US3590919A - Subsea production system - Google Patents
Subsea production system Download PDFInfo
- Publication number
- US3590919A US3590919A US855961A US3590919DA US3590919A US 3590919 A US3590919 A US 3590919A US 855961 A US855961 A US 855961A US 3590919D A US3590919D A US 3590919DA US 3590919 A US3590919 A US 3590919A
- Authority
- US
- United States
- Prior art keywords
- gas
- oil
- line
- production
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 92
- 239000012530 fluid Substances 0.000 claims abstract description 46
- 239000007788 liquid Substances 0.000 claims abstract description 33
- 230000000994 depressogenic effect Effects 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 33
- 230000015572 biosynthetic process Effects 0.000 abstract description 16
- 238000000926 separation method Methods 0.000 abstract description 7
- 150000004677 hydrates Chemical class 0.000 abstract description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 26
- 239000000047 product Substances 0.000 description 26
- 238000005755 formation reaction Methods 0.000 description 15
- 239000012263 liquid product Substances 0.000 description 14
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 239000012188 paraffin wax Substances 0.000 description 5
- 230000005494 condensation Effects 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- YBSYYLRYPMFRNL-UHFFFAOYSA-N 2,2-bis(methylsulfonyl)propane Chemical compound CS(=O)(=O)C(C)(C)S(C)(=O)=O YBSYYLRYPMFRNL-UHFFFAOYSA-N 0.000 description 1
- 241000220300 Eupsilia transversa Species 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
- E21B43/017—Production satellite stations, i.e. underwater installations comprising a plurality of satellite well heads connected to a central station
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/34—Arrangements for separating materials produced by the well
- E21B43/36—Underwater separating arrangements
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/12—Underwater drilling
Definitions
- Drude Fauleoner, Andrew L. Gaboriault and Sidney A. Johnson ABSTRACT A subsea production method and apparatus separates substantially waterfree gas from oil in a subsea satellite located adjacent a plurality of subaqueous wells.
- Production fluid from the subaqueous well enters the satellite through production fluid lines, passes through a heat exchanger, and enters into a liquid knockout section.
- Separated gas and oil then enter into a low-temperature separator to complete the separation of the substantially waterfree gas from the oil.
- a hydrate depressant is injected into the substantially waterfree gas before entry into the low-temperature separator through a variable choke so as to depress the formation of hydrates from any water remaining in the substantially waterfree gas.
- This invention relates to a subsea production satellite system for use with subaqueous wells, and more particularly, to a subsea production satellite system for use with gasproducing subaqueous wells.
- the only economically and technologically feasible method of transporting or shipping gas is a pipeline.
- the gas in shipping gas through a submerged pipeline in a deepwater area, the gas will be subjected to temperatures of the order of 35 F. which are sufficiently cold to cause hydrate formation within the pipe. The effect of the hydrate formation is to clog the pipeline.
- the gas In the subsea production satellites used in producing oil from predominantly oil-bearing formations, there has been failure to obtain a substantially waterfree gas which could then be sold as a product in itself.
- the gas is utilized as an aid in shipping the oil liquid product and the gas itself is not utilized as a product and therefore there is no need to obtain a substantially waterfree gas.
- the substantially wet gas is separated from the oil of the production fluid so that the gas may be utilized for pressure maintenance and well production increase.
- the means and method provided achieve a separation of a substantially waterfree gas from the liquid of the production fluid obtained from a deepwater, gas-bearing, subaqueous well.
- the means and method may comprise a subsea satellite production system including heat exchange means for condensing substantially all fluid in the production fluid except for the gas, a knockout section to achieve the initial separation of the gas from various other production fluids including oil or water, and a low-temperature separator means for completing 1 the separation of oil and gas prior to shipping of substantially waterfree gas through a gas product line.
- a hydrate depressant may be injected into the gas.
- FIG. I is a perspective view of a deepwater gas production system including subsea satellites;
- FIG. 2 is a flow diagram of production apparatus enclosed DESCRIPTION OF THE PREFERRED EMBODIMENTS
- a plurality of subsea production satellites 12 located as a group at a subaqueous bottom 14. All of the satellites 12 have product lines 16 extending outwardly therefrom to a generally centrally disposed riser base and manifold 18 which serves as a central station for disbursement of gas and any liquid products produced by the satellites I2.
