US3591321A - Valving in combination with fluid pressure operating means - Google Patents

Valving in combination with fluid pressure operating means Download PDF

Info

Publication number
US3591321A
US3591321A US887614A US3591321DA US3591321A US 3591321 A US3591321 A US 3591321A US 887614 A US887614 A US 887614A US 3591321D A US3591321D A US 3591321DA US 3591321 A US3591321 A US 3591321A
Authority
US
United States
Prior art keywords
fluid
rotary valve
face
series
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US887614A
Inventor
George V Woodling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3591321A publication Critical patent/US3591321A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • F04C2/105Details concerning timing or distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/008Driving elements, brakes, couplings, transmissions specially adapted for rotary or oscillating-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • F04C2/104Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement having an articulated driving shaft

Definitions

  • ABSTRACT Stationary and rotary valve means are provided in combination with fluid pressure operation means, in which the stationary valve has a stationary valve face and a plurality of fluid openings communicating with the fluid pressure [54] VALVING [N COMBINATION WITH FLUID operation means.
  • the rotary valve is hollow and has a rotary PRESSURE OPERATNG MEANS valve face sealmgly engaging the stat onaryvalve face. Exter- 1
  • a series of land UNITED STATES A S are circumferentially and respectively disposed between said 1,916,391 7/ 1933 Shamberger 64/31 X first and second series. Said lands and.
  • Valving with full-flow capacity and short flow distances to minimize fluid pressure drop are two major critical requirements in the operation and manufacture of a fluid valve for controlling the flow of fluid to and the exit of fluid from a fluid pressure operating means.
  • the valving is substantially universally deficient in meeting these major critical requirements, primarily due to the lack of sufficient circumferential and radial room for locating unrestricted flow ducts, or to the stacking" of too many side-by-side valve parts, resulting in a longer flow path with increased opportunity for excessive leakage.
  • the above requirements become increasingly critical in commutative valving where inlet fluid is caused to flow from an inlet chamber or gallery through a first series (excessively restricted in the prior art) of flow conduction means to the fluid pressure operating means and where the exhaust fluid is caused to flow from the fluid pressure operating means through a second series (also excessively restricted in the prior art) of flow conduction means to an exhaust chamber or gallery.
  • Another object of my invention is to provide, in commutative valving, full-flow capacity and short flow distances for the first and second series of flow conduction means.
  • Another object is the provision of commutative valving which is simple in construction and efficient in performance.
  • Another object of my invention is the provision of a hollow rotary valve with a first fluid chamber or gallery on the outside thereof and with a second fluid chamber or gallery on the inside thereof.
  • Another object of my invention is to isolate the operation of the valve system from the fluid ports in the housing and to render it free from any distortion of the housing incident to screwing in the fittings.
  • Another object of my invention is the provision of a selfbearing rotary valve.
  • Another object is the provision of a self-bearing actuating shaft disposed to rotate the rotary valve.
  • Another object is the provision of a valve system which will seal high fluid pressures, resulting in higher efficiency.
  • Another object is the provision of a valve system which does not necessarily restrict the flow of fluid to and from the fluid pressure operating means.
  • Another object is to provide an enlarged fluid-line reservoir or fluid-conducting channel at the valve entrance and an enlarged fluid-line reservoir or fluid-conducting channel at the valve exit.
  • Another object is the provision of a valve system having fluid-commutating characteristics, and includes a stationary valve member and a rotary valve member disposed for rotational movement relative to the stationary valve member.
  • the invention constitutes commutative valving in a fluid pressure device having first and second fluid port means and fluid pressure operation means, first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means, said first and second fluid connection means including stationary valve means and rotary valve means, ac tuating means for rotating said rotary valve means relative to said stationary valve means, said stationary valve means being disposed axially between said fluid pressure operating means and said rotary valve means and having a stationary valve face confronting said rotary valve means, said first and second fluid connection means including a plurality of circumferentially disposed fluid openings extending from said stationary valve face and communicating with said fluid pressure operating means, said rotary valve means having a first end portion with a rotary valve face sealingly engaging said stationary valve face, said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means, said rotary valve means having first surface wall means extending externally therearound, said first end portion of said rotary valve means
  • FIG. I is a top plan view of my fluid pressure device
  • FIG. 2 is a left-hand end view of my fluid pressure device and shows principally the end mounting flange;
  • FIG. 3 is a longitudinal sectional view of FIG. ll, taken through the vertical center thereof, except that the section through the valve means is taken along the line 23-24 of FIG. 20;
  • FIG. 4 is an enlarged fragmentary cross-sectional view of the bearing fixation means in FIG. 3 to accommodate for axial tolerance in matching the position of the bearing in the bore of the housing, the view showing the position of the parts before engagement of the fixation means;
  • FIG. 5 is a view similar to FIG. 4, but shown the position of the parts after engagement of the fixation means
  • FIG. 6 is a view of the right-hand end of FIG. 3;
  • FIG. 7 is a view taken along the line 7-7 of FIG. 3, showing the stator-rotor mechanism
  • FIG. 8 is a view taken along the line 84 ⁇ of FIG. 3, showing the side of the stationary valve member, next adjacent to the statorrotor mechanism;
  • FIG. 9 is a view showing the opposite side of the stationary valve, next adjacent the rotary valve. 7
  • FIG. 10 is a vertical cross-sectional view of a bushing which separates the hollow housing into a left-hand end compartment and a right-hand end compartment, including an abut ment sleeve for securing the bushing in place;
  • FIG. 11 is a view taken along the line 11-11 of FIG. 3, with the rotary valve being omitted, the view being principally a right-hand end view of the hollow housing showing the bushing and the abutment sleeve mounted therein, the view also including a cross section of the actuating shaft with the square portion thereof shown in a timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
  • FIG. 12 is a right-hand end view of the wear face only of the rotary valve and is shown in a timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
  • FIG. 13 is a left-hand end view of the wear face only of the rotary valve and is shown in a timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
  • FIG. 14 is a left-hand end view of the rotary valve, showing a torque-transmitting member mounted therein and comprising an open annular ring;
  • FIG. 15 is a flat side view of the torque-transmitting member shown in FIG. 14;
  • FIG. 16 is an edge view of the torque-transmitting member shown in FIG. 15;
  • FIG. 17 is a left-hand end view of the rotary valve, showing a modified torque-transmitting member comprising a closed annular ring;
  • F lg. 18 is a flat side view of the torque-transmitting member shown in FIG. 17;
  • FIG. 19 is an edge view of the torque-transmitting member shown in FIG. 18;
  • FIG. 20 is a view of the rotary valve, looking at the righthand end thereof, and shows the rotary valve in timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
  • FIG. 21 is a view of the rotary valve, looking at the left-hand end thereof, and shows the rotary valve in timed relation with respect to the position of the stator-rotor mechanism in FIG.
  • FIG. 22 is a cross section of the rotary valve taken along the line 22-22 of FIG. 20;
  • FIG. 23 is a cross section of the rotary valve, taken along the line 23-23 of FIG. 20;
  • FIG. 24 is a cross section of the rotary valve, taken along the line 24-24 of FIG. 20;
  • FIG. 25 is a view of a modified left-hand end of the rotary valve, showing a cam finger extending from the actuating shaft for rotating the rotary valve once for each rotation of the actuating shaft;
  • FIG. 26 is a view similar to FIG. 25, but shows a double cam finger spaced from the opposed substantially parallel sidewall means between which the cam finger slidable engages;
  • FIG. 27 is a fragmentary view of the actuating shaft with the cam finger extending therefrom;
  • FIG. 28 is a view of a modified left-hand end of the rotary valve, showing an eccentric cam wall means
  • FIG. 29 is an end view of the actuating shaft having a concentric cam integrally provided thereon, the concentric cam being disposed to be rotatively mounted in the eccentric cam wall means in FIG. 28 when the actuating shaft is orbitally mounted;
  • FIG. 30 is a fragmentary side view of the actuating shaft and concentric cam in FIG. 29.
  • FIG. 31 is a view similar to FIG. 29, but shows the concentric cam separately and nonrotatively mounted on the actuating shaft.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT My invention may comprise a fluid motor, a fluid pump, a fluid transmission, a fluid servomotor and/or any other related device.
  • the fluid pressure operating means may be of the type usually referred to in the trade as a stator-rotor orbital mechanism.
  • stator and rotor are not used in a limited sense.
  • stator is applied to the element which has a fixed axis and the term "rotor is applied to the element which has a movable axis characterized in that said rotor is disposed for rotational movement about its own movable axis and for orbital movement about the fixed axis of the stator.
  • the outer surrounding element usually referred to as the stator
  • the stator may be either the stator or the rotor, depending upon whether it has a fixed axis or a movable axis
  • the inner element usually referred to as the rotor
  • the rotor may be either the rotor or the stator depending upon whether it has a movable axis or a fixed axis.
  • valve system of my invention constitutes an improvement over the prior art ai'ijd involves a new separate valve means for commutatively directing the flow of fluid to and from the stator rotor mechanism.
  • my invention comprises generally a main housing 20 having substantially a square cross section.
  • a mounting flange 21 is secured to the left-hand end of the housing by screws 26.
  • the housing 20 is hollow from end-to end, and intermediate the ends of the hollow housing, there is provided a bushing 22 which generally separates the hollow housing into a left-hand end compartment and a right-hand end compartment.
  • Rotatively mounted in the left-hand end compartment is a main shaft 25 having an axis substantially coinciding with the fixed axis.
  • a rotary valve 28 is mounted in the right-hand end compartment and is adopted for rotational movement about the fixed axis.
  • On the ritht-hand end of the hollow housing there is mounted a square stationary valve member 29 by means of screws 30.
  • stator-rotor mechanism 31 Attached to the right-hand face of the stationary valve member 29, is a stator-rotor mechanism 31 comprising a stator element 32 and a rotor element 33.
  • An end cap 34 encloses the statorrotor mechanism.
  • the stator-rotor mechanism 31 and the end cap 34 are secured to the stationary valve member 29 by means of screw 35.
  • the valve system which comprises the stationary valve member 29 and the rotary valve member 28, is independently mounted between the main shaft 25 and the stator-rotor mechanism 31, and thus the rotary valve 28 is free from both the radial thrust and the end thrust to which the main shaft about the fixed axis relative to the stationary valve member by universal drive means, indicated by the dotted line 40 and includes an intermediate shaft portion 38 of an actuating shaft 39 which drivingly interconnects the rotor element 33 to the right-hand end of the main shaft 25.
  • the universal drive means may embody rotational phasing, as will be explained later.
  • the main shaft 25 comprises an enlarged internal portion having a reduced external portion 41 extending axially outwardly of the main housing 20 through the mounting flange 21.
  • the enlarged internal portion of the main shaft is supported preferably by tapered roller bearings 42 and 43, respectively, having inner cones 44 and 45 and outer cups 46 and 47.
  • the tapered roller bearings are disposed side-by-side with the bearing 42 disposed oppositely to that of the tapered roller bearing 43.
  • the tapered roller bearings 42 and 43 in combination with each other, provide for radial thrust as well as for end thrust in both axial directions, with the tapered roller bearing 42 disposed to take the greater part of the radial load.
  • the enlarged internal portion of the main shaft 25 is pro-.
  • the tightening nut 54 may be provided with a built-in locking feature to prevent loosening.
  • the internal surface of the left-hand end compartment of the hollow housing is provided with a first bore portion 56 into which the outer cup 47 is pressed and a second bore portion 57 into which the outer cup 46 is pressed.
  • the bore portion 56 terminates into a shoulder 58 against which the righthand end of outer cup 47 abuts.
  • the two inner ends of the cups 46 and 47 are separated by a bore spacer ring 59.
  • the outer cup 46 is secured against axial movement to the left by axial fixation means, indicated by the reference character 60.
  • the axial fixation means 60 comprises an annular V-shaped or pointed rib which axially abuts against the outer cup 46.
  • the rib may be provided on the projecting end of a cylindrical body 61 constructed integrally with the flange 21.
  • the pointed rib is coined against the outer cup 46, with the result that the fixation means accommodates for axial tolerance in matching the position of the cup 46 in the bore of the housing 20.
  • the pressure required to coin the axial fixation means is greater than the endwisc thrust load to which the bearing means 42 may be subjected in operation, in which case the outer cup 46 is resisted against axial movement to the left.
  • the axial fixation means is axially fixable (coinable) and is disposed to resist an axial thrust load greater than the axial thrust load to which the bearing means 42 may be subjected in operation.
