US3595390A - Ore flotation process with poly(ethylene-propylene)glycol frothers - Google Patents

Ore flotation process with poly(ethylene-propylene)glycol frothers Download PDF

Info

Publication number
US3595390A
US3595390A US737811A US3595390DA US3595390A US 3595390 A US3595390 A US 3595390A US 737811 A US737811 A US 737811A US 3595390D A US3595390D A US 3595390DA US 3595390 A US3595390 A US 3595390A
Authority
US
United States
Prior art keywords
frothers
ore
percent
flotation
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US737811A
Inventor
Robert Ben Booth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Application granted granted Critical
Publication of US3595390A publication Critical patent/US3595390A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/0043Organic compounds modified so as to contain a polyether group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/04Frothers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S209/00Classifying, separating, and assorting solids
    • Y10S209/901Froth flotation; copper

Abstract

A process for collecting mineral values from an ore which comprises mixing ground ore with water to form an ore pulp, aerating said pulp in the presence of an effective amount of frother selected from the group consisting of poly(ethylenepropylene) glycols and lower alkyl monoethers of poly(ethylenepropylene) glycols having an average molecular weight in the range of about 150 to about 2,500, each of said frothers being prepared from ethylene oxide and propylene oxide, each of said oxides being employed in amounts of between 5 and 95 mole percent based upon the amount of alkylene oxide reacted and recovering mineral values from the resulting froth.