- a gas-shipping line 20 extends outwardly away from the riser base and manifold 18 and along the subaqueous bottom 14 to shore and direct consumption by usersJAny liquid products are disbursed by use of a riser 22 which extends upwardly from the riser base and manifold 18 to a suitable floating facility capable of storing oil or any other product condensate produced by the satellite I2.
- the floating facility 24 has been shown as a storage tanker and the satellites 12 have been shown as having a earrousel configuration similar to that disclosed in U.S. Pat. application Ser. No. 740,578, filed June 27,
- facility 24 might be replaced by a shallower water platform, a centrally located platform for pumping water to shore, or another floating or shore storage facility.
- the satellites 12 need not be of the carrousel type operating in conjunction with a plurality of radially outwardly spaced subaqueous wells having submerged wellheads but rather might be a subsea satellite of a completely different configuration and operating in conjunction with a single well having a submerged wellhead.
- the essence of this invention is not the outward appearance of the storage facility 24 or satellites 12 but rather the production capability of the satellites I2 which permit substantially waterfree and hydratefree gas to be shipped through the shipping line 20.
- FIG. 2 in order to explain the method and apparatus of obtaining substantially waterfree and hydratefree gas from each satellite 12.
- the hot production fluid coming directly from a subaqueous well passes through a manual control valve 28 and an automatically actuated fail-safe valve 30 connected in series therewith.
- the manual valve 28 may be closed by personnel entering the satellite 12 when performing a servicing function and the failsafe valve 30 is closed in response to emergency conditions such as excessive temperature or pressure within the satellite 12.
- the hot production fluids are next passed through to a lowtemperature separator unit 32 while still enclosed within the production line 26 in order to provide a heat exchange function.
- the heat exchange function is necessary in order to cool the hot production fluid and thereby condense the maximum amount of water vapor and liquid products out of the gas in the production fluid if substantially waterfree gas is to be obtained and the gas is to be separated from the liquid products.
- the production line 26 extends through an upper gas portion 34 and down into a lower oil portion 36 so as to accomplish a more thorough heat exchange.
- the somewhat cool production fluid then passes out of the low-temperature separator while still in the production line 26. It will be noted that there is no fluid communication between the production fluids within the production line 26 and the fluids within the low-temperature separator 32. Rather, there is only heat communication through the walls of the production line 26 so as to provide the heat exchange function within the low-temperature separator 32.
- the production fluid passes from the low-temperature separator 32 through the produc tion line 26 to a phase knockout section 38.
- a phase knockout section 38 If it is desirable to separate 'water from oil as well as gas from oil and water, a three-phase knockout section is utilized.
- a water line 40 is connected to the lower portion of the knockout section 38 to provide means for draining water therefrom to the surrounding sea, a storage tank internal to the satellite 12, or a connection 42 to a liquid product line 44. Oil is drained from the lower portion of the knockout section 38 through an oil line 46 into the lower oil portion 36 of the low-temperature 32.
- Gas separated within the liquid knockout section 38 is passed to the gas section 34 of the low-temperature separator 32 through a variable choke 48 in the gas line 50.
- the primary function of the choke 48 is to limit the flow of gas from the subaqueous wells to a gas product line 52 connected to the gas section 34 of the low-temperature separator 32.
- the secondary function of the choke 48 is to cause a sudden expansion of the gas as it passes through a restricted orifice at the choke 48 thereby permitting additional condensation of fluids in the gas so as to assure a more waterfree gas for the gas product line 52.
- thegas entering the product line 52 will be substantially waterfree thereby preventing hydrate formation therein.
- substantially waterfree is defined as free of water in liquid form.
- a hydrate depressant may be injected into the gas line 50 before the gas reaches the choke 48 in the form of glycol, or some other hydrate depressant such as methonal.
- the injection of the hydrate depressant may be accomplished through a depressant line 54 connected into the gas line 50 between the choke 48 and the knockout section 38.
- the other end of the glycol line 54 may be coupled to a glycol supply 56, a glycol pump 58 pumping the glycol within the glycol supply 56, and a glycol-metering device 60 for controlling the amounts of glycol to be injected through the line 54 as required to prevent hydrate formation of the gas within the gas product line 52.