  • the FIG. 4 shows the axial fixation means 60 before it is coined or fixed and the FIG. 5 shows the axial fixation means after it has been coined.
  • the main shaft is entirely supported by the two tapered roller bearings 42 and 43.
  • the reduced external shaft portion 41 where it passes axially through the end mounting flange 2B is not journaled therein but rotates therein with a small radial clearance which is adapted to be sealed off by suitable shaft sea] means, not shown.
  • the tapered roller bearing assembly is claimed to be new and novel to the extent that the respective inner cones and the respective outer cups are spaced apart by spacer rings, with the inner cones held against axial movement on the shaft by a tightening nut and with the outer cups held against axial movement in the housing by axial fixation means.
  • the external shaft portion M is disposed to withstand a heavy load.
  • the main housing 20 is provided with first and second fluid ports 23 and 24.
  • first fluid port 23 constitutes an inlet or high-pressure port and the second fluid port 24 constitutes an outlet port or low pressure.
  • the stator element 32 has seven internal teeth which defines the outer wall of a fluid compartment.
  • the rotor element 33 has six external teeth, one less than that of the stator element.
  • the stator element may be described as having n) number of internal teeth, and the rotor element may be described as having (n-l) number of external teeth.
  • the stator element has a center 69, usually referred to as the fixed or stationary axis since the stator ele-' ment is stationarily mounted and does not rotate.
  • the expression fixed stator axis" or simply fixed axis includes not only the fixed axis of the stator, but also any axis which coincides, or is in axial alignment therewith.
  • the rotor 33 has a movable axis, identified by the reference character 70, and is radially spaced from and moves in an orbital path about the fixed axis 69 ofthe stator.
  • the orbital path of the movable axis "/0 is a true circle with its center coinciding with the fixed axis of the stator.
  • the diameter of the true circle, orbital path is equal to the difference in the radial dimension between the crest contour and the root contour ofa stator tooth.
  • the intermeshing teeth of the rotor and stator divide the fluid compartment confined therebetween into highand low'pressure chambers along a revolving divisional line passing substantially diametrically through the fixed axis of the stator.
  • the divisional line is substantially diametrically vertical.
  • the divisional line may be more properly described as a divisional tapering band rather than a line and comprises substantially a slender triangle having an apex at the point where the top rotor tooth in FIG.
  • the chambers on the left-hand side of the revolving divisional line or tapering band become high-pressure chambers and the chambers on the right-hand side become lowpressure chambers.
  • the high and low-pressure chambers alternately expand and contact as the rotor and stator move relative to each other.
  • the divisional line or tapering band continually revolves in a counterclockwise direction as the rotor rotates in a clockwise direction within the stator.
  • the actuating shaft 39 has a right-hand end portion provided with male spline teeth '71 which fit within female spline teeth 72 in the rotor, being referred to herein as first connection means.
  • first connection means male spline teeth '71 which fit within female spline teeth 72 in the rotor
  • second connection means also comprises male spline teeth 73 on the actuating shaft 39 which fit within female spline teeth 74 in the central core of the main shaft 25.
  • the left-hand end portion of the actuating shaft that is the second connection means, is disposed for rotational movement only about the fixed axis of the stator.
  • the male spline teeth 71 and '73 constitute self-bearing means which respectively support both ends of the actuating shaft 39 for rotation about the orbiting axis.
  • the third connection means comprises the universal drive means indicated by the dotted line 40 and includes an intermediate square shaft portion 3% which is provided with a torque-transmitting member 7% for engaging the rotary valve 28 for rotating same about the fixed axis once for each rotation of the actuating shaft, see FlGS. I l-19, inclusive.
  • the intermediate square shaft portion 38 passes through an enlarged opening 76 in the rotary valve member 28 and is disposed for rotational movement therein about its own movable axis and orbital movement about the fixed axis.
  • the orbital diameter which the movable axis described about the fixed axis at the intermediate shaft portion 38, is of course, less than the orbital diameter at the right-hand end portion of the actuating shaft.
  • the shaft 39 has an axis extending at an angle to the fixed axis or valve axis.
  • the shaft 39 extends through a centrally disposed opening in the stationary valve member 29 and interconnects the rotor 33 and the rotary valve member 28.
  • the shaft axis describes generally the surface of a cone upon movement thereof with the cone having generally a base circle at the first connection means between the shaft and the rotor 33.
  • the centrallly disposed opening in the stationary valve member 29 is larger in diameter than the male spline teeth 71 and 73 and has substantially the same diameter as the internal opening '76 in the rotary valve member 2%.
  • the crosswise dimension (diameter) of the centrally disposed opening in the stationary valve member 29 is larger than that of the shaft 39 extending therethrough by an amount at least equal to the crosswise dimension of the cone described therein.
  • the female spline teeth at the first connection means constitute bearing support means for radially supporting the male spline teeth substantially concentrically within the rotor 33.
  • the torque'transmitting member 78 comprises an open annular washer or member (substantially a C- shaped member) having a central opening or slot large enough to pass over and slidably'engage the intermediate square shaft portion 38 of the actuating shaft 39.
  • the torque-transmitting member 78 and the intermediate square shaft portion 38 respectively have first and second interengageable torquetransmitting wall means slidable with respect to each other in a first direction for transmitting torque therebetween.
  • the torque-transmitting member 78 may slide on the square cross section by an amount to accommodate for the orbital movement of the intermediate shaft portion 38.
  • the outside of the open annular torque-transmitting washer or member 78 is provided with oppositely disposed contacting wall means 101 and 102 which slidably and respectively fit between two oppositely disposed parallel wall surfaces 103 and 104 in the rotating valve member 28.
  • the opposed contacting wall means 101 and 102 may slide within the wall surfaces 103 and 104 by an amount to accommodate for the orbital movement of the intermediate shaft portion 38.
  • the direction at which the torque-transmitting member slides with reference to the rotating valve is perpendicular to the direction at which the torquetransmitting member slides with reference to the intermediate square shaft portion 38.
  • the rotary valve 28 is caused to be rotated once for each rotation of the intermediate shaft portion 38.
  • the drive means thus described constitutes universal drive means and provides for rotating the rotary valve relative to the stationary valve once for each rotation of the actuating shaft 39.
  • the operation of the rotary valve is independent of the load and thrust on the main shaft.
  • FIGS. 17, 18 and 19 show a closed annular torque-transmitting washer or member 105 which operates in substantially the same manner as the open annular torque-transmitting washer or member 78.
  • the central opening in the closed annular member 105 is large enough to pass over the male spline teeth on the end of the actuating shaft 39.
  • the intermediate square shaft portion 33 may be slightly larger for the closed annular torque-transmitting member.
  • the fluid may flow therethrough, as open spaces are needed to accommodate for the slidable movements and these open spaces are ample to accommodate for the flow of fluid therethrough.
  • the internal wall surfaces 103 and 104 of the rotary valve 28 between which the torquetransmitting members 78 or 105 slidably operate are shown in FIG. 21.
  • the FIG. 21 shows the wall surfaces 103 and 104 in a timed position with respect to the position of the statorrotor mechanism in FIG. 7.
  • the torque-transmitting members 78 and 105 provide for rotating the rotary valve once for each rotation of the actuating shaft.
  • the valve system means which comprises the rotary valve member 28 and the stationary valve member 29, is disposed to provide a first series of commutating fluid connection means between the first fluid port 23 and the expanding fluid chambers in the stator-rotor mechanism and a second series of commutating fluid connection means between the contracting fluid chambers in the stator-rotor mechanism and the second fluid port 24.
  • the stationary valve member 29 has seven fluid openings 79 communicating respectively with the spaces between the internal teeth of the stator element, see FIG. 8.
  • the stationary valve member 29 has a stationary valve face 81 and the rotary valve member 28 has a rotary valve face 82 disposed to rotate against the stationary valve face and make a sealing engagement therewith.
  • the seven fluid openings 79 in the stationary valve member terminate respectively in the stationary valve face 81 with the terminating fluid openings being identified by the reference characters 80 and being disposed circumferentially about the fixed axis and spaced at annular intervals thereabout substantially 360/11 degrees from each other, where (n) equals seven, being the number of fluid openings 80 terminating in the stationary valve wear face 81, see FIG. 9.
  • the first series of commutating connection means comprising six in number, tenninate respectively in the rotary valve wear face 82.
  • These six commutating connection means (first series) preferably comprise six fluid slot means 83 respectively having a closed inner end portion and an open outer end portion in constant fluid communication with the first fluid port 23.
  • the second series ofcommutating fluid connection means likewise comprising six fluid slot means, are identified by the reference character 84 and respectively have a closed outer end portion and an open inner end portion in constant fluid communication with the second fluid port 24.
  • the stationary valve member 29 has a stationary flat sealing face (FIG. 8) on a side thereof opposite from the stationary valve face 81, and is disposed to be sealingly held in facing relation against the left-hand plane side of the stator 32 and the rotor 33.
  • the centrally disposed opening in the stationary valve member 29 where it meets with the stationary flat sealing face has a boundry edge substantially concentric to said stator axis and defines with the stationary flat sealing face a concentric sealing profile boundary edge having a diameter greater than that of the shaft 39 therein by an amount at least equal to the crosswise dimension of the cone described therein by the inclined axis of the shaft 39.
  • the external teeth of the rotor 33 define a contour which has an orbiting profile edge slidably engaging the stationary flat sealing face and defines an orbiting slidable juncture therewith.
  • the orbiting profile edge of the teeth thus define with the stationary flat sealing face an orbiting sealing profile juncture edge.
  • the concentric sealing profile boundry edge is disposed radially within and at a radial sealing distance from the orbiting sealing profile juncture edge, whereby the sealing distance therebetween constitutes face sealing means for blocking fluid in the operating fluid chambers from flowing into the centrally disposed opening upon relative movement of the rotor 33 in the stator 32.
  • the terminating fluid openings comprises generally an elongated oval and are each defined by opposed side portions 85 and 86 with each side portion extending in substantiallya radial direction with respect to the fixed axis.
  • the opposed side portions 85 and 86 for the respective fluid openings 80 have substantially the same fixed angle therebetween and define the circumferential width thereof.
  • the first series of fluid slot means 83 are, generally, in the shape of a deep external V-slot, with each being defined by opposing sidewall portions 89 and 90. As shown in FIG. 12, the sidewall portions 89 and 90 extend in substantially a radial direction with respect to the fixed axis.
  • the respective sidewall portions 89 and 90 for the first series of fluid slot means 83 and the respective sidewall portions 91 and 92 for the second series of fluid slot means 84 have substantially the same fixed angle therebetween and defines the circumferential width of the respective fluid slot means.
  • the fixed angle for the respective fluid slot means is substantially the same as that for the terminating fluid openings 80 which means that the circumferential width for the terminating fluid openings 80 and for the fluid slots 83 and 84 are all the same.
  • the facing lands between the fluid slot means 83 and 84 have the same circumferential width as the fluid slot means themselves.
  • the circumferential width that is the width measured in a circumferential direction from side-to-side is the same for all the terminating fluid openings 80, for all the inlet fluid slots 83 (first series), for all the exhaust fluid slots 84 (second series), and for all the facing lands between the fluid slots 83 and 84.
  • the registration of the fluid slots 83 and 84 with the terminating openings 80 provides ample fluid flow to and from the stator-rotor mechanism without undue restriction.
  • the first and second series of fluid slot means 83 and 84 are alternately disposed with respect to each other and are circumferentially disposed relative to the fixed axis and spaced at annular intervals thereabout substantially 360/2(n1 degrees from each other, where (n) is the number of fluid openings 80 terminating in the stationary valve face.
  • the fluid slot means are spaced at annular intervals substantially 30 from each other.
  • the bushing 22 has its outer circumference tightly pressed (fluid seal tight) into the hollow housing.
  • the bushing 22 has a sidewall surface constituting stationary face wall means 65 disposed substantially parallel to and spaced axially from the stationary valve face 81.
  • the rotary member 28 is disposed between the stationary face wall means 65 and the stationary valve face fill and has a left-hand rotary end face 66 sealingly engaging the stationary face wall means 65'.
  • the bushing 22 is axially secured in place by an abutment sleeve 67 which has an internal wall surface 68 surrounding and radially spaced from the rotary valve member 28 and defines therewith external annular fluid-line chamber means or a reservoir 75 which extends all the way around the external surface of the rotary valve member 28.
