeric membrane is filled with salt solution and multilayered structure is placed on a vibrator to flex the joint. Electrodes are placed between the concrete slab and the elastomeric membrane. The sample is vibrated and if the crack causes rupture of the membrane to allow salt solution to reach the concrete the electrical resistance of the electrodes will drop. After one week of flexing the crack by continuous vibration, the electrical resistance of the electrodes remains the same indicating the self-healing elastomeric membrane is still containing the salt solution.
- a multilayered structure consisting essentially of a. a base layer,
- a multilayered structure according to claim 1 wherein the elastomeric membrane has at least to 500 parts of filler per lOO parts of elastomer and at least 100 to 300 parts of plasticizing oil per 100 parts of elastomer.
- a multilayered structure according to claim 1 wherein the elastomeric membrane is made from a copolymer of ethylene, propylene and at least one nonconjugated diene having only one polymerizable double bond.
- a multilayered roadway comprisingessentially a. a base layer of Portland cement concrete;
- the elastomeric membrane is 100 parts ethylene/propylene copolymer, l00500 parts filler, and 100-300 parts plasticizing oil;
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Road Paving Structures (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77199368A | 1968-10-30 | 1968-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3603221A true US3603221A (en) | 1971-09-07 |
Family
ID=25093564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US771993A Expired - Lifetime US3603221A (en) | 1968-10-30 | 1968-10-30 | Multilayered structure |
Country Status (7)
Country | Link |
---|---|
US (1) | US3603221A (enrdf_load_stackoverflow) |
BR (1) | BR6913746D0 (enrdf_load_stackoverflow) |
DE (1) | DE1954482A1 (enrdf_load_stackoverflow) |
FR (1) | FR2021922A1 (enrdf_load_stackoverflow) |
GB (1) | GB1296684A (enrdf_load_stackoverflow) |
NL (1) | NL6916298A (enrdf_load_stackoverflow) |
SE (1) | SE372046B (enrdf_load_stackoverflow) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707901A (en) * | 1970-12-22 | 1973-01-02 | Rubber Reclaiming Co Inc | Pavement and composition therefor |
US3850537A (en) * | 1972-10-31 | 1974-11-26 | D Bynum | Pavement construction |
US4118137A (en) * | 1976-12-06 | 1978-10-03 | U.S. Rubber Reclaiming Co., Inc. | Pavement and process of providing the same |
US4151025A (en) * | 1977-06-06 | 1979-04-24 | Triram Corporation | Method for waterproofing bridge decks and the like |
DE2854263A1 (de) * | 1977-12-14 | 1979-06-28 | Morris Richard Jeppson | Verfahren und einrichtung zur bearbeitung von strassendecken |
US4175885A (en) * | 1977-01-03 | 1979-11-27 | Giselle V. Laurmann | Methods for sealing and resealing concrete using microwave energy |
US4556338A (en) * | 1983-07-11 | 1985-12-03 | Tar Heel Technologies, Inc. | Method for reinforcing pavement |
US4594022A (en) * | 1984-05-23 | 1986-06-10 | Mp Materials Corporation | Paving method and pavement construction for concentrating microwave heating within pavement material |
US4849020A (en) * | 1987-04-20 | 1989-07-18 | The Titan Corporation | Asphalt compounds and method for asphalt reconditioning using microwave radiation |
US5051023A (en) * | 1987-07-14 | 1991-09-24 | Chichibu Cement Co., Ltd. | Fracture-free layered paving blocks |
US5455291A (en) * | 1994-02-14 | 1995-10-03 | U.S. Intec, Inc. | Coal-tar-pitch-based compositions |
US6187428B1 (en) | 1997-12-30 | 2001-02-13 | Colas S.A. | Wheel rut-resistant carriageway and process for obtaining such a carriageway |