- the low-temperature separator 32 as a heat exchange means, and more particularly by passing hot production fluid through the production line 26 within the interior of the low-temperature separator 32, the walls of the low-temperature separator 32 will be maintained at a sufficiently high temperature to prevent the formation of paraffin on the walls of the oil section 36. It is appreciated that paraffin formation can be an extremely critical problem in a subsea satellite wherein the external temperature is approximately 35 F. Thus the utilization of the low-temperature separator as a heat exchange means is particularly important in production with a subsea satellite. Of course, paraffin formation on the liquid product line 44 may be handled by a conventional pig launcher 62 coupled to the line 44 adjacent the low-temperature separator 32.
- the overall heat exchange provided by the apparatus and method disclosed in FIG. 2 will not be sufficient to condense the liquids out of thegas so as to obtain a substantially waterfree gas. In those instances, it is necessary to provide a better heat exchange means and such a means will now be discussed with reference to FIG. 3.
- FIG. 3 The method and means disclosed in FIG. 3 are similar to the method and means disclosed in FIG. 2 and, for this reason, elements common to FIG. 2 and FIG. 3 carry identical numbers.
- the difference in the method and means of FIG. 3 is the addition of a secondary heat exchanger means 64 and means associated therewith in order to supplement the heat exchange provided by the primary heat exchanger in the form of the low-temperature separator 32.
- a secondary heat exchanger means 64 and means associated therewith in order to supplement the heat exchange provided by the primary heat exchanger in the form of the low-temperature separator 32.
- the heat exchange capability thereof may not be utilized if the low-temperature separator 32 provides sufficient heat exchange to cool the hot production fluid.
- the substantially waterfree gas which is relatively cold as compared with the hot production fluid entering the production line 26 is routed directly to the gas product line 52 through a gas outlet line 66 leading from the gas section 34 of the lowtemperature separator 32 and a gas product shunt line 68 as long as a flow volume control valve 70 in the gas product shunt line 68 is open.
- a temperature-sensing element 72 When the temperature of the gas leaving the knockout section 38 and passing through the choke 48 in the gas line 50 reaches a predetermined elevated level, a temperature-sensing element 72 will actuate and close the valve 70 to divert the relatively cold gas through a heat exchange line 74 which extends through the additional heat exchanger 64 to the gas product line 52.
- a temperature-sensing element 72 When the valve 70 is closed, substantial heat exchange occurs between the relatively warm production fluid passing through the additional heat exchanger 64 and the relatively cold, substantially waterfree, gas also passing through the heat exchanger 64 to effect a more complete condensation of the liquids out of the production fluid.
- the production line 26 extends into a watertight, pressure-resistant shell 76 enclosing the satellite and on into the low-temperature separator 32.
- the manual valve 28 and the fail-safe valve 30 are located on the production line 26 internally of the shell 76 and externally of the low-temperature separator unit 32.
- the manual valve 28 is substantially conventional as is the fail-safe valve 30 which is automatically actuated by a hydraulic control line 78 which is shown as abbreviated in order to simplify the drawing but is in actuality connected to a hydraulic system including a hydrau lic pump 80.
- fail-safe valve 30 is sensitive to extreme pressure, temperature, or any other variables which might indicate an emergency situation within the satel lite as in the case of a leak in the shell 76 or the various lines enclosed within.
- the production line 26 is shown as extending through the wall of the low-temperature separator 32 above a gas-oil level 82 with a substantial portion of the production line 26 extending below the gas-oil level 82 so that a substantial portion of the heat exchange function is provided by the oil section 36. Consequently, paraffin will be maintained in a liquid state due to the elevated temperatures provided by the hot production fluid passing through the oil section 36 and thereby limit the plating out of paraffin on the walls of the low-temperature separator 32 in the oil section 36.
- FIG. 4 has been simplified by showing the production line 26 as having a substantially U-shaped path through the oil section 36, it may be desirable to provide the helical path indicated in FIGS. 2 and 3 to permit more effective heat exchange between the hot production fluid and the oil of the oil section 36.
- the production line 26 After extending through the wall of the low-temperature separator, the production line 26 extends through the wall of the knockout section 38 to permit the somewhat cool production fluid to begin the knockout step in the separation process.
- An end 86 of the production line is located in the middle of the knockout section 38 to permit liquids to drop under the force of gravity to the bottom while gas may rise to the top of the liquid knockout section 38.