  • the first fluid port 23 is disposed substantially directly above and in substantially vertical alignment with the annular fluidline reservoir 75. As illustrated in FIG.
  • a vertically extending duct 36 in the hollow body connects the external fluid line chamber means 75 in constant fluid communication with the first fluid port 23.
  • the right'hand end of the external fluidline chamber means 75 is in constant fluid communication with the six fluid slot means 83 of the first series, which means that the six fluid slot means 83 of the first series are respectively in constant fluid communication with the first fluid port 23.
  • the external fluid-line chamber means 75 is at the entrance of the valve means to give improved valve operation.
  • the left-hand end of the fluid-line chamber means 75 extends to the stationary wall face means 65 of the bushing 22.
  • the external fluid-line chamber means or reservoir 75 may be referred to as an external fluid conducting channel.
  • the enlarged internal opening 76 in the rotary valve member 28, through which the actuating shaft 39 extends, is in constant fluid communication with the second fluid port 24.
  • the path of the constant fluid communication is through a radially extending space 96 between the main shaft 25 and the left-hand side of the bushing 22, and thence through a vertically extending duct 37 which connects the radial space 96 with the second fluid port 24, see FIG. l].
  • the inner open end of the second series of fluid slots 84 are in constant fluid communication with the enlarged fluid opening 76 in the rotary valve member 28, which means that the six fluid slot means 84 of the second series are respectively in constant fluid communication with the second fluid port 24.
  • the enlarged fluid opening 76 in the rotary valve member 2%, together with the radial space 96 as well as the space around the main shaft 25 constitutes internal fluid-line chamber means or a reservoir '77 at the exit of the valve means to give improved valve operation.
  • the internal fluid-line chamber means or reservoir 77 may be referred to as an internal fluid-conducting channel.
  • high-pressure fluid from the highpressure port 23 commutatively flow through the first series of commutating fluid connection means 83 of the rotary valve into the fluid openings 80 of the stationary valve member 29 and thence into the expanding pressure fluid chambers in the statorrotor mechanism and drives the rotor 33 in a clockwise rotational direction within the stator 32.
  • the exhaust fluid in the low-pressure contracting chambers commutatively flows through the fluid openings of the stationary valve 29 into the second series of fluid-commutating connection means 3d of the rotary valve and thence to the low-pressure port 24.
  • the rotor is driven by the high-pressure fluid, it operates the main shaft 25 through the actuating shaft 39.
  • the registration of the fluid connection means provided by the rotating valve face 82 in sealing engagement with the stationary valve face 81 is such that there is a first series of commutating fluid connections between the higlrpressure port 23 and the expanding fluid chambers in the stator-rotor mechanism and a second series of commutating fluid conuec' tions between the contracting fluid chambers and the lowpressure port 24.
  • the rotating valve 28 is independent of any radial thrust or of any end thrust to which the main shaft 25 may be subjected. Also the rotating valve 28 is substantially free from any radial thrust or any end thrust due to fluid pressure acting thereupon. This balance results from the fact that the fluid pressure acts upon oppositional wall portions which may substantially cancel out each other.
  • the fluid slot means 83 first series, have a backwall portion 87 extending between the respective sidewall portions 89 and thereof.
  • This backwall portion 37 is axially spaced from the stationary valve face hill and is exposed to fluid pressure tending to exert a separating axial force for separating the rotary valve face 82 from the stationary valve face 81.
  • the fluid pressure acting upon the total area of these backwall portions 87 may be substantially offset by the fluid pressure acting upon the external oppositional wall means 94 at the right-hand end of the rotary valve, see FIGS. 2l-24l.
  • the fluid slot means 84, second series having a backwall portion 88 between the respective sidewall portions 911 and 92 thereof.
  • This backwall portion 88 is axially spaced from the stationary valve face 81 and is exposed to fluid pressure tending to exert a separating axial force for separating the rotary valve face 32 from the stationary valve face M.
  • the fluid pressure acting upon the total area of these backwall portions 8ft may substantially offset by the fluid pressure acting upon the internal oppositional wall means 98 at the left-hand end of the rotary valve, see FIGS. 2ll-24t
  • the axial fluid thrust may be substantially cancelled out.
  • the right-hand end of the rotary valve 28 has a stepped, segmental circumferential rim section 99 of a larger diameter than the remaining outer cylindrical surface of the valve which, in part, defines the external annular fluid-line chamber means 75.
  • the outer surface of the segmental circumferential rim section 99 be rotatively mounted as a hearing within the internal wall surface 68 of the abutment sleeve, whereby it functions as a self-bearing to support the rotary valve.
  • FIGS. 25, 2s and 27 show a further modification ofthe universal drive means embodying rotational phasing and comprises a cam-actuating finger 95 extending from the actuating shaft 39.
  • the actuating finger 95 is preferably integral with the actuating shaft and has two oppositely disposed cam-actuating contact portions 97 which respectively slide between two substantially parallel cam-follower wall means NM.
  • the two contact portions 97 with respect to radial lines passing therethrough preferably define an included angle therebetween of approximately 90.
  • the contact portions 97 slide up and down (piston fashion) relative to the parallel wall means 100. The action is such that the rotating valve 28 is rotated once for each rotation of the actuating shaft 3). in FIG.
  • the contact portions 97 of the cam finger 95 make a relatively close sliding contact fit with the cam-follower wall means 100.
  • the clearance is sufficient to permit orbiting of the actuating shaft.
  • the rotary valve In operation there is a disposition for the rotary valve to have a circumferential rotational phasing with respect to the rotation of the actuating shaft 29.
  • the rotational phasing has the effect of subtracting from the rotation of the actuating shaft, with the result that the speed of rotation of the rotary valve is reduced.
  • the rotational phasing has the effect of adding to the rotation of the actuating shaft, with the: result that the speed of rotation of the rotary valve is increased.
  • the rotational phasing makes a fresh start at the beginning of each orbit and terminates at the end of each orbit.
  • the amount of the circumferential displacement resulting from the rotational phasing is a function of the radius of the orbital movement at the intermediate portion 38 of the actuating shaft.
  • the rotational phasing has the effect of varying the timing of the rotary valve with respect to the movements of the rotor within the stator and produces a new valving action.
  • ln F116. 26 which shows two oppositely disposed finger cams, instead ofone in H0. 25, the clearance between the opposed carn contact portions 97 and the cam-follower wall means llflti) is shown to be increased.
  • the amount of the clearance on each side may be substantially equal to the radius of the orbital movement at the intermediate portion 38 of the actuating shaft.
  • the action produced in FIG. 26 also gives rotational phasing and provides ample clearance to permit orbiting of the actuating shaft.
  • the clearance spaces in FIG. 26 renders it unnecessary to have the laterally extending tips upon which the contact portions 97 are provided.
  • the corner edges become the contact portions 97.
  • FIG. 28, 29 and 30 and 31 show a further modification of the universal drive means and comprises eccentric wall means 106 in the rotary valve (see FIG. 28) into which is rotatively mounted a concentric cam 107 (see FIG. 29), when the actuating shaft is in orbiting position.
  • the orbiting movement of the actuating shaft causes the concentric cam 107 to become eccentric in movement within the eccentric wall means 106, with the result that the rotary valve is rotated once for each rotation of the shaft.
  • the concentric cam 107 is shown integral with the actuating shaft.
  • the concentric cam 108 is shown separate from the actuating shaft, but nonrotatively connected thereto by the illustrated gear teeth.
  • the operation of the concentric cams H07 and 108 are substantially the same.
  • the universal drive means as shown in this application provide for producing an action whereby the rotary valve is rotated once for each rotation of the actuating shaft, with the further provision that the construction shown in FIGS. 25, 26 and 27 embody an action which has been described as rotational phasing to provide a new valve action.
  • the second series of fluid-commutating connection means 84 (exhaust slots) are shown as extending from one end of the rotary valve to the other.
  • the terminating ends for these exhaust slots 84 are shown in FIG. 21. For the sake of clarity, these terminating ends are not shown in FIGS. 25, 26 and 28.
  • the rotary valve 28, as shown in FIG. 20, represents a timed position with respect to the stationary valve shown in FIG. 9 and with respect to the stator-rotor mechanism shown in FIG. 7.
  • the registration of the fluid slots 83 and 84 with the fluid openings 80 in the stationary valve 29 directs exhaust fluid to flow therefrom, causing the rotor 33 to rotate in a clockwise direction.
  • All the universal drives disclosed herein are disposed to maintain this proper timed relationship between the actuating shaft 39 and the rotary valve 28 for rotating the rotary valve in its proper timed relationship with the stationary valve 29 and the stator-rotor mechanism.
  • first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means
  • said first and second fluid connection means including stationary valve means and rotary valve means, actuating means for rotating said rotary valve means relative to said stationary valve means
  • said stationary valve means being disposed axially between said fluid pressure operating means and said rotary valve means and having a stationary valve face confronting said rotary valve means
  • said first and second fluid connection means including a plurality of circumferentially disposed fluid openings extending from said stationary valve face and communicating with said fluid pressure operating means
  • said rotary valve means having a first end portion with a rotary valve face sealingly engaging said stationary valve face
  • said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means
  • said rotary valve means having first surface wall means extending externally therearound, said first end portion of said rotary valve means having first body portion means extending outwardly from said first surface wall means, said first body portion means having
  • said actuating means includes shaft means, said rotary valve means having internal wall means defining internal engagement means, said shaft means having external engagement means fitting within and engaging said internal engagement means for driving said rotary valve means.
  • said first body portion means includes peripheral bearing surface means for rotatably supporting said rotary valve means.
  • first and second fluid connection means for communicatingly interconnecting said first and second fluid port means with said fluid pressure operating means
  • said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means
  • said second fluid connection means including second fluid chamber means in constant fluid communication with said second fluid port means
  • annular body means common to both said first and second fluid chamber means, said annular body means having external wall means and internal wall means
  • said first fluid chamber means having chamber wall means including said external wall means
  • said second fluid chamber means having chamber wall means including said internal wall means
  • said first fluid chamber means being disposed externally around said annular body means and said second fluid chamber means being disposed internally of said annular body means
  • said first and second fluid connection means including stationary valve means and rotary valve means, actuating means for actuating said rotary valve means relative to said stationary valve means
  • said rotary valve means having wall body means with a rotary valve face confronting and sealingly engaging said stationary valve face
  • said first and second fluid connection means including a plurality of
  • a fluid pressure device having first and second fluid port means and fluid pressure operating means, first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means, said lfirst and second fluid connection means including stationary valve means and rotary valve means for controlling the flow of fluid to and from said pressure operating means, housing means having first and second open end portions, load shaft means, antifriction bearing means mounted in said housing means for radially and axially supporting said load shaft means against radial and axial thrust, said load shaft means being mountable in said housing means through said first open end.
  • closure means removably connected to said first open end portion of said housing means, said load shaft means having an extension portion extending through said closure means and adapted for external connection to a load, said fluid pressure operating means being connected in face relation to said second open end portion of said housing means, said rotary valve means comprising an annular body having external and internal annular surfaces, said external surface being rotatably mounted for rotation within said housing means independently of said load shaft means, whereby said rotary valve means is independently free from radial and axial thrust to which said load shaft means may be subjected, and drive means connected to said fluid pressure operating means for driving said load shaft means and said rotary valve means, said drive means including driving and driven circumferentially abuttable surfaces through which torque is transmitted, said annular body of said rotary valve means including said driven abuttable surface, said driving abuttable surface extending outwardly of said internal surface of said rotary valve means and circumferentially abutting against said driven abuttable surface, said abuttable surfaces being disposed radially and
  • said antifriction bearing means includes a plurality of rollers mounted in a cup fitting within said housin means.