US6500560B1 (en) | 1999-11-30 | 2002-12-31 | Elk Corporation Of Dallas | Asphalt coated structural article |
US20030040241A1 (en) * | 1999-11-30 | 2003-02-27 | Matti Kiik | Roofing system and roofing shingles |
US6578343B1 (en) * | 2001-11-12 | 2003-06-17 | Pipe Service, Inc. | Reinforced concrete deck structure for bridges and method of making same |
US6586353B1 (en) | 1999-11-30 | 2003-07-01 | Elk Corp. Of Dallas | Roofing underlayment |
US6673432B2 (en) | 1999-11-30 | 2004-01-06 | Elk Premium Building Products, Inc. | Water vapor barrier structural article |
US6872440B1 (en) | 1999-11-30 | 2005-03-29 | Elk Premium Building Products, Inc. | Heat reflective coated structural article |
US7169462B1 (en) | 2004-03-01 | 2007-01-30 | Laticrete International, Inc. | Waterproofing membrane |
US20070056228A1 (en) * | 2002-07-10 | 2007-03-15 | Penland Joe E Sr | Interlocking laminated support mat |
US7438499B1 (en) * | 2005-08-10 | 2008-10-21 | Unique Ideas Corp. | Method for protecting pavement borders during paving operations |
CN103774519A (zh) * | 2011-12-31 | 2014-05-07 | 常熟古建园林建设集团有限公司 | 沥青道路施工方法 |
US20170166736A1 (en) * | 2015-02-26 | 2017-06-15 | Exxonmobil Chemical Patents Inc. | Polymer blend, method for making the same and roofing membrane containing the same |
US9828768B2 (en) * | 2016-04-07 | 2017-11-28 | Ductilcrete Technologies, Llc | Concrete slab system |
US10156045B2 (en) | 2016-07-29 | 2018-12-18 | Quality Mat Company | Panel mats connectable with interlocking and pinning elements |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE793133A (fr) * | 1972-07-26 | 1973-04-16 | Villadsens Fab As Jens | Materiau plastique en feuille et articles contenant un tel materiau |
AT362709B (de) * | 1977-03-07 | 1981-06-10 | Perlmooser Zementwerke Ag | Verbindungs-, insbesondere haftver- mittlerschicht und verfahren zu deren her- stellung |
FR2508509A1 (fr) * | 1981-06-26 | 1982-12-31 | Colas Sa | Structure composite pour chaussees et aires de roulement |
FR2514045A1 (fr) * | 1981-10-02 | 1983-04-08 | Couturier Jean | Procede pour ameliorer les proprietes des materiaux pour assises de chaussees ou fondations d'aires de stationnement ou de circulation et materiaux en resultant |
DE3150021C1 (de) * | 1981-12-17 | 1987-11-12 | Dynamit Nobel Ag, 5210 Troisdorf | Mehrschichtige Dichtungsbahn aus elastomeren Kunststoffen und einer Verstaerkungseinlage |
CA2961764C (en) * | 2016-04-07 | 2019-03-05 | Ductilcrete Slab Systems, Llc | Method of fabricating a concrete slab system |
CA2961765C (en) * | 2016-04-07 | 2019-03-12 | Ductilcrete Slab Systems, Llc | Concrete slab system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1862011A (en) * | 1928-01-03 | 1932-06-07 | Robert B Gage | Concrete pavement and its construction |
US2210252A (en) * | 1938-07-23 | 1940-08-06 | Charles M Neeld | Bridge flooring |
US2294247A (en) * | 1941-05-05 | 1942-08-25 | Walter J Smith | Surface covering |
US2347233A (en) * | 1941-02-12 | 1944-04-25 | Archie L Blades | Composite surfacing material and method of applying the same |
US2672793A (en) * | 1951-01-04 | 1954-03-23 | Bonafide Mills Inc | Floor structure and method of making the same |
GB739217A (en) * | 1952-09-25 | 1955-10-26 | Basf Ag | Improvements in roadway surfaces and in methods of constructing the same |
US3000276A (en) * | 1957-01-12 | 1961-09-19 | British Cellophane Ltd | Construction of concrete rafts, roads, aircraft runways and the like |
US3168019A (en) * | 1961-11-16 | 1965-02-02 | Lynn Bernard Stanley | Jet aircraft runway having anti-skid properties when wet |
-
1968
- 1968-10-30 US US771993A patent/US3603221A/en not_active Expired - Lifetime
-
1969
- 1969-10-29 DE DE19691954482 patent/DE1954482A1/de active Pending