- a three-phase knockout section is utilized having an oil compartment 88 and a water compartment 90 located at the lower leftand right-hand sides of the bottom of the knockout section 38 respectively.
- the oil compartment 88 and the water compartment 90 are separated by a partition 92.
- the oil and water lines 46 and 40 are located in the oil compartment 88 and the water compartment 90 respectively having dump valves 102 and 104 associated therewith.
- the dump valve 102 for the oil line 46 is pneumatically operated by a float control means 105 having a float element 106 riding the surface 108 of the oil.
- the gas for the pneumatic actuation of the dump valve 102 is obtained from the gas available in the upper portion of the knockout section 38 and applied to the dump valve 102 through a supply line 110 passing through the valve control means 105 and down to the valve 102 through a control line 112. The gas may then be returned to the gas section 34 of the low-temperature separator 32 through a return line 114.
- the dump valve 104 of the water line 40 is similarly achieved by utilizing a float actuated control element 116 to pneumatically actuate dump valve 104 through a pneumatic supply line 117, a control line 118, and the return line 114.
- a float element 120 of the control 116 must sense the oil-water level 96. Accordingly the float element 120 is of the differential type to permit the float to ride the interface of the oil and water.
- the gas may be removed from the knockout section 38 by a mist extractor 124.
- the mist extractor 124 which has a lower tilted edge 126 to permit the condensate to drain free, is coupled to the gas section 34 of the low-temperature separator 32 through the gas line 50.
- the gas will flow through a variable choke 130 which may be controlled from a suitable control facility such as the storage facility 24 so as to permit control of the gas production from the subaqueous well associated therewith.
- a flow-measuring element 132 is provided in the gas line 50 head of the choke 130 to provide an indication to that control facility as to the flow of gas from the particular subaqueous well associated therewith.
- the gas flowing from the gas line 50 into the gas section 34 will be substantially waterfree and particularly so after the condensation of liquids in the gas upon sudden expansion of the gas after passing through the choke, hydrate formation is still possible in the gas product line 52. Accordingly, in addition to making the gas substantially waterfree, it may be desirable and many times necessary to depress the formation of hydrates by injecting a hydrate depressant into the gas line 50. This may be accomplished by connecting the glycol line 54 to the gas line 50 and to the glycol-metering device 60 attached to the shell 76 of the satellite.
- timing element 134 in conjunction with the glycol-metering device 60, precisely metered amounts can be periodically injected into the gas line 50 as required by the specific amount of flow through the variable choke 130 as sensed by the flowsensing element 132.
- the timing element 134 also permits the use of the single glycol-metering metering device 60 to supply other gas lines leading into the low-temperature separator 32 which derive the gas flowing thereto from other subaqueous wells.
- the glycol to be injected into the gas line 50 as well as other gas lines is stored within the glycol supply reservoir 56 located at the lower portion of the satellite and pumped therefrom through a filter 136 and a glycol supply line 138 by the glycol pump 58 operating in conjunction with a motor 140. Both the pump 58 and the motor 140 are mounted on a bracket 142 extending from the shell 76 of the satellite.
- the removal of the gas entering the gas section 34 of the low-temperature separator 32 is accomplished through a mist extractor 144 enclosed within the low-temperature separator unit and connected to the gas product line 52.
- the oil entering the low-temperature separator 32 is removed by the liquid product line, in this embodiment, the oil product line 44 which extends from the lowermost portion of the oil section 36.
- the draining of oil from the oil section 36 through the oil product line 44 is controlled by a float-actuated dump valve 146.
- the valve 146 is actuated by a float control mechanism 148 including a float element 150 which is located at the surface of the oil and pneumatically actuates the dump valve 146 through a control line 152.
- a pneumatic return line 154 is also provided between the dump valve 146-and the gas section 34.
- a splash guard 156 is provided adjacent to the float element 150 to prevent any condensate from improperly actuating the dump valve 146.
- a high-level-oil-sensing element is provided beneath the gas line 50 and in communication with the interior of the low-tem perature separator unit 32.
- a low-level-sensing element 160 is also provided to prevent the oil level from becoming sufficiently low to allow gas to pass through the oil line 46 or the oil product line 44.