Abstract

Stationary and rotary valve means are provided in combination with fluid pressure operation means, in which the stationary valve has a stationary valve face and a plurality of fluid openings communicating with the fluid pressure operation means. The rotary valve is hollow and has a rotary valve face sealingly engaging the stationary valve face. Externally of the hollow rotary valve is a first fluid chamber or gallery and internally of the hollow rotary valve is a second fluid chamber or gallery. First and second alternate series of commutating fluid conduction means respectively extend from the first and second fluid chambers through the rotary valve face with each series commutating with and being one less in number than said plurality of fluid openings. A series of land are circumferentially and respectively disposed between said first and second series. Said lands and said first and second series each have substantially the same circumferential width and are spaced at substantially uniform circumferential intervals relative to each other around the rotary valve face and are respectively positioned in substantially direct opposed diametrical locations relative to each other.

Description

United States Patent [72] Inventor George V. Woodling 3,389,618 6/1968 McDermott.... 418/61 X 22077 West Lake Road, Rocky River, Ohio 3,405,603 10/ l 968 Woodling 64/31 X V 44116 3,446,153 5/1969 Eastonu. 418/61 [21 8874514 Primary Examiner-Carlton R. Croyle [22] Med Dec. 23, 1969 Assistant Exammer-W1lbur.l. Goodlin [45] Patented July 6, 1971 communion of application Ser Att0rneyWoodlmg, Krost, Granger and Rust 765,107, Oct. 4, 1968, now abandoned.
ABSTRACT: Stationary and rotary valve means are provided in combination with fluid pressure operation means, in which the stationary valve has a stationary valve face and a plurality of fluid openings communicating with the fluid pressure [54] VALVING [N COMBINATION WITH FLUID operation means. The rotary valve is hollow and has a rotary PRESSURE OPERATNG MEANS valve face sealmgly engaging the stat onaryvalve face. Exter- 1| Caims, 31 Drawing Figs nally of the hollow rotary valve 15 a first fluid chamber or gallery and internally of the hollow rotary valve 18 a second fluid [52] US. hamber or gallery First econd alternate eries of com- [51 1 CI Folc mutating fluid conduction means respectively extend from the Field of first and second chambers through the rotary valve face with each series commutatin with and being one less in [56] Rem-antes Cited number than said plurality of uid openings. A series of land UNITED STATES A S are circumferentially and respectively disposed between said 1,916,391 7/ 1933 Shamberger 64/31 X first and second series. Said lands and. said first and second se- 2,756,573 7/1956 Colby et a1 64/31 ries each have substantially the same circumferential width 3,087,436 4/1963 Dettlof et a1 418/61 and are spaced at substantially uniform circumferential inter- 3,288,034 1 1/ 1966 White, Jr., et al... 418/61 vals relative to each other around the rotary valve face and are 3,289,542 12/1966 Fikse 418/61 respectively positioned in substantially direct opposed diamet- 3,289,601 12/1966 Compton 418/61 rical locations relative to each other.
PATENTEU JUL SIS?! Mn 1 OF 4 3,591, 321
0 im if W) O 9' La.
FIG-3.2
INVENTOR.
GEORGE V. WOODLING PATENTEUJUL 61971 3,591, 321
SHEET 2 [1F 4 FIG.3
35 3O 3O /29 35 32 30 I 1 1 so so INVENTOR.
GEORGE V. WOODLING BY PATENTEUJUL BIS?! 3,591,321
SHEET 3 BF 4 9 O 6 m 3 Q O Q INVENTOR.
GEORGE V. WOODLIMG BY FIG. I9
wit
PATENTEDJUL 8I97| sum u 0F 4 3591.321
INVENTOR.
GEORGE V. WOODLING VALVING IN COMBINATION WITH FLUID PRESSURE OPERATING MEANS This application is a continuation of my pending application, Ser. No. 765,107, now abandoned, filed Oct. 4, 1968, the latter being characterized as a continuation of my prior application, Ser. No. 637,382, filed May 10, 1967, now US. Pat. No. 3,405,603.
BACKGROUND OF THE INVENTION Valving with full-flow capacity and short flow distances to minimize fluid pressure drop are two major critical requirements in the operation and manufacture of a fluid valve for controlling the flow of fluid to and the exit of fluid from a fluid pressure operating means.
In the prior art, the valving is substantially universally deficient in meeting these major critical requirements, primarily due to the lack of sufficient circumferential and radial room for locating unrestricted flow ducts, or to the stacking" of too many side-by-side valve parts, resulting in a longer flow path with increased opportunity for excessive leakage. The above requirements become increasingly critical in commutative valving where inlet fluid is caused to flow from an inlet chamber or gallery through a first series (excessively restricted in the prior art) of flow conduction means to the fluid pressure operating means and where the exhaust fluid is caused to flow from the fluid pressure operating means through a second series (also excessively restricted in the prior art) of flow conduction means to an exhaust chamber or gallery.
Accordingly, it is an object of my invention to provide commutative valving with minumum fluid pressure drop.
Another object of my invention is to provide, in commutative valving, full-flow capacity and short flow distances for the first and second series of flow conduction means.
Another object is the provision of commutative valving which is simple in construction and efficient in performance.
Another object of my invention is the provision of a hollow rotary valve with a first fluid chamber or gallery on the outside thereof and with a second fluid chamber or gallery on the inside thereof.
Another object of my invention is to isolate the operation of the valve system from the fluid ports in the housing and to render it free from any distortion of the housing incident to screwing in the fittings.
Another object of my invention is the provision of a selfbearing rotary valve.
Another object is the provision of a self-bearing actuating shaft disposed to rotate the rotary valve.
Another object is the provision of a valve system which will seal high fluid pressures, resulting in higher efficiency.
Another object is the provision of a valve system which does not necessarily restrict the flow of fluid to and from the fluid pressure operating means.
Another object is to provide an enlarged fluid-line reservoir or fluid-conducting channel at the valve entrance and an enlarged fluid-line reservoir or fluid-conducting channel at the valve exit.
Another object is the provision of a valve system having fluid-commutating characteristics, and includes a stationary valve member and a rotary valve member disposed for rotational movement relative to the stationary valve member.
SUMMARY OF THE INVENTION The invention constitutes commutative valving in a fluid pressure device having first and second fluid port means and fluid pressure operation means, first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means, said first and second fluid connection means including stationary valve means and rotary valve means, ac tuating means for rotating said rotary valve means relative to said stationary valve means, said stationary valve means being disposed axially between said fluid pressure operating means and said rotary valve means and having a stationary valve face confronting said rotary valve means, said first and second fluid connection means including a plurality of circumferentially disposed fluid openings extending from said stationary valve face and communicating with said fluid pressure operating means, said rotary valve means having a first end portion with a rotary valve face sealingly engaging said stationary valve face, said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means, said rotary valve means having first surface wall means extending externally therearound, said first end portion of said rotary valve means having first body portion means extending outwardly from said first surface wall means, said first body portion means having first and second opposed walls, said first fluid chamber means having chamber wall means including said first surface wall means and said second opposed wall, said second fluid connection means including second fluid chamber means in constant fluid communication with said second fluid port means, said rotary valve means having second surface wall means internally thereof, said second fluid chamber means having chamber wall means including said second surface wall means, said first and second fluid connection means respectively including first and second alternate series of commutating fluid conduction means extending through said rotary valve face, said first and second series each commutating with and being one less in number than said plurality of fluid openings, said first and second series having lands disposed circumferentially therebetween and constituting fluid seal means between said first and second alternate series of fluid conduction means, said rotary valve means having a longitudinal centerline and having substantially like cross sections on opposite sides thereof in a first diametrical plane passing through said longitudinal centerline and intersecting said first series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a second diametrical plane passing through said longitudinal centerline and intersecting said second series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a third diametrical plane passing through said longitudinal centerline and intersecting said lands.
Other objects and a fuller understanding of this invention may be had by referring to the following description and claims, taken in conjunction with the accompanying drawings, in which:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a top plan view of my fluid pressure device;
FIG. 2 is a left-hand end view of my fluid pressure device and shows principally the end mounting flange;
FIG. 3 is a longitudinal sectional view of FIG. ll, taken through the vertical center thereof, except that the section through the valve means is taken along the line 23-24 of FIG. 20;
FIG. 4 is an enlarged fragmentary cross-sectional view of the bearing fixation means in FIG. 3 to accommodate for axial tolerance in matching the position of the bearing in the bore of the housing, the view showing the position of the parts before engagement of the fixation means;
FIG. 5 is a view similar to FIG. 4, but shown the position of the parts after engagement of the fixation means;
FIG. 6 is a view of the right-hand end of FIG. 3;
FIG. 7 is a view taken along the line 7-7 of FIG. 3, showing the stator-rotor mechanism;
FIG. 8 is a view taken along the line 84} of FIG. 3, showing the side of the stationary valve member, next adjacent to the statorrotor mechanism;
FIG. 9 is a view showing the opposite side of the stationary valve, next adjacent the rotary valve; 7
FIG. 10 is a vertical cross-sectional view of a bushing which separates the hollow housing into a left-hand end compartment and a right-hand end compartment, including an abut ment sleeve for securing the bushing in place;
FIG. 11 is a view taken along the line 11-11 of FIG. 3, with the rotary valve being omitted, the view being principally a right-hand end view of the hollow housing showing the bushing and the abutment sleeve mounted therein, the view also including a cross section of the actuating shaft with the square portion thereof shown in a timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
FIG. 12 is a right-hand end view of the wear face only of the rotary valve and is shown in a timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
. FIG. 13 is a left-hand end view of the wear face only of the rotary valve and is shown in a timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
FIG. 14 is a left-hand end view of the rotary valve, showing a torque-transmitting member mounted therein and comprising an open annular ring;
FIG. 15 is a flat side view of the torque-transmitting member shown in FIG. 14;
FIG. 16 is an edge view of the torque-transmitting member shown in FIG. 15;
FIG. 17 is a left-hand end view of the rotary valve, showing a modified torque-transmitting member comprising a closed annular ring;
F lg. 18 is a flat side view of the torque-transmitting member shown in FIG. 17;
FIG. 19 is an edge view of the torque-transmitting member shown in FIG. 18;
FIG. 20 is a view of the rotary valve, looking at the righthand end thereof, and shows the rotary valve in timed relation with respect to the position of the stator-rotor mechanism in FIG. 7;
FIG. 21 is a view of the rotary valve, looking at the left-hand end thereof, and shows the rotary valve in timed relation with respect to the position of the stator-rotor mechanism in FIG.
FIG. 22 is a cross section of the rotary valve taken along the line 22-22 of FIG. 20;
FIG. 23 is a cross section of the rotary valve, taken along the line 23-23 of FIG. 20;
FIG. 24 is a cross section of the rotary valve, taken along the line 24-24 of FIG. 20;
FIG. 25 is a view of a modified left-hand end of the rotary valve, showing a cam finger extending from the actuating shaft for rotating the rotary valve once for each rotation of the actuating shaft;
FIG. 26 is a view similar to FIG. 25, but shows a double cam finger spaced from the opposed substantially parallel sidewall means between which the cam finger slidable engages;
FIG. 27 is a fragmentary view of the actuating shaft with the cam finger extending therefrom;
FIG. 28 is a view of a modified left-hand end of the rotary valve, showing an eccentric cam wall means;
FIG. 29 is an end view of the actuating shaft having a concentric cam integrally provided thereon, the concentric cam being disposed to be rotatively mounted in the eccentric cam wall means in FIG. 28 when the actuating shaft is orbitally mounted;
FIG. 30 is a fragmentary side view of the actuating shaft and concentric cam in FIG. 29; and
FIG. 31 is a view similar to FIG. 29, but shows the concentric cam separately and nonrotatively mounted on the actuating shaft.
DESCRIPTION OF THE PREFERRED EMBODIMENT My invention may comprise a fluid motor, a fluid pump, a fluid transmission, a fluid servomotor and/or any other related device.