Description

United States Patent [72] Inventor Robert Ben Booth Stamford, Conn.
[2!] Appl No. 737,811
[22] Filed June 18, 1968 [45] Patented July 27, 1971 [73] Assignee American Cyanamid Company Stamford, Conn.
[54] ORE FLOTATION PROCESS WITH POLYiETI-IYLENE-PROPYLENENLYCOL FRO'IHERS 2 Claims, No Drawings [52] [1.8. CI 209/166 [51] Int. Cl 803d 1/02 [50] Field of Search 209/ 1 66,
[56] References Cited UNITED STATES PATENTS 2,377,129 5/1945 Christmann 209/166 2,797,808 7/1957 Tveter.......... 209/166 2,561,251 7/1951 Van Aardt 209/166 2,950,818 8/1960 Mueller 209/166 2,174,761 10/1939 Schuette 2,677,700 5/1954 Jackson.... 260/615 X 2,965,678 12/1960 Sundberg. 260/615 3,078,315 2/1963 Steele 260/615 3,101,374 8/1963 Putton 260/615 X OTHER REFERENCES Chem. Abstract, 60. 7716 d, 1964.
Primary Examiner-Frank W. Lutter Assistant Examiner- Robert Halper Attorney-John L. Sullivan of poly(ethylene-propylene) glycols having an average molecular weight in the range of about 150 to about 2,500, each of said frothers being prepared from ethylene oxide and propylene oxide, each of said oxides being employed in amounts of between 5 and 95 mole percent based upon the amount of alkylene oxide reacted and recovering mineral values from the resulting froth.
ORE F LOTATION PROCESS WITH POLY(ETHYLENE- PROPYLENIDGLYCOL FROTHERS This invention relates to a method for concentrating minerals from ores by froth flotation. More particularly, the present invention relates to froth flotation processes employing as a frothing agent poly(ethylene-propylene)glycols and lower alkyl mono ethers of such glycols.
Froth flotation is a commonly; employed process for concentrating minerals from ores. In a flotation process, the ore is crushed and wet ground to obtain a pulp. A frothing agent, usually employed with a collecting agent, is added to the ore to assist in separating valuable minerals from the undesired or gangue portions of the ore in subsequent flotation steps. The pulp is then aerated to produce a froth at the surface thereof and the collector assists the frothing agent in separating the mineral values from the ore bycausing the mineral values to adhere to the bubbles formed during this aeration step. The adherence of the mineral values is selectively accomplished so that the portion of the ore not containing mineral values does not adhere to the bubbles. The mineral-bearing froth is collected and further processed to obtain the desired minerals. That portion of the ore which is not carried overwith the froth, usually identifiedas flotation trailings", is usually not further processed for extraction of mineral values therefrom. The froth flotation process is applicable to ores containing metallic and nonmetallic mineralwalues.
ln flotation processes, it is desirable to recover as much mineral values as possible fromuthe ore while effecting the recovery in a selective manner, that is, without carrying over undesirable portions of the ore in'the froth.
While a large number of compounds have foam or froth producing properties, the frothers most widely used in commercial froth flotation operations are monohydroxylated compounds such as C -C,, alcohols, pine oils, cresols and C C alkyl ethers of polypropylene glycols as well as dihydroxylates such as polypropylene glycolssThe frothers most widely used in froth flotation operations are compounds containing a nonpolar, water-repellant group and a single, polar, water-avid group such as hydroxyl (OH). Typical of this class of frothers are mixed amyl alcohols, methylis'obutyl carbinol, hexyl and heptyl alcohols, cresols, tepineol, etc. Other effective frothers used commercially are the C,C alkyl ethers of polypropylene glycol, especially the methyl ether and the polypropylene glycols of l40-2l00 molecular weight and particularly those in the 400-1100 range. In additiomcertain alkoxyalkanes, e.g. triethoxybutane, are used as frothers in the flotation of certain ores.
Although mineral recovery improvements from a preferred frother in the treatment of an ore can be as low as only about 1 percent over other frothers, this small improvement is of great importance economically since commercial operations often handle as much as 50,000 tons of ore daily. With the high throughput rates normally encountered in commercial flota' tion processes, relatively small improvements in the rate of mineral recovery'result in the recovery of additional tons of minerals daily. Obviously then, any frother which promotes improved mineral recovery, even though small, is very desirable and can be advantageous in commercial flotation operatrons.
It is an object of the present invention to provide frothing agents which improve the selective recovery of mineralvalues from ores. It is a further object of the present invention to pro-- vide frothing agents which can be satisfactorily employed in present flotation processes. Furtherobjects of the present invention will become evident in view of the following detailed discussion.
In accordance with the presentzinvention, it has been found that poly (ethylene-propylene) glycols and the lower-mono alkyl C to C carbon atom-ethers of poly(ethylenepropylene )glycols are highly effective frothers.
The frothers of the present invention are added to the ore and intimately mixed therewith either alone or together with a collector prior to and/or during the flotation step. The ore pulp-frother mixture is then treated under conditions to form a froth. The froth selectively removes the mineral values from the ore and the mineral-rich froth is separated from the ore flotation pulp and recovered. This value-depleted pulp which remains in the flotation cell is removed. The mineral-rich froth is then further treated to recover the desired mineral values. In accordance with the process of this invention it has been found that both the amount of mineral values which are recovered and the concentration of mineral values in the froth are substantially increased over prior processes which employ known frothers. These processing improvements are obtained with lower quantities of frothing agents as compared to those used currently in flotation operations. Accordingly, the present invention provides substantial advantages over the prior processes.