- the sensing element 160 is therefore positioned just above the connection of the oil line 40 into the oil section 36 of the low-temperature separator 32.
- a drain 162 which permits water condensing on the exterior of the relatively cold low-temperature separator 32 and other cold surfaces to be removed from the upper regions of the satellite.
- the drain 162 communicates with a sump 164 located immediately above the glycol supply reservoir 56.
- a hydraulic reservoir 166 is located immediately above the sump 164 to provide a source of hydraulic fluid to the pump 80.
- hydraulic fluid is brought up from the reservoir 1166 through a filter I68 and a hydraulic fluid supply line 170.
- a hydraulic level indicator 174 may be utilized to provide the control facility with information as to the necessity to replenish the hydraulic fluid in the reservoir 166.
- the apparatus utilized in carrying out the embodiment of FIG. 3 would be essentially identical to that disclosed in FIG. 4 except for the addition of the secondary heat exchanger 64 which might be located above the low-temperature separator 32 and the various means associated therewith.
- the additional heat exchanger 64 as well as the flow control valve 70 and the temperature-sensing means 72 may be of a conventional type such as that used at the surface production sites.
- the satellite 12 may serve a plurality of gas producing wells, one production line 26 associated with each well.
- a knockout section 38 and appropriate lines and control means associated therewith would be utilized for each subaqueous well served by the satellite 12.
- the temperature of the gas may vary over a range of 25 to 35 F. upon entering the gas product line 52.
- substantial cooling of the hot production fluid takes place.
- the following chart which assumes a hot production fluid temperature of 140 to 150 F. is illustrative of the necessary cooling achieved at various points in the system:
- a production line adapted to be connected to said one or more gas-producing wells, said production line extending into said shell;
- a liquid knockout means within said shell and having an inlet, a liquid outlet, and a gas outlet;
- said heat exchange means comprising a section of said production line which passes through the liquid section of said low-temperature separator
- the subsea satellite of claim 1 including:
- the subsea satellite of claim 2 including:
- the subsea satellite ofclaim 3 including:
- said second heat exchange means provides for indirect heat exchange between fluids in said first flowline and fluids flowing from said gas outlet of said low-temperature separator.
Landscapes
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Pipeline Systems (AREA)
- Separating Particles In Gases By Inertia (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US85596169A | 1969-09-08 | 1969-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3590919A true US3590919A (en) | 1971-07-06 |
Family
ID=25322541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US855961A Expired - Lifetime US3590919A (en) | 1969-09-08 | 1969-09-08 | Subsea production system |
Country Status (8)
Country | Link |
---|---|
US (1) | US3590919A (enrdf_load_html_response) |
JP (1) | JPS4945126B1 (enrdf_load_html_response) |
CA (1) | CA920945A (enrdf_load_html_response) |
DE (1) | DE2044448A1 (enrdf_load_html_response) |
GB (1) | GB1309826A (enrdf_load_html_response) |
NL (1) | NL7010365A (enrdf_load_html_response) |
NO (1) | NO128231B (enrdf_load_html_response) |
ZA (1) | ZA704064B (enrdf_load_html_response) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2245917A (en) * | 1990-07-13 | 1992-01-15 | Petroleo Brasileiro Sa | Deep-water oil and gas production and transportation system |