The fluid pressure operating means may be of the type usually referred to in the trade as a stator-rotor orbital mechanism.
In this application, the term stator and rotor" are not used in a limited sense. The term "stator" is applied to the element which has a fixed axis and the term "rotor is applied to the element which has a movable axis characterized in that said rotor is disposed for rotational movement about its own movable axis and for orbital movement about the fixed axis of the stator. Thus, in this application, the outer surrounding element, usually referred to as the stator, may be either the stator or the rotor, depending upon whether it has a fixed axis or a movable axis and the inner element, usually referred to as the rotor, may be either the rotor or the stator depending upon whether it has a movable axis or a fixed axis.
The valve system of my invention constitutes an improvement over the prior art ai'ijd involves a new separate valve means for commutatively directing the flow of fluid to and from the stator rotor mechanism.
For clarity of the invention, the usual shaft and static seals are not shown. Also, all wear parts are made of hardenable or bearing metal and are well lubricated by the operating fluid.
With reference to the drawing, my invention comprises generally a main housing 20 having substantially a square cross section. A mounting flange 21 is secured to the left-hand end of the housing by screws 26. The housing 20 is hollow from end-to end, and intermediate the ends of the hollow housing, there is provided a bushing 22 which generally separates the hollow housing into a left-hand end compartment and a right-hand end compartment. Rotatively mounted in the left-hand end compartment is a main shaft 25 having an axis substantially coinciding with the fixed axis. A rotary valve 28 is mounted in the right-hand end compartment and is adopted for rotational movement about the fixed axis. On the ritht-hand end of the hollow housing, there is mounted a square stationary valve member 29 by means of screws 30. Attached to the right-hand face of the stationary valve member 29, is a stator-rotor mechanism 31 comprising a stator element 32 and a rotor element 33. An end cap 34 encloses the statorrotor mechanism. The stator-rotor mechanism 31 and the end cap 34 are secured to the stationary valve member 29 by means of screw 35.
The valve system, which comprises the stationary valve member 29 and the rotary valve member 28, is independently mounted between the main shaft 25 and the stator-rotor mechanism 31, and thus the rotary valve 28 is free from both the radial thrust and the end thrust to which the main shaft about the fixed axis relative to the stationary valve member by universal drive means, indicated by the dotted line 40 and includes an intermediate shaft portion 38 of an actuating shaft 39 which drivingly interconnects the rotor element 33 to the right-hand end of the main shaft 25. The universal drive means may embody rotational phasing, as will be explained later.
The main shaft 25 comprises an enlarged internal portion having a reduced external portion 41 extending axially outwardly of the main housing 20 through the mounting flange 21. The enlarged internal portion of the main shaft is supported preferably by tapered roller bearings 42 and 43, respectively, having inner cones 44 and 45 and outer cups 46 and 47. The tapered roller bearings are disposed side-by-side with the bearing 42 disposed oppositely to that of the tapered roller bearing 43. Thus, the tapered roller bearings 42 and 43, in combination with each other, provide for radial thrust as well as for end thrust in both axial directions, with the tapered roller bearing 42 disposed to take the greater part of the radial load. The enlarged internal portion of the main shaft 25 is pro-.
vided with a first portion 50 upon which the inner cone 45 is pressed and a second portion 51 upon which the inner cone 44 is pressed. The portion 50 terminates into a shoulder 52 against which the right-hand end of the inner cone 45 abuts. The two inner ends of the cones 44 and 45 are separated by a shaft spacer ring 53. Mounted against the left-hand end of the inner cone 44 is a tightening nut 54 which threadably engages male threads 55 provided on a reduced stepped portion of the shaft. Upon tightening the nut 54, the two tapered roller bearings 42 and 43 are securely mounted upon the main shaft. The tightening nut 54 may be provided with a built-in locking feature to prevent loosening.
The internal surface of the left-hand end compartment of the hollow housing is provided with a first bore portion 56 into which the outer cup 47 is pressed and a second bore portion 57 into which the outer cup 46 is pressed. The bore portion 56 terminates into a shoulder 58 against which the righthand end of outer cup 47 abuts. The two inner ends of the cups 46 and 47 are separated by a bore spacer ring 59. As shown in FIGS. 3, 4 and 5, the outer cup 46 is secured against axial movement to the left by axial fixation means, indicated by the reference character 60. The axial fixation means 60 comprises an annular V-shaped or pointed rib which axially abuts against the outer cup 46. The rib may be provided on the projecting end of a cylindrical body 61 constructed integrally with the flange 21. By pressing the flange 2ll against the end of the housing 20, the pointed rib is coined against the outer cup 46, with the result that the fixation means accommodates for axial tolerance in matching the position of the cup 46 in the bore of the housing 20. The pressure required to coin the axial fixation means is greater than the endwisc thrust load to which the bearing means 42 may be subjected in operation, in which case the outer cup 46 is resisted against axial movement to the left. In assembly, the axial fixation means is axially fixable (coinable) and is disposed to resist an axial thrust load greater than the axial thrust load to which the bearing means 42 may be subjected in operation. The FIG. 4 shows the axial fixation means 60 before it is coined or fixed and the FIG. 5 shows the axial fixation means after it has been coined. The main shaft is entirely supported by the two tapered roller bearings 42 and 43. The reduced external shaft portion 41 where it passes axially through the end mounting flange 2B is not journaled therein but rotates therein with a small radial clearance which is adapted to be sealed off by suitable shaft sea] means, not shown. The tapered roller bearing assembly is claimed to be new and novel to the extent that the respective inner cones and the respective outer cups are spaced apart by spacer rings, with the inner cones held against axial movement on the shaft by a tightening nut and with the outer cups held against axial movement in the housing by axial fixation means. With my bearing assembly, the external shaft portion M is disposed to withstand a heavy load.
The main housing 20 is provided with first and second fluid ports 23 and 24. When operated as a fluid motor, the first fluid port 23 constitutes an inlet or high-pressure port and the second fluid port 24 constitutes an outlet port or low pressure.
In the description, my device will be described as a fluid motor, but it is understood that it may be utilized for any other related purpose, particularly as a pump.
As illustrated in FIG. 7, the stator element 32 has seven internal teeth which defines the outer wall of a fluid compartment. The rotor element 33 has six external teeth, one less than that of the stator element. The stator element may be described as having n) number of internal teeth, and the rotor element may be described as having (n-l) number of external teeth. The stator element has a center 69, usually referred to as the fixed or stationary axis since the stator ele-' ment is stationarily mounted and does not rotate. In this application and claims, the expression fixed stator axis" or simply fixed axis," includes not only the fixed axis of the stator, but also any axis which coincides, or is in axial alignment therewith.
The rotor 33 has a movable axis, identified by the reference character 70, and is radially spaced from and moves in an orbital path about the fixed axis 69 ofthe stator. The orbital path of the movable axis "/0 is a true circle with its center coinciding with the fixed axis of the stator. The diameter of the true circle, orbital path, is equal to the difference in the radial dimension between the crest contour and the root contour ofa stator tooth. Upon relative movement between the rotor and the stator, the movable axis '70 of the rotor orbits in a true circle about the fixed axis ofthe stator. As the rotor moves within the stator, the intermeshing teeth of the rotor and stator divide the fluid compartment confined therebetween into highand low'pressure chambers along a revolving divisional line passing substantially diametrically through the fixed axis of the stator. For the position in H6. 7, the divisional line is substantially diametrically vertical. For the position shown in FIG. 7, the divisional line may be more properly described as a divisional tapering band rather than a line and comprises substantially a slender triangle having an apex at the point where the top rotor tooth in FIG. 7 touches or contacts the arcuate surface of the stator contour and having a base defined by the distance between the seating contact engagement on opposite sides of the bottom rotor tooth when fitting full depth into the bottom stator tooth. To rotate the rotor 33 in a clockwise direction, the chambers on the left-hand side of the revolving divisional line or tapering band become high-pressure chambers and the chambers on the right-hand side become lowpressure chambers. The high and low-pressure chambers alternately expand and contact as the rotor and stator move relative to each other. The divisional line or tapering band continually revolves in a counterclockwise direction as the rotor rotates in a clockwise direction within the stator.
As shown in FIG. 3, the actuating shaft 39 has a right-hand end portion provided with male spline teeth '71 which fit within female spline teeth 72 in the rotor, being referred to herein as first connection means. Thus, the right-hand end portion of the actuating shaft 39 is disposed for rotational movement about its own movable axis and for orbital movement about the fixed axis of the stator. The connection means between the left-hand end portion of the actuating shaft 39 and the main shaft 25, herein referred to as second connection means, also comprises male spline teeth 73 on the actuating shaft 39 which fit within female spline teeth 74 in the central core of the main shaft 25. The left-hand end portion of the actuating shaft, that is the second connection means, is disposed for rotational movement only about the fixed axis of the stator. The male spline teeth 71 and '73 constitute self-bearing means which respectively support both ends of the actuating shaft 39 for rotation about the orbiting axis. The third connection means comprises the universal drive means indicated by the dotted line 40 and includes an intermediate square shaft portion 3% which is provided with a torque-transmitting member 7% for engaging the rotary valve 28 for rotating same about the fixed axis once for each rotation of the actuating shaft, see FlGS. I l-19, inclusive. As illustrated, the intermediate square shaft portion 38 passes through an enlarged opening 76 in the rotary valve member 28 and is disposed for rotational movement therein about its own movable axis and orbital movement about the fixed axis. The orbital diameter which the movable axis described about the fixed axis at the intermediate shaft portion 38, is of course, less than the orbital diameter at the right-hand end portion of the actuating shaft. Thus, the shaft 39 has an axis extending at an angle to the fixed axis or valve axis. As illustrated, the shaft 39 extends through a centrally disposed opening in the stationary valve member 29 and interconnects the rotor 33 and the rotary valve member 28. The shaft axis describes generally the surface of a cone upon movement thereof with the cone having generally a base circle at the first connection means between the shaft and the rotor 33. The centrallly disposed opening in the stationary valve member 29 is larger in diameter than the male spline teeth 71 and 73 and has substantially the same diameter as the internal opening '76 in the rotary valve member 2%. The crosswise dimension (diameter) of the centrally disposed opening in the stationary valve member 29 is larger than that of the shaft 39 extending therethrough by an amount at least equal to the crosswise dimension of the cone described therein. The female spline teeth at the first connection means constitute bearing support means for radially supporting the male spline teeth substantially concentrically within the rotor 33. The torque'transmitting member 78 comprises an open annular washer or member (substantially a C- shaped member) having a central opening or slot large enough to pass over and slidably'engage the intermediate square shaft portion 38 of the actuating shaft 39. The torque-transmitting member 78 and the intermediate square shaft portion 38 respectively have first and second interengageable torquetransmitting wall means slidable with respect to each other in a first direction for transmitting torque therebetween. The torque-transmitting member 78 may slide on the square cross section by an amount to accommodate for the orbital movement of the intermediate shaft portion 38. The outside of the open annular torque-transmitting washer or member 78 is provided with oppositely disposed contacting wall means 101 and 102 which slidably and respectively fit between two oppositely disposed parallel wall surfaces 103 and 104 in the rotating valve member 28. The opposed contacting wall means 101 and 102 may slide within the wall surfaces 103 and 104 by an amount to accommodate for the orbital movement of the intermediate shaft portion 38. The direction at which the torque-transmitting member slides with reference to the rotating valve is perpendicular to the direction at which the torquetransmitting member slides with reference to the intermediate square shaft portion 38. The rotary valve 28 is caused to be rotated once for each rotation of the intermediate shaft portion 38. The drive means thus described constitutes universal drive means and provides for rotating the rotary valve relative to the stationary valve once for each rotation of the actuating shaft 39. The operation of the rotary valve is independent of the load and thrust on the main shaft. The FIGS. 17, 18 and 19 show a closed annular torque-transmitting washer or member 105 which operates in substantially the same manner as the open annular torque-transmitting washer or member 78. The central opening in the closed annular member 105 is large enough to pass over the male spline teeth on the end of the actuating shaft 39. The intermediate square shaft portion 33 may be slightly larger for the closed annular torque-transmitting member. In both the closed and open annular torque-transmitting members, the fluid may flow therethrough, as open spaces are needed to accommodate for the slidable movements and these open spaces are ample to accommodate for the flow of fluid therethrough. The internal wall surfaces 103 and 104 of the rotary valve 28 between which the torquetransmitting members 78 or 105 slidably operate are shown in FIG. 21. The FIG. 21 shows the wall surfaces 103 and 104 in a timed position with respect to the position of the statorrotor mechanism in FIG. 7. The torque-transmitting members 78 and 105 provide for rotating the rotary valve once for each rotation of the actuating shaft.