The frothers of this invention can be employed in the flotation of metallic and nonmetallic-ores. Exemplary ores which are processed include sulfides and oxides of copper and molybdenum, lead, iron, nickel, cobalt, and'the like. Such ores may also contain precious metal values. Other exemplary ores are phosphate rock, cement rock, glass sands, feldspars, fluorspars, micas, clays, talcs, coals and ores containing tungsten, manganese, sulfur, and water-soluble minerals such as sodium and potassium chlorides, and the like. The frothers of this invention are employed in amounts of from about 0.005 lbs. per ton'ore to about 1.0 lb. per ton' of ore; or preferably from about 0.01 lb. per ton ore to about 0.4 lb. per ton ore. The use of more than about 1.0 lb. per ton ore of the frother generally does not improve recovery sufficiently to economically justify the additional frother cost while the use of less than about 0.005 lb. per ton ore of the frother does not materially improve metal separation.
The frothers of the present invention are methods known to the art.
The poly(ethylene-propylene)gylcols may be prepared by reacting ethylene glycol or propylene glycol with ethylene oxide and propylene oxide. The higher the quantity of ethylene oxide and propylene oxide used, the longer the chain length or the higher the molecular weight of the polymeric glycol obtained.
The C to C monoalkyl ethers of the poly(ethylenepropylene)glycols of the present invention are prepared by reaction of an alcohol with ethylene oxide and propylene oxide and the chain length or molecular weight of the reaction product is dependent on the quantities of the two alkylene oxides used. Typical suitable alcohols are methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, isobutyl, normal amyl, various primary amyl, isoamyl, hexyl'and methylamyl alcohols.
prepared by Primary and secondary alcohols are the preferred alkanol reactants. Also it is preferred to employ normal butanol or isobutanol as the alkanol reactant since the frothers produced therefrom have been found to give improved efficiencies in flotation processes.
The preparation of the frothers'of the present invention is effected in the presence of a catalyst such as alkalies, sodium or potassium hydroxide, amines particularly tertiary amines such as triethanol amine, reaction products of amines and alkylene oxides and also boron trifluoride. The reaction may be carried out sequentially with either the ethylene oxide or propylene oxide being added first or concurrently with the oxides being reacted as a mixture. Reaction temperatures up to 150 C. are employed and pressures up to pounds per square inch are used.
The poly(ethylene-propylene)glycols and mono alkyl ethers useful in the present invention may be characterized in terms of their molecular weights. Products of average molecular weight in the range of about to about 2,500 are suitable for use as frothers with the range of about 250 to about 1,000 being preferred.
The reaction products may be used as flotation frothers as produced, after neutralization with acid or after distillation to remove more volatile fractions. The pure poly(ethylenepropylene)glycols and mono alkyl ethers are useful in the present invention, although the reaction products or mixed fractions also are efficient frothers.
The quantities of reactants are adjusted so that a frother of desired molecular weight may be obtained. For example, a molar quantity of ethylene or propylene glycol or a C to C alcohol is reacted with sufficient ethylene oxide or propylene oxide so that the final polymeric condensate is in the molecular weight range of about 150 to about 2,500. The amount of ethylene oxide to propylene oxide reacted with ethylene glycol, propylene glycol or a lower alcohol may range from mole percent ethylene oxide-95 mole percent propylene oxide to about 95 mole percent ethylene oxide-5 mole percent propylene oxide based upon the total amount of alkylene oxide reacted.
it is an advantage of the present invention that the indicated variations of the quantities of ethylene oxide or propylene oxide or mixtures thereof permit a ready adjustment in the frothing characteristics of the various reaction products. Thus by a change in the ratio of reactants, important factors such as froth volume, bubble structure or froth texture, froth presistency dun'ng flotation or after removal from the flotation machine, selectively, and mineral recovery may be adjusted and controlled to suit the specific requirements of flotation operators in the treatment of various types of ores. Such latitude is not attainable with the frothers used in current flotation practice.
Within the indicated ratio of reactants an increase in the quantity of propylene oxide gives a froth of smaller sized bubbles and of closer knit texture, which is conducive to high recovery ofmineral values in both coarse and fine sizes. An increase in ethylene oxide within the indicated ratio tends to produce a froth of looser texture and larger bubbles, which is conducive to the elimination ofinsolubles from the froth, thus raising the concentrate grade particularly in the flotation of slimey ores.
The frothers of the present invention may be added to the ore pulp prior to and/or during the flotation operation. These frothers may be added directly to the ore pulp or, being soluble and readily dispersed in water, may be prediluted with water and then fed to the ore pulp. Such dilution permits more accurate control of the quantity of frother used and results in decreased frother requirements and lower costs. Stage feeding of the frothers also is frequently advantageous.
The frothers of this invention can be employed either alone or in conjunction with standard frothers and with a conditioning agent or modifier and/or a water-soluble or oily collector or promoter. Suitable water-soluble collectors or promoters which can be employed in the flotation of sulfide or oxide metallic ores are alkali metal xanthates, sodium or potassium ethyl, isopropyl, secondary or isobutyl, amyl, or isoamyl and hexyl xanthates and dithiophosphates such as dicresyl, diethyl, diisopropyl, disecondary or diisobutyl, diamyl or diisoamyl and dihexyl dithiophosphates as free acids or as sodium, potassium or ammonium salts, as well as mercaptobenzothiazole derivatives. Suitable oily collectors which can be employed with the frothers of this invention include dithiocarbamates such as S-allyl-N-ethyldithiocarbamate, S-allyl-N-isopropyldithiocarbamate and S-allyl-N-methyl-dithiocarbamate, as well as allyl xanthates, dialkythionocarbamates and (alkoxycarbonyl) alkyl xanthates; these collectors are oil-soluble.