GB2255102A (en) * | 1990-02-02 | 1992-10-28 | Kvaerner Subsea Contracting | Subsea piping method and plant |
US5950732A (en) * | 1997-04-02 | 1999-09-14 | Syntroleum Corporation | System and method for hydrate recovery |
WO2001020128A1 (en) * | 1999-09-10 | 2001-03-22 | Alpha Thames Ltd. | A retrievable module and operating method suitable for a seabed processing system |
US6502635B1 (en) * | 2001-06-20 | 2003-01-07 | Chevron U.S.A. Inc. | Sub-sea membrane separation system with temperature control |
US6620091B1 (en) | 2001-09-14 | 2003-09-16 | Chevron U.S.A. Inc. | Underwater scrubbing of CO2 from CO2-containing hydrocarbon resources |
US20030188873A1 (en) * | 2002-04-08 | 2003-10-09 | Anderson Clay F. | Subsea well production facility |
WO2003086976A3 (en) * | 2002-04-08 | 2004-07-15 | Abb Offshore Systems Inc | Subsea well production facility |
US20040149445A1 (en) * | 2001-05-17 | 2004-08-05 | Appleford David Eric | Fluid transportation system |
WO2004083601A1 (en) * | 2003-03-22 | 2004-09-30 | Caltec Limited | A system and process for pumping multiphase fluids |
US20050034869A1 (en) * | 2001-10-12 | 2005-02-17 | Appleford David Eric | Method and system for handling producing fluid |
US20050178556A1 (en) * | 2002-06-28 | 2005-08-18 | Appleford David E. | Subsea hydrocarbon production system |
US20060011348A1 (en) * | 2002-11-12 | 2006-01-19 | Fenton Stephen P | Drilling and producing deep water subsea wells |
US20060124313A1 (en) * | 2002-08-16 | 2006-06-15 | Gramme Per E | Pipe separator for the separation of fluids, particularly oil, gas and water |
US20060175063A1 (en) * | 2004-12-20 | 2006-08-10 | Balkanyi Szabolcs R | Method and apparatus for a cold flow subsea hydrocarbon production system |
US20080264642A1 (en) * | 2007-04-24 | 2008-10-30 | Horton Technologies, Llc | Subsea Well Control System and Method |
NO20091818L (no) * | 2009-05-09 | 2010-11-10 | Tool Tech As | Fremgangsmåte for prøvetaking og analyse av produksjon fra en undervannsbrønn for måling av saltinnhold i produsert vann samt volumforhold mellom væskefraksjonene |
US20110046885A1 (en) * | 2007-12-20 | 2011-02-24 | Statoil Asa | Method of and apparatus for exploring a region below a surface of the earth |
US20110290497A1 (en) * | 2010-05-28 | 2011-12-01 | Karl-Atle Stenevik | Subsea hydrocarbon production system |
CN102305052A (zh) * | 2011-09-05 | 2012-01-04 | 中国科学院广州能源研究所 | 天然气水合物三维多井联合开采实验装置及其实验方法 |
US8146667B2 (en) * | 2010-07-19 | 2012-04-03 | Marc Moszkowski | Dual gradient pipeline evacuation method |
US8400871B2 (en) | 2006-11-14 | 2013-03-19 | Statoil Asa | Seafloor-following streamer |
US8442770B2 (en) | 2007-11-16 | 2013-05-14 | Statoil Asa | Forming a geological model |
CN103520961A (zh) * | 2013-10-30 | 2014-01-22 | 天津市化工设计院 | 减少长输油品管道中热力释放引起污染的油气分离装置 |
WO2014095942A1 (en) * | 2012-12-21 | 2014-06-26 | Subsea 7 Norway As | Subsea processing of well fluids |
EP2372078A3 (en) * | 2007-09-26 | 2014-09-17 | Cameron International Corporation | Choke assembly |
US9081111B2 (en) | 2010-04-01 | 2015-07-14 | Statoil Petroleum As | Method of providing seismic data |
EP2087201A4 (en) * | 2006-10-27 | 2015-07-22 | Statoil Petroleum As | Sub sea processing system |
US10066472B2 (en) | 2012-12-21 | 2018-09-04 | Subsea 7 Norway As | Subsea processing of well fluids |
CN111236893A (zh) * | 2020-01-02 | 2020-06-05 | 海洋石油工程股份有限公司 | 水下生产系统扩展回接设施 |
CN111827936A (zh) * | 2020-08-13 | 2020-10-27 | 中国石油大学(华东) | 一种批钻滚动式井群开采天然气水合物的系统及方法 |
US20230287764A1 (en) * | 2022-03-14 | 2023-09-14 | Marine Well Containment Company Llc | Advanced extended flowback system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5256335U (enrdf_load_html_response) * | 1975-10-21 | 1977-04-23 | ||