In my invention, the valve system means, which comprises the rotary valve member 28 and the stationary valve member 29, is disposed to provide a first series of commutating fluid connection means between the first fluid port 23 and the expanding fluid chambers in the stator-rotor mechanism and a second series of commutating fluid connection means between the contracting fluid chambers in the stator-rotor mechanism and the second fluid port 24. To this end, the stationary valve member 29 has seven fluid openings 79 communicating respectively with the spaces between the internal teeth of the stator element, see FIG. 8. The stationary valve member 29 has a stationary valve face 81 and the rotary valve member 28 has a rotary valve face 82 disposed to rotate against the stationary valve face and make a sealing engagement therewith. The seven fluid openings 79 in the stationary valve member terminate respectively in the stationary valve face 81 with the terminating fluid openings being identified by the reference characters 80 and being disposed circumferentially about the fixed axis and spaced at annular intervals thereabout substantially 360/11 degrees from each other, where (n) equals seven, being the number of fluid openings 80 terminating in the stationary valve wear face 81, see FIG. 9. The first series of commutating connection means, comprising six in number, tenninate respectively in the rotary valve wear face 82. These six commutating connection means (first series) preferably comprise six fluid slot means 83 respectively having a closed inner end portion and an open outer end portion in constant fluid communication with the first fluid port 23. The second series ofcommutating fluid connection means, likewise comprising six fluid slot means, are identified by the reference character 84 and respectively have a closed outer end portion and an open inner end portion in constant fluid communication with the second fluid port 24.
As shown, the stationary valve member 29 has a stationary flat sealing face (FIG. 8) on a side thereof opposite from the stationary valve face 81, and is disposed to be sealingly held in facing relation against the left-hand plane side of the stator 32 and the rotor 33. The centrally disposed opening in the stationary valve member 29 where it meets with the stationary flat sealing face has a boundry edge substantially concentric to said stator axis and defines with the stationary flat sealing face a concentric sealing profile boundary edge having a diameter greater than that of the shaft 39 therein by an amount at least equal to the crosswise dimension of the cone described therein by the inclined axis of the shaft 39. The external teeth of the rotor 33 define a contour which has an orbiting profile edge slidably engaging the stationary flat sealing face and defines an orbiting slidable juncture therewith. The orbiting profile edge of the teeth thus define with the stationary flat sealing face an orbiting sealing profile juncture edge. The concentric sealing profile boundry edge is disposed radially within and at a radial sealing distance from the orbiting sealing profile juncture edge, whereby the sealing distance therebetween constitutes face sealing means for blocking fluid in the operating fluid chambers from flowing into the centrally disposed opening upon relative movement of the rotor 33 in the stator 32.
The terminating fluid openings comprises generally an elongated oval and are each defined by opposed side portions 85 and 86 with each side portion extending in substantiallya radial direction with respect to the fixed axis. The opposed side portions 85 and 86 for the respective fluid openings 80 have substantially the same fixed angle therebetween and define the circumferential width thereof. The first series of fluid slot means 83 are, generally, in the shape of a deep external V-slot, with each being defined by opposing sidewall portions 89 and 90. As shown in FIG. 12, the sidewall portions 89 and 90 extend in substantially a radial direction with respect to the fixed axis. The respective sidewall portions 89 and 90 for the first series of fluid slot means 83 and the respective sidewall portions 91 and 92 for the second series of fluid slot means 84 have substantially the same fixed angle therebetween and defines the circumferential width of the respective fluid slot means. The fixed angle for the respective fluid slot means is substantially the same as that for the terminating fluid openings 80 which means that the circumferential width for the terminating fluid openings 80 and for the fluid slots 83 and 84 are all the same. The facing lands between the fluid slot means 83 and 84 have the same circumferential width as the fluid slot means themselves. Thus, in FIGS. 9 and 12, the circumferential width, that is the width measured in a circumferential direction from side-to-side is the same for all the terminating fluid openings 80, for all the inlet fluid slots 83 (first series), for all the exhaust fluid slots 84 (second series), and for all the facing lands between the fluid slots 83 and 84. The registration of the fluid slots 83 and 84 with the terminating openings 80 provides ample fluid flow to and from the stator-rotor mechanism without undue restriction.
The first and second series of fluid slot means 83 and 84 are alternately disposed with respect to each other and are circumferentially disposed relative to the fixed axis and spaced at annular intervals thereabout substantially 360/2(n1 degrees from each other, where (n) is the number of fluid openings 80 terminating in the stationary valve face. Thus, the fluid slot means are spaced at annular intervals substantially 30 from each other. As illustrated in FIG. 3, the bushing 22 has its outer circumference tightly pressed (fluid seal tight) into the hollow housing. The bushing 22 has a sidewall surface constituting stationary face wall means 65 disposed substantially parallel to and spaced axially from the stationary valve face 81. The rotary member 28 is disposed between the stationary face wall means 65 and the stationary valve face fill and has a left-hand rotary end face 66 sealingly engaging the stationary face wall means 65'. The bushing 22 is axially secured in place by an abutment sleeve 67 which has an internal wall surface 68 surrounding and radially spaced from the rotary valve member 28 and defines therewith external annular fluid-line chamber means or a reservoir 75 which extends all the way around the external surface of the rotary valve member 28. The first fluid port 23 is disposed substantially directly above and in substantially vertical alignment with the annular fluidline reservoir 75. As illustrated in FIG. llll, a vertically extending duct 36 in the hollow body connects the external fluid line chamber means 75 in constant fluid communication with the first fluid port 23. The right'hand end of the external fluidline chamber means 75 is in constant fluid communication with the six fluid slot means 83 of the first series, which means that the six fluid slot means 83 of the first series are respectively in constant fluid communication with the first fluid port 23. Thus, the external fluid-line chamber means 75 is at the entrance of the valve means to give improved valve operation. The left-hand end of the fluid-line chamber means 75 extends to the stationary wall face means 65 of the bushing 22. The external fluid-line chamber means or reservoir 75 may be referred to as an external fluid conducting channel.
The enlarged internal opening 76 in the rotary valve member 28, through which the actuating shaft 39 extends, is in constant fluid communication with the second fluid port 24. The path of the constant fluid communication is through a radially extending space 96 between the main shaft 25 and the left-hand side of the bushing 22, and thence through a vertically extending duct 37 which connects the radial space 96 with the second fluid port 24, see FIG. l]. The inner open end of the second series of fluid slots 84 are in constant fluid communication with the enlarged fluid opening 76 in the rotary valve member 28, which means that the six fluid slot means 84 of the second series are respectively in constant fluid communication with the second fluid port 24. Thus, the enlarged fluid opening 76 in the rotary valve member 2%, together with the radial space 96 as well as the space around the main shaft 25 constitutes internal fluid-line chamber means or a reservoir '77 at the exit of the valve means to give improved valve operation. The internal fluid-line chamber means or reservoir 77 may be referred to as an internal fluid-conducting channel.
In operation as a fluid motor, high-pressure fluid from the highpressure port 23 commutatively flow through the first series of commutating fluid connection means 83 of the rotary valve into the fluid openings 80 of the stationary valve member 29 and thence into the expanding pressure fluid chambers in the statorrotor mechanism and drives the rotor 33 in a clockwise rotational direction within the stator 32. As the rotor is driven, the exhaust fluid in the low-pressure contracting chambers commutatively flows through the fluid openings of the stationary valve 29 into the second series of fluid-commutating connection means 3d of the rotary valve and thence to the low-pressure port 24. As the rotor is driven by the high-pressure fluid, it operates the main shaft 25 through the actuating shaft 39.
The registration of the fluid connection means provided by the rotating valve face 82 in sealing engagement with the stationary valve face 81 is such that there is a first series of commutating fluid connections between the higlrpressure port 23 and the expanding fluid chambers in the stator-rotor mechanism and a second series of commutating fluid conuec' tions between the contracting fluid chambers and the lowpressure port 24. The rotating valve 28 is independent of any radial thrust or of any end thrust to which the main shaft 25 may be subjected. Also the rotating valve 28 is substantially free from any radial thrust or any end thrust due to fluid pressure acting thereupon. This balance results from the fact that the fluid pressure acts upon oppositional wall portions which may substantially cancel out each other. Thus, the fluid slot means 83, first series, have a backwall portion 87 extending between the respective sidewall portions 89 and thereof. This backwall portion 37 is axially spaced from the stationary valve face hill and is exposed to fluid pressure tending to exert a separating axial force for separating the rotary valve face 82 from the stationary valve face 81. The fluid pressure acting upon the total area of these backwall portions 87 may be substantially offset by the fluid pressure acting upon the external oppositional wall means 94 at the right-hand end of the rotary valve, see FIGS. 2l-24l. Similarly, the fluid slot means 84, second series, having a backwall portion 88 between the respective sidewall portions 911 and 92 thereof. This backwall portion 88 is axially spaced from the stationary valve face 81 and is exposed to fluid pressure tending to exert a separating axial force for separating the rotary valve face 32 from the stationary valve face M. The fluid pressure acting upon the total area of these backwall portions 8ft may substantially offset by the fluid pressure acting upon the internal oppositional wall means 98 at the left-hand end of the rotary valve, see FIGS. 2ll-24t Thus, the axial fluid thrust may be substantially cancelled out. There is substantially no radial fluid thrust acting upon the rotary valve 28 since the fluid extends around the entire circumference thereof, as well as within the central opening thereof.
The right-hand end of the rotary valve 28 has a stepped, segmental circumferential rim section 99 of a larger diameter than the remaining outer cylindrical surface of the valve which, in part, defines the external annular fluid-line chamber means 75. In mounting the rotary valve in the abutment sleeve 67, it is preferable that the outer surface of the segmental circumferential rim section 99 be rotatively mounted as a hearing within the internal wall surface 68 of the abutment sleeve, whereby it functions as a self-bearing to support the rotary valve.