In the flotation of nonmetallic ores, suitable water-soluble and oil-soluble collectors or promoters are oleic acid, crude and refined tall oil, and tall oil fatty acids, naphthenic acids, the sodium, potassium, and ammonium soaps of such acids, black liquor soap, petroleum sulfonatcs, organic phosphates and polyphosphates, sulfonated oils and fatty acids, sulfosuccinates and sulfosuccinamates. Cationic type collectors such as long chain amines or imidazolines are employed in the flotation ofsilica and silicates and watensoluble minerals.
When collectors are used with the frothers of this invention, they are employed in varying quantities depending on the type of ore treated. For the treatment of the sulfide and oxide ores of base metals, the collector requirement is 0.01 and 2.0 lb./ton of ore, preferably between 0.02 and 0.5 lb./ton of ore. For nonmetallic ores, the collector requirement ranges from 0.05 to 5.0 lb./ton of ore, preferably 0.1 to about 3.0 lb./ton of ore.
Depending on the type of ore treated, conditioning or modifying agents such as alkalies and acids to adjust pH so as to improve selectivity, flotation depressants to inhibit the flotation of unwanted minerals, and activators to enhance flotability and improve flotation rates may be used with the frothers of this invention.
To observe the frothing characteristics of the frothers of the present invention, a laboratory Fagergren flotation machine, operating at about 2100 rpm. with water only in the agitation chamber, is suitable. The frothers are added as 1-3 percent dispersions in water and agitated about 10 seconds with the water, about 2,200 ml. in volume, in the agitation chamber with the air valve closed to simulate a conditioning operation. The air valve is then opened and the froth allowed to build up at the surface of the water so as to permit observation of its volume, structure, and persistency during agitation and after removal from the agitation chamber. Frother dosages of about 0.0050.03 gram usually are sufficient to produce a froth which overflows from the flotation cell.
The following examples illustrate the process of the present invention and are not intended to limit the same. In these examples EO and P0 are used to designate ethylene oxide and propylene oxide respectively and the proportions employed are mole percents.
EXAMPLE 1 Samples of Pennsylvania bituminous coal fines, 600 grams in weight and containing 22.3 percent ash, were conditioned with 1.25 lb./ton fuel oil and varying quantities of frother as given in the following table. Various reaction products of E0 and PO and n-butanol were used as frothers. These reaction products varied in molecular weight and in the ratio of EO and PO used in their preparation. These frothers were compared with technical hcptanol, the frother in standard use in the flotation of this coal. The results obtained in these flotation tests are summarized in the following table.
Frother Coal concentrate Approx. Percent Percent Type mol. wt. Ll)./t0n weight ash Technical heptanol 0. 17 137.3 11. '2 Reaction products of n-butanol with:
5% BIO-05% P0 300-350 0. 011 60. al 1). 0
15% EEO-% lO 300-250 0. 12 68. 2 9. 2
25% -757 PO 400-470 0. 13 6S. 4 0. J
50% TED-50% PO. 550-650 0. 13 G8. 5 .l. l
75 0 EO-25% PO. 1 (100-1.100 0. 14 68. d 0. .3
50% EO-50'ZI. PO 1, 500-1, 800 0. 13 68. 1 0. l
75% ISO-25% PO. 1, 925-2, 100 0. 14 68. l J. 0
50% EO-50% PO 2, 400-2, 500 0. 11 0B. 5 J. l
80 0 EO-20% PO 600-675 0. 12 68. 4 9. 4
J 0 EO-l0% PO. 300-400 0.14 68. 4 J. 5
40% BIO-60% PO 500-550 0. 12 b8. 2 1|. 3
450-550 0. 12 (i8. 1 ii. 1
The results of the above tests demonstrate that alkanol-EO- PO reaction products are effective as frothers over a wide range of molecular weights. Also it is shown that highly effective frothing agents are produced even though the ratio of E0 and PO varies widely in the reaction used to prepare the frothers.
trate contained the major portions of the molybdenum content of the ore which floated simultaneously with the copper minerals. in separate tests, several different frothers were used. The results of these comparative tests are given in the following table.
Concentrate recovery Percent Percent Percent Percent Frother (type) Cu MOS: Cu M052 Triethoxvbutane 24. 53 0. 375 89.39 76. 23 Reaction product.- methyl alcohol with E (moi. t. 250-300) 1 Reaction product: methyl alcohol with P0 (mol. wt. 250-300).. 25. 21 0.381 86. 37 74. 12 Reaction product: meth l alcohol with EO95/,. PO (moi. wt. 250- 300 25. 21 O. 380 89.63 77. Reaction product: n-b and 5% EO-95% PO(mol. wt. 300)... 25. 0.380 89. 91 77. 27 Polypropylene glycol (mol. wt. 425) 25. 10 0.385 86. 23 73. 18
1 Insufficient froth to support concentrate.
gren flotation machine for 3 minutes to produce coal concentrates. Pine oil and methyl amyl alcohol also were used as frothers in separate tests. The recoveries of coal and the ash content of the coal concentrates are given in the following table.
Frother Coal concentrate Percent A pprox. Lh. 'ton Percent ash Type mol. wt. used weight content Pine oil 0. 45 81. 2 15.1 ethyl alcohol.... 0. 45 73.1 14. T Poly(ethylcne'propyiene) glycol from ethylene gl 3'- col with:
5% 130 .159; P0 400 0.30 $1.2 14.2 EO-75% PO. 750 0. 34 81.2 14. 4 50% BIO-50% PO 1, 000 0. 84. 4 14.1 75% EO25% P0. 1.250 0.36 84. 5 1i. 0 110% 150-107; PO 1.500 0. 3.0 14.1 Poly(ethylene-propylene) glycol from propylene glycol with:
5% ED-95% PO 400 0.30 84 4 14.3 40% BIO-% PO. 100 0.33 8-1.6 14. 1 67% E033% PO. 1. 400 0.36 83.5 14. 0 80% PDQ-20% PO 1. 400 0. -11 83. 14. 0
The above results demonstrate the applicability of the poly(ethylene-propylene)glycol frothers of the present invention over a wide range of molecular weights. These frothers achieved higher coal recovery in concentrates of lower ash content than was achieved using larger quantities of the standard pine oil methyl amyl alcohol frothers.
EXAMPLE 3 The above results show that the reaction products of methyl 20 alcohol and n-butyl alcohol with the mixed alkylene oxides gave higher copper and molybdenum recoveries than the standard frothers, triethoxybutane and polypropylene glycol and the reaction products of methyl alcohol with E0 or with P0 alone.