FR2628142B1 (fr) * | 1988-03-02 | 1990-07-13 | Elf Aquitaine | Dispositif de separation huile gaz en tete d'un puits sous-marin |
GB2222961B (en) * | 1988-08-11 | 1993-04-14 | British Offshore Eng Tech | Subsea storage separator unit |
NO885706L (no) * | 1988-12-22 | 1990-06-25 | Norwegian Contractors | Utstyr og fremgangsmaate til prossessering av raaolje. |
GB9006684D0 (en) * | 1990-03-26 | 1990-05-23 | British Offshore Eng Tech | Subsea separator,storage & pumping unit and its associated control system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2767802A (en) * | 1955-08-22 | 1956-10-23 | Shell Dev | Underwater oil precipitator |
US3221816A (en) * | 1961-12-07 | 1965-12-07 | Shell Oil Co | Underwater oil gathering installation |
US3261398A (en) * | 1963-09-12 | 1966-07-19 | Shell Oil Co | Apparatus for producing underwater oil fields |
US3292695A (en) * | 1963-09-12 | 1966-12-20 | Shell Oil Co | Method and apparatus for producing underwater oil fields |
US3353364A (en) * | 1962-04-26 | 1967-11-21 | Gen Dynamics Corp | Underwater well enclosing capsule and service chamber |
US3384169A (en) * | 1966-05-17 | 1968-05-21 | Mobil Oil Corp | Underwater low temperature separation unit |
US3391734A (en) * | 1966-01-19 | 1968-07-09 | Mobil Oil Corp | Subsea production satellite |
US3401746A (en) * | 1965-12-10 | 1968-09-17 | Mobil Oil Corp | Subsea production satellite system |
US3454083A (en) * | 1967-06-29 | 1969-07-08 | Mobil Oil Corp | Fail-safe subsea fluid transportation system |
US3469627A (en) * | 1967-06-29 | 1969-09-30 | Mobil Oil Corp | Subsea production system |
US3495380A (en) * | 1967-02-24 | 1970-02-17 | Shell Oil Co | Prevention of gas hydrate formation in gas transport pipelines |
-
1969
- 1969-09-08 US US855961A patent/US3590919A/en not_active Expired - Lifetime
-
1970
- 1970-06-15 ZA ZA704064A patent/ZA704064B/xx unknown
- 1970-07-13 NL NL7010365A patent/NL7010365A/xx unknown
- 1970-07-24 NO NO02897/70A patent/NO128231B/no unknown
- 1970-08-06 CA CA090083A patent/CA920945A/en not_active Expired
- 1970-08-10 GB GB3837670A patent/GB1309826A/en not_active Expired
- 1970-08-31 JP JP45081384A patent/JPS4945126B1/ja active Pending
- 1970-09-08 DE DE19702044448 patent/DE2044448A1/de active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2767802A (en) * | 1955-08-22 | 1956-10-23 | Shell Dev | Underwater oil precipitator |
US3221816A (en) * | 1961-12-07 | 1965-12-07 | Shell Oil Co | Underwater oil gathering installation |
US3353364A (en) * | 1962-04-26 | 1967-11-21 | Gen Dynamics Corp | Underwater well enclosing capsule and service chamber |
US3261398A (en) * | 1963-09-12 | 1966-07-19 | Shell Oil Co | Apparatus for producing underwater oil fields |
US3292695A (en) * | 1963-09-12 | 1966-12-20 | Shell Oil Co | Method and apparatus for producing underwater oil fields |
US3401746A (en) * | 1965-12-10 | 1968-09-17 | Mobil Oil Corp | Subsea production satellite system |
US3391734A (en) * | 1966-01-19 | 1968-07-09 | Mobil Oil Corp | Subsea production satellite |
US3384169A (en) * | 1966-05-17 | 1968-05-21 | Mobil Oil Corp | Underwater low temperature separation unit |
US3495380A (en) * | 1967-02-24 | 1970-02-17 | Shell Oil Co | Prevention of gas hydrate formation in gas transport pipelines |
US3454083A (en) * | 1967-06-29 | 1969-07-08 | Mobil Oil Corp | Fail-safe subsea fluid transportation system |
US3469627A (en) * | 1967-06-29 | 1969-09-30 | Mobil Oil Corp | Subsea production system |
Non-Patent Citations (1)
Title |
---|
Submerged Capsule Challenges Offshore Operating Problems WORLD OIL, October 1968, pages 122 124, 127 129. * |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2255102A (en) * | 1990-02-02 | 1992-10-28 | Kvaerner Subsea Contracting | Subsea piping method and plant |