- 1969-10-29 BR BR213746/69A patent/BR6913746D0/pt unknown
- 1969-10-29 FR FR6937120A patent/FR2021922A1/fr not_active Withdrawn
- 1969-10-29 NL NL6916298A patent/NL6916298A/xx unknown
- 1969-10-29 SE SE6914790A patent/SE372046B/xx unknown
- 1969-10-30 GB GB1296684D patent/GB1296684A/en not_active Expired
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1862011A (en) * | 1928-01-03 | 1932-06-07 | Robert B Gage | Concrete pavement and its construction |
US2210252A (en) * | 1938-07-23 | 1940-08-06 | Charles M Neeld | Bridge flooring |
US2347233A (en) * | 1941-02-12 | 1944-04-25 | Archie L Blades | Composite surfacing material and method of applying the same |
US2294247A (en) * | 1941-05-05 | 1942-08-25 | Walter J Smith | Surface covering |
US2672793A (en) * | 1951-01-04 | 1954-03-23 | Bonafide Mills Inc | Floor structure and method of making the same |
GB739217A (en) * | 1952-09-25 | 1955-10-26 | Basf Ag | Improvements in roadway surfaces and in methods of constructing the same |
US3000276A (en) * | 1957-01-12 | 1961-09-19 | British Cellophane Ltd | Construction of concrete rafts, roads, aircraft runways and the like |
US3168019A (en) * | 1961-11-16 | 1965-02-02 | Lynn Bernard Stanley | Jet aircraft runway having anti-skid properties when wet |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3707901A (en) * | 1970-12-22 | 1973-01-02 | Rubber Reclaiming Co Inc | Pavement and composition therefor |
US3850537A (en) * | 1972-10-31 | 1974-11-26 | D Bynum | Pavement construction |
US4118137A (en) * | 1976-12-06 | 1978-10-03 | U.S. Rubber Reclaiming Co., Inc. | Pavement and process of providing the same |
US4175885A (en) * | 1977-01-03 | 1979-11-27 | Giselle V. Laurmann | Methods for sealing and resealing concrete using microwave energy |
US4151025A (en) * | 1977-06-06 | 1979-04-24 | Triram Corporation | Method for waterproofing bridge decks and the like |
DE2854263A1 (de) * | 1977-12-14 | 1979-06-28 | Morris Richard Jeppson | Verfahren und einrichtung zur bearbeitung von strassendecken |
US4556338A (en) * | 1983-07-11 | 1985-12-03 | Tar Heel Technologies, Inc. | Method for reinforcing pavement |
US4594022A (en) * | 1984-05-23 | 1986-06-10 | Mp Materials Corporation | Paving method and pavement construction for concentrating microwave heating within pavement material |
US4849020A (en) * | 1987-04-20 | 1989-07-18 | The Titan Corporation | Asphalt compounds and method for asphalt reconditioning using microwave radiation |
US5051023A (en) * | 1987-07-14 | 1991-09-24 | Chichibu Cement Co., Ltd. | Fracture-free layered paving blocks |
US5455291A (en) * | 1994-02-14 | 1995-10-03 | U.S. Intec, Inc. | Coal-tar-pitch-based compositions |
US6187428B1 (en) | 1997-12-30 | 2001-02-13 | Colas S.A. | Wheel rut-resistant carriageway and process for obtaining such a carriageway |
US6500560B1 (en) | 1999-11-30 | 2002-12-31 | Elk Corporation Of Dallas | Asphalt coated structural article |
US20030040241A1 (en) * | 1999-11-30 | 2003-02-27 | Matti Kiik | Roofing system and roofing shingles |
US6990779B2 (en) | 1999-11-30 | 2006-01-31 | Elk Premium Building Products, Inc. | Roofing system and roofing shingles |
US6586353B1 (en) | 1999-11-30 | 2003-07-01 | Elk Corp. Of Dallas | Roofing underlayment |
US6673432B2 (en) | 1999-11-30 | 2004-01-06 | Elk Premium Building Products, Inc. | Water vapor barrier structural article |
US6708456B2 (en) | 1999-11-30 | 2004-03-23 | Elk Premium Building Products, Inc. | Roofing composite |
US6872440B1 (en) | 1999-11-30 | 2005-03-29 | Elk Premium Building Products, Inc. | Heat reflective coated structural article |