EXAMPLE 5 A copper ore (about 0.80 percent Cu) from the western United States, containing copper values mainly as chalcopy- 30 rite, was ground to minus mesh with 3.3 lb./ton lime, 0.029
35 (MIBC) was used as a frother, while in the other two tests the reaction product of n-butanol was 5 percent EO and 95 percent PO (molecular weight 300) was used as frother. The results of these tests are given in the following table.
Concentrate Frother Cu Type lb./ton Assay Recovery MlBC 0.048 14.97 91.9 EO-PO Reaction Product 0.032 14.77 91.9 MlBC 0.053 16.00 91.69 50 EO-PO Reaction Product 0.053 I630 9316 in the first two tests, identical copper recoveries resultec but the frother requirement with the EO-PO reaction product was two-thirds that of MlBC. Higher copper recoveries were Frother Coal concentrate Percent Approx. Percent ash Type mol. wt. Lb./ton weight content Reaction product: methanol with 25?} PLO-% Po 450 0.12 68. 5 9.1 Reaction product: ethanol with 10?; EO-QOI'} PO... 350 0.10 69.1 9.0 Reaction productt n-propyl alochol with 50".} EO50% PO. 850 0. 13 68. 4 9. 3 Reaction product: iso ropyl alcohol with EOT5% PO 550 0. 12 68. 2 9. 4 Reaction product: iso ntyi alcohol with 5% EEO-% PO.. 550 0. 11 68. 4 9.1 Reaction product: pcntanol-l with 50% BIO-50% PO 900 0.13 68.1 9. 3 Reaction product: isoamyl alcohol with 75% PIC-25% PO.. 1, 000 0. 13 68. 3 9. 2 Reaction product: methyl isobutly carbinol. with 50% -5 0 1, 200 0. 13 68. 5 9. 1
EXAMPLE 4 for l0 minutes to produce a copper concentrate. This concenobtained with the EO-PO reaction product when equivalent quantities of each of the frothers were used in the last two EXAMPLE 6 The copper ore and the procedure used in example 5 were used with the following frothers:
Frother A Poly(ethylene-propylene)glycol from ethylene glycol with 10 percent EO and 90 percent PO (molecular weight about 400) B Poly(ethylene-propylene)glycol from propylene glycol with 10 percent EO and 90 percent PO 1 molecular weight about 450) The metallurgical results obtained are given in the following table and higher copper recoveries were obtained with Frothers A and B.
Concentrate Frother 2 Cu Type lb./tcn Assay Recovery- MIBC 0.048 14.97 91.9 A 0.048 14.93 92.8 B 0048 14.91 93.0
EXAMPLE 7 Concentrate Zinc Type lb./ton Recovery Assay Mixed amyl alcohols 0.32 96.37 41.23 Reaction Product: n-Butanol 0.25 42.25 with percent EO-95 percent P0 (M01. Wt. 300) Reaction Product: n-Butanol 0.27 96.45 42.19 with 50 percent EO-50 percent PO (Mol. Wt. 850) Poly(ethylenc-propylene)- 0.27 96.43 42.24
glycol from Propylene glycol with 10 percent E0 and 90 percent PO (Mol. Wt. 450) The typical frothers of the present invention duplicated the zinc recovery obtained with the amyl alcohol frother, gave somewhat higher concentrate grades. and required lower dosages of frother in the flotation operation.
EXAMPLE 8 A sample ofa lead ore, containing about 1.6 percent Pb as galena, were ground, conditioned 1 minute with 0.042 lb./ton sodium isopropyl xanthate, and floated 5 minutes to produce a lead concentrate. A frother (molecular weight 300) obtained by reacting n-butanol with 5 percent EO and 95 percent P0 was used in the amount of 0.1 lb./ton. A lead concentrate was produced. which assayed 63.05 percent Pb and represented a lead recovery of 93.31 percent. An identical test substituting recovery of 93.25 percent.
EXAMPLE 9 A cement rock from Pennsylvania, containing 69.7 percent CaCO was ground to about percent minus 325 mesh, conditioned with 1.0 lb./ton crude calcium lignin sulfurate, 0.55 lb./ton refined tall oil fatty acids, and 0.10 lb./ton Frother B of example 6 and floated for 5.5 minutes to produce a carbonate concentrate which assayed 82.9 percent CaCO; and contained 91.1 percent ofthe carbonate present in the flotation feed.
A second flotation test was run on this cement rock by the identical procedure except that 0.1 lb./ton of the butanol-EO- PO reaction product of example 5 was used as frother. A carbonate concentrate assaying 83.0 percent CaCO; and representing a carbonate recovery of 90.8 percent was obtained.
This example illustrates the effective use of representative frothers of the present invention in a typical nonmetallic flotation operation.
EXAMPLE 10 A Michigan iron ore, containing about 31.6 percent Fe mainly as hematite associated with a quartz gangue, was ground to about 65 mesh and deslimed. The deslimed fraction was conditioned at 66 percent solids with 2.0 1b./ton sulfuric acid, 1.75 lb./ton heavy fuel oil and 3.2 1b./ton of water-soluble petroleum sulfonates as promoter, diluted to about 20 percent solids and floated for 3 minutes to produce an iron concentrate. After 2.0 minutes of flotation, 0.05 lb./ton of Frother A of example 6 was added to augment the frothing action of the sulfonate promoter and aid in removing the iron minerals. The resulting iron concentrate was cleaned by reflotation to yield a final iron concentrate assaying 62.1 percent Fe and 8.7 percent silica and containing 92.8 percent of the iron present in the feed to flotation.
EXAMPLE 11 A quartz sand containing 0.15 percent Fe O was scrubbed for 2.5 minutes, deslimed and conditioned at 65 percent solids with 0.6 lb./ton sulfuric acid, 1.0 lb./ton ofa 1:1 mixture of oil and water soluble petroleum sulfonate, 0.50 lb./t0n fuel oil and 0.10 lb./ton of the frother used in example 5 and then diluted to about 20 percent solids and floated 2.5 minutes to remove various iron-containing mineral contaminants. The resulting trailing product contained 0.021 percent Fe O and represented 90.2 percent ofthe weight of the flotation feed.
lclaim:
1. A process for collecting mineral values from an ore which comprises mixing ground ore with water to form an ore pulp, aerating said pulp in the presence of an effective amount, as a frother, of a po1y(ethylene-propylene)glycol having an average molecular weight of from about 150 to about 2,500 and having been prepared by reacting ethylene glycol or propylene glycol with ethylene oxide and propylene oxide, the amount of each of said oxides employed in the reaction being between 5 and mole percent based on the total amount of the two oxides employed, and recovering mineral values from the resulting froth.
2. The process of claim 1 wherein the frother is employed in combination with a mineral collector.