As an object of the invention, the FIGS. 25, 2s and 27 show a further modification ofthe universal drive means embodying rotational phasing and comprises a cam-actuating finger 95 extending from the actuating shaft 39.. The actuating finger 95 is preferably integral with the actuating shaft and has two oppositely disposed cam-actuating contact portions 97 which respectively slide between two substantially parallel cam-follower wall means NM. The two contact portions 97 with respect to radial lines passing therethrough preferably define an included angle therebetween of approximately 90. As the actuating shaft 39 orbits, the contact portions 97 slide up and down (piston fashion) relative to the parallel wall means 100. The action is such that the rotating valve 28 is rotated once for each rotation of the actuating shaft 3). in FIG. 25, the contact portions 97 of the cam finger 95 make a relatively close sliding contact fit with the cam-follower wall means 100. The clearance is sufficient to permit orbiting of the actuating shaft. In operation there is a disposition for the rotary valve to have a circumferential rotational phasing with respect to the rotation of the actuating shaft 29. During certain portions of the orbit movement of the actuating shaft, the rotational phasing has the effect of subtracting from the rotation of the actuating shaft, with the result that the speed of rotation of the rotary valve is reduced. During other portions of the orbit movement, the rotational phasing has the effect of adding to the rotation of the actuating shaft, with the: result that the speed of rotation of the rotary valve is increased. The rotational phasing makes a fresh start at the beginning of each orbit and terminates at the end of each orbit. The amount of the circumferential displacement resulting from the rotational phasing is a function of the radius of the orbital movement at the intermediate portion 38 of the actuating shaft. The rotational phasing has the effect of varying the timing of the rotary valve with respect to the movements of the rotor within the stator and produces a new valving action.
ln F116. 26, which shows two oppositely disposed finger cams, instead ofone in H0. 25, the clearance between the opposed carn contact portions 97 and the cam-follower wall means llflti) is shown to be increased. The amount of the clearance on each side may be substantially equal to the radius of the orbital movement at the intermediate portion 38 of the actuating shaft. The action produced in FIG. 26 also gives rotational phasing and provides ample clearance to permit orbiting of the actuating shaft. The clearance spaces in FIG. 26 renders it unnecessary to have the laterally extending tips upon which the contact portions 97 are provided. The corner edges become the contact portions 97.
FIG. 28, 29 and 30 and 31 show a further modification of the universal drive means and comprises eccentric wall means 106 in the rotary valve (see FIG. 28) into which is rotatively mounted a concentric cam 107 (see FIG. 29), when the actuating shaft is in orbiting position. In operation, the orbiting movement of the actuating shaft causes the concentric cam 107 to become eccentric in movement within the eccentric wall means 106, with the result that the rotary valve is rotated once for each rotation of the shaft. In FIG. 29, the concentric cam 107 is shown integral with the actuating shaft. In FIG. 31, the concentric cam 108 is shown separate from the actuating shaft, but nonrotatively connected thereto by the illustrated gear teeth. The operation of the concentric cams H07 and 108 are substantially the same. The universal drive means as shown in this application provide for producing an action whereby the rotary valve is rotated once for each rotation of the actuating shaft, with the further provision that the construction shown in FIGS. 25, 26 and 27 embody an action which has been described as rotational phasing to provide a new valve action.
As shown in FIG. 24, the second series of fluid-commutating connection means 84 (exhaust slots) are shown as extending from one end of the rotary valve to the other. The terminating ends for these exhaust slots 84 are shown in FIG. 21. For the sake of clarity, these terminating ends are not shown in FIGS. 25, 26 and 28.
The rotary valve 28, as shown in FIG. 20, represents a timed position with respect to the stationary valve shown in FIG. 9 and with respect to the stator-rotor mechanism shown in FIG. 7. As the rotary valve 28 in FIG. is rotated in a clockwise direction, the registration of the fluid slots 83 and 84 with the fluid openings 80 in the stationary valve 29, directs exhaust fluid to flow therefrom, causing the rotor 33 to rotate in a clockwise direction. All the universal drives disclosed herein are disposed to maintain this proper timed relationship between the actuating shaft 39 and the rotary valve 28 for rotating the rotary valve in its proper timed relationship with the stationary valve 29 and the stator-rotor mechanism.
Although this invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and the scope of the invention as hereinafter claimed.
What I claim is:
1. In a fluid pressure device having first and second fluid port means and fluid pressure operating means, first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means, said first and second fluid connection means including stationary valve means and rotary valve means, actuating means for rotating said rotary valve means relative to said stationary valve means, said stationary valve means being disposed axially between said fluid pressure operating means and said rotary valve means and having a stationary valve face confronting said rotary valve means, said first and second fluid connection means including a plurality of circumferentially disposed fluid openings extending from said stationary valve face and communicating with said fluid pressure operating means, said rotary valve means having a first end portion with a rotary valve face sealingly engaging said stationary valve face, said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means, said rotary valve means having first surface wall means extending externally therearound, said first end portion of said rotary valve means having first body portion means extending outwardly from said first surface wall means, said first body portion means having first and second opposed walls, said rotary valve face including said first opposed wall, said first fluid chamber means having chamber wall means including said first surface wall means and said second opposed wall, said second fluid connection means including second fluid chamber means in constant fluid communication with said second fluid port means, said rotary valve means having second surface wall means internally thereof, said second fluid chamber means having chamber wall means including said second surface wall means, said first and second fluid connection means respectively including first and second alternate series of commutating fluid conduction means extending through said rotary valve face, said first and second series each commutating with and being one less in number than said plurality of fluid openings, said first and second series having lands disposed circumferentially therebetween and constituting fluid seal means between said first and second alternate series of fluid conduction means, said rotary valve means having a longitudinal centerline and having substantially like cross sections on opposite sides thereof in a first diametrical plane passing through said longitudinal centerline and intersecting said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a second diametrical plane passing through said longitudinal centerline and intersecting said second series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a third diametrical plane passing through said longitudinal centerline and intersecting said lands.
2. The structure of claim I, wherein said actuating means includes shaft means, said rotary valve means having internal wall means defining internal engagement means, said shaft means having external engagement means fitting within and engaging said internal engagement means for driving said rotary valve means.
3. The structure of claim 1, wherein said first body portion means includes peripheral bearing surface means for rotatably supporting said rotary valve means.
4. The structure of claim 3, wherein said first body portion means comprises rim means.
5. The structure of claim 2, wherein said actuating means rotates said rotary valve means substantially one rotation for each rotation of said shaft means.
6. The structure of claim 1, having face wall means disposed substantially parallel to and spaced axially from said stationary valve face, said rotary valve means having a second end portion with a rotary end face sealingly engaging said face wall means and sealingly separating said first and second fluid chamber means.
7. The structure of claim ll, wherein said lands and said first and second alternate series of fluid conduction means each have substantially the same circumferential width and are spaced at substantially uniform circumferential intervals relative to each other around said rotary valve face and are respectively positioned in substantially direct opposed diametrical locations relative to each other.
8. In fluid pressure means including first and second fluid port means and fluid pressure operating means, first and second fluid connection means for communicatingly interconnecting said first and second fluid port means with said fluid pressure operating means, said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means, said second fluid connection means including second fluid chamber means in constant fluid communication with said second fluid port means, annular body means common to both said first and second fluid chamber means, said annular body means having external wall means and internal wall means, said first fluid chamber means having chamber wall means including said external wall means, said second fluid chamber means having chamber wall means including said internal wall means, said first fluid chamber means being disposed externally around said annular body means and said second fluid chamber means being disposed internally of said annular body means, said first and second fluid connection means including stationary valve means and rotary valve means, actuating means for actuating said rotary valve means relative to said stationary valve means, said rotary valve means having wall body means with a rotary valve face confronting and sealingly engaging said stationary valve face, said first and second fluid connection means including a plurality of circumferentially disposed fluid openings extending from said stationary valve face and communicating with said fluid pressure operating means, said first and second fluid connection means respectively including first and second alternate series of commutating fluid conduction means extending through said rotary valve face, said first fluid conduction means communicatingly interconnecting said first fluid chamber means and said stationary valve face, said second fluid conduction means communicatingly interconnecting said second fluid chamber means and said stationary valve face, said first and second series each commutating with and being one less in number than said plurality of fluid openings, said rotary valve face having lands disposed circumferentially between said first and second alternate series of fluid conduction means, said rotary valve means having an axially extending centerline and having substantially like cross sections on opposite sides thereof in a first diametrical plane passing through said centerline and intersecting said first series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a second diametrical plane passing through said centerline and intersecting said second series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a third diametrical plane passing through said centerline and intersecting said lands.
9. In a fluid pressure device having first and second fluid port means and fluid pressure operating means, first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means, said lfirst and second fluid connection means including stationary valve means and rotary valve means for controlling the flow of fluid to and from said pressure operating means, housing means having first and second open end portions, load shaft means, antifriction bearing means mounted in said housing means for radially and axially supporting said load shaft means against radial and axial thrust, said load shaft means being mountable in said housing means through said first open end. portion, closure means removably connected to said first open end portion of said housing means, said load shaft means having an extension portion extending through said closure means and adapted for external connection to a load, said fluid pressure operating means being connected in face relation to said second open end portion of said housing means, said rotary valve means comprising an annular body having external and internal annular surfaces, said external surface being rotatably mounted for rotation within said housing means independently of said load shaft means, whereby said rotary valve means is independently free from radial and axial thrust to which said load shaft means may be subjected, and drive means connected to said fluid pressure operating means for driving said load shaft means and said rotary valve means, said drive means including driving and driven circumferentially abuttable surfaces through which torque is transmitted, said annular body of said rotary valve means including said driven abuttable surface, said driving abuttable surface extending outwardly of said internal surface of said rotary valve means and circumferentially abutting against said driven abuttable surface, said abuttable surfaces being disposed radially and axially move relative to each other.
10. The structure of claim 9, wherein said antifriction bearing means includes a plurality of rollers mounted in a cup fitting within said housin means.
1 The structure 0 claim 10, wherein said rollers are tapered.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 Dated y 6 1971 Inventor(s) George V dling It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 12 line 25 after "intersecting" insert said first series of Column 14, line 31, after "disposed" insert to Signed and sealed this 29th day of August 1972.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents FORM PO-1050 liO-GS] u 5 GOVERNMENT PRINTING orrlct nu 0-in-5