US6578343B1 (en) * | 2001-11-12 | 2003-06-17 | Pipe Service, Inc. | Reinforced concrete deck structure for bridges and method of making same |
US20070056228A1 (en) * | 2002-07-10 | 2007-03-15 | Penland Joe E Sr | Interlocking laminated support mat |
US7169462B1 (en) | 2004-03-01 | 2007-01-30 | Laticrete International, Inc. | Waterproofing membrane |
US7491426B1 (en) | 2004-03-01 | 2009-02-17 | Laticrete International, Inc. | Waterproofing membrane |
US7438499B1 (en) * | 2005-08-10 | 2008-10-21 | Unique Ideas Corp. | Method for protecting pavement borders during paving operations |
CN103774519A (zh) * | 2011-12-31 | 2014-05-07 | 常熟古建园林建设集团有限公司 | 沥青道路施工方法 |
CN103774519B (zh) * | 2011-12-31 | 2015-11-25 | 常熟古建园林建设集团有限公司 | 沥青道路施工方法 |
US20170166736A1 (en) * | 2015-02-26 | 2017-06-15 | Exxonmobil Chemical Patents Inc. | Polymer blend, method for making the same and roofing membrane containing the same |
US9683097B1 (en) * | 2015-02-26 | 2017-06-20 | Exxonmobil Chemical Patents Inc. | Polymer blend, method for making the same and roofing membrane containing the same |
US9828768B2 (en) * | 2016-04-07 | 2017-11-28 | Ductilcrete Technologies, Llc | Concrete slab system |
US10156045B2 (en) | 2016-07-29 | 2018-12-18 | Quality Mat Company | Panel mats connectable with interlocking and pinning elements |
US10895044B2 (en) | 2016-07-29 | 2021-01-19 | Quality Mat Company | Lightweight universal panel mat |
Also Published As
Publication number | Publication date |
---|---|
DE1954482A1 (de) | 1970-05-06 |
FR2021922A1 (enrdf_load_stackoverflow) | 1970-07-24 |
SE372046B (enrdf_load_stackoverflow) | 1974-12-09 |
NL6916298A (enrdf_load_stackoverflow) | 1970-05-04 |
GB1296684A (enrdf_load_stackoverflow) | 1972-11-15 |
BR6913746D0 (pt) | 1973-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3603221A (en) | Multilayered structure | |
US3112681A (en) | Paving with polymer-bonded aggregates | |
US4113401A (en) | Method of pavement repair | |
US3930100A (en) | Elastomeric cold patch for pavement repair | |
US6830408B1 (en) | System for repairing distressed roads that includes an asphalt interlayer | |
KR102040532B1 (ko) | 수소가 첨가된 석유수지 및 sis를 이용한 도로 포장용 개질 아스팔트 콘크리트 조성물 및 이의 시공방법 | |
US3707901A (en) | Pavement and composition therefor | |
KR101553210B1 (ko) | 탄성 및 내구성이 우수한 콘크리트 구조물 신축이음부용 조인트 조성물 및 이를 이용한 콘크리트 구조물 신축이음부 보수공법 | |
KR102052402B1 (ko) | 수소가 첨가된 석유수지 및 sis를 이용한 아스팔트 콘크리트용 바인더 조성물 및 이의 시공방법 | |
US20090038509A1 (en) | Reflective crack releif layer that is permeable | |
US3093601A (en) | Composition comprising aggregate, rubber and a steam-cracked petroleum resin | |
KR102258767B1 (ko) | Sis, sbs 및 수소가 첨가된 석유수지를 포함하는 콘크리트 도로용 줄눈 주입재 조성물 및 이를 이용한 시공방법 | |
EP0378371B1 (en) | Low temperature applicable waterproofing laminates | |
KR102207040B1 (ko) | Ldpe를 포함하는 불투수성 방수아스팔트 콘크리트 조성물 및 이의 시공방법 | |
KR102207011B1 (ko) | Sis 및 수소가 첨가된 석유수지를 포함하는 지하차도 신축이음부용 방수성 탄성아스팔트 콘크리트 조성물 및 현장이송장치를 이용한 이의 시공방법 | |
KR102207013B1 (ko) | 폐타이어 분말을 포함하는 불투수성 방수아스팔트 콘크리트 조성물 및 이의 시공방법 | |
KR102207014B1 (ko) | 폐타이어 분말을 포함하는 도로용 개질아스팔트 콘크리트 조성물 및 이의 시공방법 | |
Al-Shabani et al. | Investigate the effect of using reclaimed asphalt pavement rap and polymer-modified bitumen on the moisture damage of hot mix asphalt | |
RU2202023C1 (ru) | Дорожное покрытие | |
KR102588880B1 (ko) | 아스팔트 포장도로의 불투수성 중간층 조성물 및 이를 이용한 불투수성 중간층 시공 방법 | |
KR102054829B1 (ko) | 수소가 첨가된 석유수지 및 sis를 이용한 교면포장용 방수아스팔트 콘크리트 조성물 및 이를 이용한 방수일체형 교면 균열부 보수공법 | |
Singgih et al. | Assessing the durability of polymer modified asphalt emulsions slurry seal | |
Frascoia | Field performance of experimental bridge deck membrane systems in Vermont | |
KR102207051B1 (ko) | 우레탄 수지를 포함하는 불투수성 방수아스팔트 콘크리트 조성물 및 이의 시공방법 | |
JPS6214162Y2 (enrdf_load_stackoverflow) |