Claims (1)

  1. 2. The process of claim 1 wherein the frother is employed in combination with a mineral collector.
US737811A 1968-06-18 1968-06-18 Ore flotation process with poly(ethylene-propylene)glycol frothers Expired - Lifetime US3595390A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US73781168A 1968-06-18 1968-06-18

Publications (1)

Publication Number Publication Date
US3595390A true US3595390A (en) 1971-07-27

Family

ID=24965416

Family Applications (1)

Application Number Title Priority Date Filing Date
US737811A Expired - Lifetime US3595390A (en) 1968-06-18 1968-06-18 Ore flotation process with poly(ethylene-propylene)glycol frothers

Country Status (4)

Country Link
US (1) US3595390A (en)
DE (1) DE1930671A1 (en)
ES (1) ES368469A1 (en)
ZM (1) ZM7069A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710939A (en) * 1970-06-15 1973-01-16 Dow Chemical Co Frothing agents for the floatation of ores
US3837489A (en) * 1972-11-24 1974-09-24 Nalco Chemical Co Molybdenum disulfide flotation antifoam
US3865718A (en) * 1972-12-07 1975-02-11 Dow Chemical Co Frothers for the flotation of sulfidic ores
US3923647A (en) * 1972-05-08 1975-12-02 Vojislav Petrovich Froth flotation method for recovery of minerals
US4040950A (en) * 1974-08-01 1977-08-09 American Cyanamid Company Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector
US4130477A (en) * 1976-12-27 1978-12-19 The Dow Chemical Company Froth flotation process
US4211644A (en) * 1976-11-26 1980-07-08 Pennwalt Corporation Froth flotation process and collector composition
US4278533A (en) * 1980-02-07 1981-07-14 The Dow Chemical Company Conditioner for flotation of oxidized coal
US4308133A (en) * 1980-06-20 1981-12-29 The Dow Chemical Company Froth promotor for flotation of coal
US4309282A (en) * 1980-04-14 1982-01-05 American Cyanamid Company Process of phosphate ore beneficiation in the presence of residual organic polymeric flocculants
US4368117A (en) * 1978-06-22 1983-01-11 Outokumpu Oy Process for the selective froth-flotation of sulfidic, oxidic and salt-type minerals
US4424122A (en) 1982-04-19 1984-01-03 Phillips Petroleum Company Gold flotation with mercaptan and imidazoline
US4439314A (en) * 1982-08-09 1984-03-27 Phillips Petroleum Company Flotation reagents
US4556500A (en) * 1982-06-11 1985-12-03 Phillips Petroleum Company Flotation reagents
US4584095A (en) * 1984-06-20 1986-04-22 Thiotech, Inc. Ore flotation method employing phosphorodithio compounds as frother adjuvants
US4606818A (en) * 1985-01-25 1986-08-19 Sherex Chemical Company, Inc. Modified alcohol frothers for froth flotation of coal
US4761223A (en) * 1984-08-29 1988-08-02 The Dow Chemical Company Frothers demonstrating enhanced recovery of fine particles of coal in froth flotation
US4789466A (en) * 1985-05-11 1988-12-06 Henkel Kommanditgesellschaft Auf Aktien Method of separating non-sulfidic minerals by flotation
US5188809A (en) * 1989-03-02 1993-02-23 Teledyne Industries, Inc. Method for separating coke from a feed mixture containing zirconium and radioactive materials by flotation process
US5456363A (en) * 1995-02-06 1995-10-10 University Of Kentucky Research Foundation Method of removing carbon from fly ash
US5544760A (en) * 1994-10-20 1996-08-13 Benn; Freddy W. Flotation of lead sulfides using rapeseed oil
US6098810A (en) * 1998-06-26 2000-08-08 Pueblo Process, Llc Flotation process for separating silica from feldspar to form a feed material for making glass
WO2001010561A1 (en) * 1999-08-10 2001-02-15 Zakrytoe Aktsionernoe Obschestvo 'evrofinchermetkholding' Blowing agent for flotation of mineral products and method for the production thereof
EP1578710A1 (en) * 2002-12-09 2005-09-28 Huntsman Corporation Australia PTY Ltd Compounds and compositions for use as foaming or frothing agents in ore and coal flotation
US20060032800A1 (en) * 2003-11-27 2006-02-16 Hector Correa-Castillo Collecting agent comprising ammoniated compounds (primary, secondary, tertiary amines), for use in the process of grinding and/or floating copper, molybdenum, zinc, and other contained mineral ores
US20070149825A1 (en) * 2005-12-22 2007-06-28 Farhad Fadakar Process for making alkylene glycol ether compositions useful for metal recovery
WO2008151447A1 (en) * 2007-06-13 2008-12-18 Trican Well Service Ltd. Well service compositions for consolidation of particulates in subterranean coal seams
US20090266746A1 (en) * 2008-04-29 2009-10-29 David Henry Behr Mineral ore flotation aid
US20100267593A1 (en) * 2007-04-26 2010-10-21 Trican Well Service Ltd. Control of particulate entrainment by fluids
US20110011210A1 (en) * 2009-07-15 2011-01-20 Farhad Fadakar Process for making glycol ether compositions useful for metal recovery
US9302274B2 (en) * 2011-10-18 2016-04-05 Cytec Technology Corp. Collector compositions and methods of using the same
WO2017049259A1 (en) * 2015-09-18 2017-03-23 Thomas Valerio System and method for recovering metals from electronic scrap and auto shred residue fines
US9932514B2 (en) 2014-04-25 2018-04-03 Trican Well Service Ltd. Compositions and methods for making aqueous slurry
US9976075B2 (en) 2005-05-02 2018-05-22 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US10196560B2 (en) 2015-01-30 2019-02-05 Trican Well Service Ltd. Proppant treatment with polymerizable natural oils
US10202542B2 (en) 2014-07-16 2019-02-12 Trican Well Service Ltd. Aqueous slurry for particulates transportation
WO2022033868A1 (en) 2020-08-12 2022-02-17 Basf Se Frothing agent for flotation of ores

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707034A1 (en) * 1987-03-05 1988-09-15 Henkel Kgaa USE OF DERIVATIVES OF TRICYCLO- (5.3.1.0 (UP ARROW) 2 (UP ARROW) (UP ARROW), (UP ARROW) (UP ARROW) 6 (UP ARROW)) - DECENS-3 AS FOAMER IN COAL AND ORE FLOTATION
DE4133388A1 (en) * 1991-10-09 1993-04-15 Henkel Kgaa METHOD FOR ENRICHMENT AND / OR CLEANING OF COAL AND MINERALS BY FLOTATION

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2174761A (en) * 1935-04-13 1939-10-03 Ig Farbenindustrie Ag Condensation products derived from hydroxy compounds and method of producing them
US2377129A (en) * 1940-06-20 1945-05-29 American Cyanamid Co Flotation of phosphate minerals
US2561251A (en) * 1945-01-26 1951-07-17 Roger Frederick Powell Trialkoxy paraffins as froth flotation frothing agents
US2677700A (en) * 1951-05-31 1954-05-04 Wyandotte Chemicals Corp Polyoxyalkylene surface active agents
US2797808A (en) * 1954-03-16 1957-07-02 Dow Chemical Co Flotation of iron oxide and other non-sulfide minerals
US2950818A (en) * 1955-03-05 1960-08-30 Hoechst Ag Flotation process
US2965678A (en) * 1951-12-28 1960-12-20 Gen Aniline & Film Corp Polyoxyethylene ethers of branched chain alcohols
US3078315A (en) * 1955-09-02 1963-02-19 Union Carbide Corp Polyoxyalkylene products
US3101374A (en) * 1958-08-19 1963-08-20 Wyandotte Chemicals Corp Polyoxyalkylene surface active agents having heteric polyoxyethylene solubilizing chains