Claims (11)

1. In a fluid pressure device having first and second fluid port means and fluid pressure operating means, first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means, said first and second fluid connection means including stationary valve means and rotary valve means, actuating means for rotating said rotary valve means relative to said stationary valve means, said stationary valve means being disposed axially between said fluid pressure operating means and said rotary valve means and having a stationary valve face confronting said rotary valve means, saiD first and second fluid connection means including a plurality of circumferentially disposed fluid openings extending from said stationary valve face and communicating with said fluid pressure operating means, said rotary valve means having a first end portion with a rotary valve face sealingly engaging said stationary valve face, said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means, said rotary valve means having first surface wall means extending externally therearound, said first end portion of said rotary valve means having first body portion means extending outwardly from said first surface wall means, said first body portion means having first and second opposed walls, said rotary valve face including said first opposed wall, said first fluid chamber means having chamber wall means including said first surface wall means and said second opposed wall, said second fluid connection means including second fluid chamber means in constant fluid communication with said second fluid port means, said rotary valve means having second surface wall means internally thereof, said second fluid chamber means having chamber wall means including said second surface wall means, said first and second fluid connection means respectively including first and second alternate series of commutating fluid conduction means extending through said rotary valve face, said first and second series each commutating with and being one less in number than said plurality of fluid openings, said first and second series having lands disposed circumferentially therebetween and constituting fluid seal means between said first and second alternate series of fluid conduction means, said rotary valve means having a longitudinal centerline and having substantially like cross sections on opposite sides thereof in a first diametrical plane passing through said longitudinal centerline and intersecting said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a second diametrical plane passing through said longitudinal centerline and intersecting said second series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a third diametrical plane passing through said longitudinal centerline and intersecting said lands.
2. The structure of claim 1, wherein said actuating means includes shaft means, said rotary valve means having internal wall means defining internal engagement means, said shaft means having external engagement means fitting within and engaging said internal engagement means for driving said rotary valve means.
3. The structure of claim 1, wherein said first body portion means includes peripheral bearing surface means for rotatably supporting said rotary valve means.
4. The structure of claim 3, wherein said first body portion means comprises rim means.
5. The structure of claim 2, wherein said actuating means rotates said rotary valve means substantially one rotation for each rotation of said shaft means.
6. The structure of claim 1, having face wall means disposed substantially parallel to and spaced axially from said stationary valve face, said rotary valve means having a second end portion with a rotary end face sealingly engaging said face wall means and sealingly separating said first and second fluid chamber means.
7. The structure of claim 1, wherein said lands and said first and second alternate series of fluid conduction means each have substantially the same circumferential width and are spaced at substantially uniform circumferential intervals relative to each other around said rotary valve face and are respectively positioned in substantially direct opposed diametrical locations relative to each other.
8. In fluid pressure means including first and second fluid port means and fluid pressure operating means, first and second fluid connection means for communicatinglY interconnecting said first and second fluid port means with said fluid pressure operating means, said first fluid connection means including first fluid chamber means in constant fluid communication with said first fluid port means, said second fluid connection means including second fluid chamber means in constant fluid communication with said second fluid port means, annular body means common to both said first and second fluid chamber means, said annular body means having external wall means and internal wall means, said first fluid chamber means having chamber wall means including said external wall means, said second fluid chamber means having chamber wall means including said internal wall means, said first fluid chamber means being disposed externally around said annular body means and said second fluid chamber means being disposed internally of said annular body means, said first and second fluid connection means including stationary valve means and rotary valve means, actuating means for actuating said rotary valve means relative to said stationary valve means, said rotary valve means having wall body means with a rotary valve face confronting and sealingly engaging said stationary valve face, said first and second fluid connection means including a plurality of circumferentially disposed fluid openings extending from said stationary valve face and communicating with said fluid pressure operating means, said first and second fluid connection means respectively including first and second alternate series of commutating fluid conduction means extending through said rotary valve face, said first fluid conduction means communicatingly interconnecting said first fluid chamber means and said stationary valve face, said second fluid conduction means communicatingly interconnecting said second fluid chamber means and said stationary valve face, said first and second series each commutating with and being one less in number than said plurality of fluid openings, said rotary valve face having lands disposed circumferentially between said first and second alternate series of fluid conduction means, said rotary valve means having an axially extending centerline and having substantially like cross sections on opposite sides thereof in a first diametrical plane passing through said centerline and intersecting said first series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a second diametrical plane passing through said centerline and intersecting said second series of said commutating fluid conduction means and having substantially like cross sections on opposite sides thereof in a third diametrical plane passing through said centerline and intersecting said lands.
9. In a fluid pressure device having first and second fluid port means and fluid pressure operating means, first and second fluid connection means for respectively connecting said first and second fluid port means commutatively with said fluid pressure operating means, said first and second fluid connection means including stationary valve means and rotary valve means for controlling the flow of fluid to and from said pressure operating means, housing means having first and second open end portions, load shaft means, antifriction bearing means mounted in said housing means for radially and axially supporting said load shaft means against radial and axial thrust, said load shaft means being mountable in said housing means through said first open end portion, closure means removably connected to said first open end portion of said housing means, said load shaft means having an extension portion extending through said closure means and adapted for external connection to a load, said fluid pressure operating means being connected in face relation to said second open end portion of said housing means, said rotary valve means comprising an annular body having external and internal annular surfaces, said external surface being rotatably mounted for roTation within said housing means independently of said load shaft means, whereby said rotary valve means is independently free from radial and axial thrust to which said load shaft means may be subjected, and drive means connected to said fluid pressure operating means for driving said load shaft means and said rotary valve means, said drive means including driving and driven circumferentially abuttable surfaces through which torque is transmitted, said annular body of said rotary valve means including said driven abuttable surface, said driving abuttable surface extending outwardly of said internal surface of said rotary valve means and circumferentially abutting against said driven abuttable surface, said abuttable surfaces being disposed radially and axially move relative to each other.
10. The structure of claim 9, wherein said antifriction bearing means includes a plurality of rollers mounted in a cup fitting within said housing means.
11. The structure of claim 10, wherein said rollers are tapered.
US887614A 1969-12-23 1969-12-23 Valving in combination with fluid pressure operating means Expired - Lifetime US3591321A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88761469A 1969-12-23 1969-12-23

Publications (1)

Publication Number Publication Date
US3591321A true US3591321A (en) 1971-07-06

Family

ID=25391512

Family Applications (1)

Application Number Title Priority Date Filing Date
US887614A Expired - Lifetime US3591321A (en) 1969-12-23 1969-12-23 Valving in combination with fluid pressure operating means

Country Status (1)

Country Link
US (1) US3591321A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715175A (en) * 1971-02-24 1973-02-06 G Woodling Rotary valve component means
EP0115889A1 (en) * 1983-02-08 1984-08-15 S.A.M. HYDRAULIK S.p.A. Orbital hydraulic motor with frontal distribution and hydrostatic gap compensation
US6623260B2 (en) * 1998-04-20 2003-09-23 White Hydraulics, Inc. Multiplate hydraulic motor valve
US20040052669A1 (en) * 2002-09-13 2004-03-18 Xingen Dong Multi-plate hydraulic manifold

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1916391A (en) * 1931-02-28 1933-07-04 Westinghouse Electric & Mfg Co Center-axle drive for locomotives
US2756573A (en) * 1954-04-26 1956-07-31 Collins Radio Co Non-ambiguous coupler
US3087436A (en) * 1960-12-02 1963-04-30 Ross Gear And Tool Company Inc Hydraulic pump
US3288034A (en) * 1965-02-24 1966-11-29 Jr Hollis N White Rotary motor or pump
US3289601A (en) * 1965-02-12 1966-12-06 Fawick Corp Fluid displacement device usable as a hydraulic motor or pump
US3289542A (en) * 1963-10-29 1966-12-06 Lawrence Machine & Mfg Company Hydraulic motor or pump
US3389618A (en) * 1966-05-11 1968-06-25 Char Lynn Co Torque transmitting device
US3405603A (en) * 1967-05-10 1968-10-15 George V. Woodling Fluid pressure device and valve system therefor with improved valve drive mechanism
US3446153A (en) * 1967-07-17 1969-05-27 Wayne B Easton Fluid pressure operated motor or pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1916391A (en) * 1931-02-28 1933-07-04 Westinghouse Electric & Mfg Co Center-axle drive for locomotives
US2756573A (en) * 1954-04-26 1956-07-31 Collins Radio Co Non-ambiguous coupler
US3087436A (en) * 1960-12-02 1963-04-30 Ross Gear And Tool Company Inc Hydraulic pump
US3289542A (en) * 1963-10-29 1966-12-06 Lawrence Machine & Mfg Company Hydraulic motor or pump
US3289601A (en) * 1965-02-12 1966-12-06 Fawick Corp Fluid displacement device usable as a hydraulic motor or pump
US3288034A (en) * 1965-02-24 1966-11-29 Jr Hollis N White Rotary motor or pump
US3389618A (en) * 1966-05-11 1968-06-25 Char Lynn Co Torque transmitting device
US3405603A (en) * 1967-05-10 1968-10-15 George V. Woodling Fluid pressure device and valve system therefor with improved valve drive mechanism
US3446153A (en) * 1967-07-17 1969-05-27 Wayne B Easton Fluid pressure operated motor or pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3715175A (en) * 1971-02-24 1973-02-06 G Woodling Rotary valve component means
EP0115889A1 (en) * 1983-02-08 1984-08-15 S.A.M. HYDRAULIK S.p.A. Orbital hydraulic motor with frontal distribution and hydrostatic gap compensation
US6623260B2 (en) * 1998-04-20 2003-09-23 White Hydraulics, Inc. Multiplate hydraulic motor valve
US20040052669A1 (en) * 2002-09-13 2004-03-18 Xingen Dong Multi-plate hydraulic manifold
US6793472B2 (en) * 2002-09-13 2004-09-21 Parker-Hannifin Corporation Multi-plate hydraulic manifold

Similar Documents

Publication Publication Date Title
US3405603A (en) Fluid pressure device and valve system therefor with improved valve drive mechanism
US3289542A (en) Hydraulic motor or pump
US4715798A (en) Two-speed valve-in star motor
US3289602A (en) Fluid pressure device
US4639202A (en) Gerotor device with dual valving plates
US3452680A (en) Hydraulic motor-pump assembly
US4411606A (en) Gerotor gear set device with integral rotor and commutator
US3106163A (en) Pumps, motors and like devices
US3431863A (en) Guide means
US3270681A (en) Rotary fluid pressure device
US4219313A (en) Commutator valve construction
US3277833A (en) Hydraulic device
JPS6176768A (en) Rotary hydraulic motor
US3547565A (en) Rotary device
US2985110A (en) Pump construction
US3591321A (en) Valving in combination with fluid pressure operating means
US4025243A (en) Orbital device
US5516268A (en) Valve-in-star motor balancing
US3591320A (en) Pressurized roller means in a fluid pressure device
US4343600A (en) Fluid pressure operated pump or motor with secondary valve means for minimum and maximum volume chambers
US4021160A (en) Orbital motor
US4068986A (en) Sealing means for radial faces of piston in orbital piston device
US3531226A (en) Bearing support means and drive for rotary valve in fluid pressure device
US3531225A (en) Valve system means for stator-rotor mechanism
US4334843A (en) Gerotor machine with valve plates attached to wheel gear