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2174761A (en) * 1935-04-13 1939-10-03 Ig Farbenindustrie Ag Condensation products derived from hydroxy compounds and method of producing them
US2377129A (en) * 1940-06-20 1945-05-29 American Cyanamid Co Flotation of phosphate minerals
US2561251A (en) * 1945-01-26 1951-07-17 Roger Frederick Powell Trialkoxy paraffins as froth flotation frothing agents
US2677700A (en) * 1951-05-31 1954-05-04 Wyandotte Chemicals Corp Polyoxyalkylene surface active agents
US2965678A (en) * 1951-12-28 1960-12-20 Gen Aniline & Film Corp Polyoxyethylene ethers of branched chain alcohols
US2797808A (en) * 1954-03-16 1957-07-02 Dow Chemical Co Flotation of iron oxide and other non-sulfide minerals
US2950818A (en) * 1955-03-05 1960-08-30 Hoechst Ag Flotation process
US3078315A (en) * 1955-09-02 1963-02-19 Union Carbide Corp Polyoxyalkylene products
US3101374A (en) * 1958-08-19 1963-08-20 Wyandotte Chemicals Corp Polyoxyalkylene surface active agents having heteric polyoxyethylene solubilizing chains

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chem. Abstract, 60, 7716 d, 1964. *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710939A (en) * 1970-06-15 1973-01-16 Dow Chemical Co Frothing agents for the floatation of ores
US3923647A (en) * 1972-05-08 1975-12-02 Vojislav Petrovich Froth flotation method for recovery of minerals
US3837489A (en) * 1972-11-24 1974-09-24 Nalco Chemical Co Molybdenum disulfide flotation antifoam
US3865718A (en) * 1972-12-07 1975-02-11 Dow Chemical Co Frothers for the flotation of sulfidic ores
US4040950A (en) * 1974-08-01 1977-08-09 American Cyanamid Company Concentration of ore by flotation with solutions of aqueous dithiophosphates and thionocarbamate as collector
US4211644A (en) * 1976-11-26 1980-07-08 Pennwalt Corporation Froth flotation process and collector composition
US4130477A (en) * 1976-12-27 1978-12-19 The Dow Chemical Company Froth flotation process
US4368117A (en) * 1978-06-22 1983-01-11 Outokumpu Oy Process for the selective froth-flotation of sulfidic, oxidic and salt-type minerals
US4278533A (en) * 1980-02-07 1981-07-14 The Dow Chemical Company Conditioner for flotation of oxidized coal
US4309282A (en) * 1980-04-14 1982-01-05 American Cyanamid Company Process of phosphate ore beneficiation in the presence of residual organic polymeric flocculants
US4308133A (en) * 1980-06-20 1981-12-29 The Dow Chemical Company Froth promotor for flotation of coal
US4424122A (en) 1982-04-19 1984-01-03 Phillips Petroleum Company Gold flotation with mercaptan and imidazoline
US4556500A (en) * 1982-06-11 1985-12-03 Phillips Petroleum Company Flotation reagents
US4439314A (en) * 1982-08-09 1984-03-27 Phillips Petroleum Company Flotation reagents
US4584095A (en) * 1984-06-20 1986-04-22 Thiotech, Inc. Ore flotation method employing phosphorodithio compounds as frother adjuvants
US4761223A (en) * 1984-08-29 1988-08-02 The Dow Chemical Company Frothers demonstrating enhanced recovery of fine particles of coal in froth flotation
US4606818A (en) * 1985-01-25 1986-08-19 Sherex Chemical Company, Inc. Modified alcohol frothers for froth flotation of coal
US4789466A (en) * 1985-05-11 1988-12-06 Henkel Kommanditgesellschaft Auf Aktien Method of separating non-sulfidic minerals by flotation
US5188809A (en) * 1989-03-02 1993-02-23 Teledyne Industries, Inc. Method for separating coke from a feed mixture containing zirconium and radioactive materials by flotation process
US5544760A (en) * 1994-10-20 1996-08-13 Benn; Freddy W. Flotation of lead sulfides using rapeseed oil
US5456363A (en) * 1995-02-06 1995-10-10 University Of Kentucky Research Foundation Method of removing carbon from fly ash
US6098810A (en) * 1998-06-26 2000-08-08 Pueblo Process, Llc Flotation process for separating silica from feldspar to form a feed material for making glass
WO2001010561A1 (en) * 1999-08-10 2001-02-15 Zakrytoe Aktsionernoe Obschestvo 'evrofinchermetkholding' Blowing agent for flotation of mineral products and method for the production thereof
EP1578710A1 (en) * 2002-12-09 2005-09-28 Huntsman Corporation Australia PTY Ltd Compounds and compositions for use as foaming or frothing agents in ore and coal flotation
EP1578710B1 (en) * 2002-12-09 2014-08-20 Huntsman Corporation Australia PTY Ltd Compounds and compositions for use as foaming or frothing agents in ore and coal flotation
US20060032800A1 (en) * 2003-11-27 2006-02-16 Hector Correa-Castillo Collecting agent comprising ammoniated compounds (primary, secondary, tertiary amines), for use in the process of grinding and/or floating copper, molybdenum, zinc, and other contained mineral ores
US7299930B2 (en) * 2003-11-27 2007-11-27 Procesos Mineros E Industries Conosur S.A. Collecting agent comprising ammoniated compounds (primary, secondary, tertiary amines), for use in the process of grinding and/or floating copper, molybdenum, zinc, and other contained mineral ores
US10023786B2 (en) 2005-05-02 2018-07-17 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US9976075B2 (en) 2005-05-02 2018-05-22 Trican Well Service Ltd. Method for making particulate slurries and particulate slurry compositions
US7482495B2 (en) 2005-12-22 2009-01-27 Lyondell Chemical Technology, L.P. Process for making alkylene glycol ether compositions useful for metal recovery
US20070149825A1 (en) * 2005-12-22 2007-06-28 Farhad Fadakar Process for making alkylene glycol ether compositions useful for metal recovery
US8800658B2 (en) 2007-04-26 2014-08-12 Trican Well Service Ltd. Control of particulate entrainment by fluids
US20100267593A1 (en) * 2007-04-26 2010-10-21 Trican Well Service Ltd. Control of particulate entrainment by fluids
US10138416B2 (en) 2007-04-26 2018-11-27 Trican Well Service, Ltd Control of particulate entrainment by fluids
US8236738B2 (en) 2007-04-26 2012-08-07 Trican Well Service Ltd Control of particulate entrainment by fluids
US9523030B2 (en) 2007-04-26 2016-12-20 Trican Well Service Ltd Control of particulate entrainment by fluids
WO2008151447A1 (en) * 2007-06-13 2008-12-18 Trican Well Service Ltd. Well service compositions for consolidation of particulates in subterranean coal seams
US8499835B2 (en) 2007-06-13 2013-08-06 Trican Well Services, Ltd. Well service compositions for consolidation of particulates in subterranean coal seams
US20110011589A1 (en) * 2007-06-13 2011-01-20 Trican Well Service Ltd. Well Service Compositions for Consolidation of Particulates in Subterranean Coal Seams
US20090266746A1 (en) * 2008-04-29 2009-10-29 David Henry Behr Mineral ore flotation aid
AU2009241526B2 (en) * 2008-04-29 2013-11-21 Bl Technologies, Inc. Mineral ore flotation aid
CN102015113A (en) * 2008-04-29 2011-04-13 通用电气公司 Mineral ore flotation aid
US20110011210A1 (en) * 2009-07-15 2011-01-20 Farhad Fadakar Process for making glycol ether compositions useful for metal recovery
US8362304B2 (en) 2009-07-15 2013-01-29 Lyondell Chemical Technology, L.P. Process for making glycol ether compositions useful for metal recovery
US9302274B2 (en) * 2011-10-18 2016-04-05 Cytec Technology Corp. Collector compositions and methods of using the same
US9932514B2 (en) 2014-04-25 2018-04-03 Trican Well Service Ltd. Compositions and methods for making aqueous slurry
US10202542B2 (en) 2014-07-16 2019-02-12 Trican Well Service Ltd. Aqueous slurry for particulates transportation
US10196560B2 (en) 2015-01-30 2019-02-05 Trican Well Service Ltd. Proppant treatment with polymerizable natural oils
WO2017049259A1 (en) * 2015-09-18 2017-03-23 Thomas Valerio System and method for recovering metals from electronic scrap and auto shred residue fines
WO2022033868A1 (en) 2020-08-12 2022-02-17 Basf Se Frothing agent for flotation of ores

Also Published As

Publication number Publication date
ZM7069A1 (en) 1969-12-17
ES368469A1 (en) 1971-06-16
DE1930671A1 (en) 1970-01-02

Similar Documents

Publication Publication Date Title
US3595390A (en) Ore flotation process with poly(ethylene-propylene)glycol frothers
AU2013293041B2 (en) Monothiophosphate containing collectors and methods
US2695101A (en) Frothing agents for the flotation of ores and coal
EP0463823B1 (en) Froth flotation of silica or siliceous gangue
US3464551A (en) Dialkyl dithiocarbamates as collectors in froth flotation
AU658006B2 (en) Improved recovery of platinum group metals and gold by synergistic reaction between allylalkylthionocarbamates and dithiophosphates
CA2015604C (en) Selective flotation of gold
US4584097A (en) Neutral hydrocarboxycarbonyl thionocarbamate sulfide collectors
US4595493A (en) Process for the flotation of base metal sulfide minerals in acid, neutral or mildly alkaline circuits
US7011216B2 (en) Process for the beneficiation of sulfide minerals
US4587013A (en) Monothiophosphinates as acid, neutral, or mildly alkaline circuit sulfide collectors and process for using same
US6988623B2 (en) Beneficiation of sulfide minerals
US4761223A (en) Frothers demonstrating enhanced recovery of fine particles of coal in froth flotation
US4208275A (en) Froth flotation using lanolin modifier
CA2501079C (en) Process for the beneficiation of sulfide minerals
US4122004A (en) Froth flotation process
WO1991019569A1 (en) Ore flotation process using carbamate compounds
US4159943A (en) Froth flotation of ores using hydrocarbyl bicarbonates
US4770767A (en) Method for the froth flotation of coal
US5238119A (en) Beneficiation of calcium borate minerals
CN115397561A (en) New frother for mineral recovery
EP0201450A2 (en) Modified alcohol frothers for froth flotation of sulfide ore
GB2193660A (en) Collectors and froth flotation processes for metal sulfide ores
US2594612A (en) Recovery of zinc values by selective flotation of sulfide ores
US2450720A (en) Froth flotation of silicious gangue from an alkaline magnetic iron ore pulp with an amine