GB2245917A (en) * | 1990-07-13 | 1992-01-15 | Petroleo Brasileiro Sa | Deep-water oil and gas production and transportation system |
GB2245917B (en) * | 1990-07-13 | 1994-08-03 | Petroleo Brasileiro Sa | Deep-water oil and gas production and transportation system |
US5950732A (en) * | 1997-04-02 | 1999-09-14 | Syntroleum Corporation | System and method for hydrate recovery |
AU730524B2 (en) * | 1997-04-02 | 2001-03-08 | Syntroleum Corporation | System and method for hydrate recovery |
US6640901B1 (en) | 1999-09-10 | 2003-11-04 | Alpha Thames Ltd. | Retrievable module and operating method suitable for a seabed processing system |
EP1555387A1 (en) * | 1999-09-10 | 2005-07-20 | Alpha Thames Limited | A retrievable module suitable for a seabed processing system |
WO2001020128A1 (en) * | 1999-09-10 | 2001-03-22 | Alpha Thames Ltd. | A retrievable module and operating method suitable for a seabed processing system |
US20040149445A1 (en) * | 2001-05-17 | 2004-08-05 | Appleford David Eric | Fluid transportation system |
WO2003000825A3 (en) * | 2001-06-20 | 2004-01-22 | Chevron Usa Inc | Sub-sea membrane separation system with temperature control |
US6502635B1 (en) * | 2001-06-20 | 2003-01-07 | Chevron U.S.A. Inc. | Sub-sea membrane separation system with temperature control |
GB2387796A (en) * | 2001-09-14 | 2003-10-29 | Chevron Usa Inc | A method for removing CO2 from a CO2-containing hydrocarbon asset at an underwater location. |
GB2387796B (en) * | 2001-09-14 | 2004-08-25 | Chevron Usa Inc | Underwater scrubbing of co2-containing hydrocarbon resources |
US6620091B1 (en) | 2001-09-14 | 2003-09-16 | Chevron U.S.A. Inc. | Underwater scrubbing of CO2 from CO2-containing hydrocarbon resources |
US20050034869A1 (en) * | 2001-10-12 | 2005-02-17 | Appleford David Eric | Method and system for handling producing fluid |
US6672391B2 (en) * | 2002-04-08 | 2004-01-06 | Abb Offshore Systems, Inc. | Subsea well production facility |
WO2003086976A3 (en) * | 2002-04-08 | 2004-07-15 | Abb Offshore Systems Inc | Subsea well production facility |
GB2404684B (en) * | 2002-04-08 | 2005-10-26 | Offshore Systems Inc | Subsea well production facility |
US20030188873A1 (en) * | 2002-04-08 | 2003-10-09 | Anderson Clay F. | Subsea well production facility |
GB2404684A (en) * | 2002-04-08 | 2005-02-09 | Offshore Systems Inc | Subsea well production facility |
US20050178556A1 (en) * | 2002-06-28 | 2005-08-18 | Appleford David E. | Subsea hydrocarbon production system |
US7516794B2 (en) * | 2002-08-16 | 2009-04-14 | Norsk Hydro Asa | Pipe separator for the separation of fluids, particularly oil, gas and water |
US20060124313A1 (en) * | 2002-08-16 | 2006-06-15 | Gramme Per E | Pipe separator for the separation of fluids, particularly oil, gas and water |
US20060011348A1 (en) * | 2002-11-12 | 2006-01-19 | Fenton Stephen P | Drilling and producing deep water subsea wells |
US7240736B2 (en) * | 2002-11-12 | 2007-07-10 | Vetco Gray Inc. | Drilling and producing deep water subsea wells |
GB2414280A (en) * | 2003-03-22 | 2005-11-23 | Caltec Ltd | A system and process for pumping multiphase fluids |
US8257055B2 (en) * | 2003-03-22 | 2012-09-04 | Caltec Limited | System and process for pumping multiphase fluids |
US20070158075A1 (en) * | 2003-03-22 | 2007-07-12 | Beg Mirza N A | System and process for pumping multiphase fluids |
GB2414280B (en) * | 2003-03-22 | 2007-11-14 | Caltec Ltd | A system and process for pumping multiphase fluids |
WO2004083601A1 (en) * | 2003-03-22 | 2004-09-30 | Caltec Limited | A system and process for pumping multiphase fluids |
US20060175063A1 (en) * | 2004-12-20 | 2006-08-10 | Balkanyi Szabolcs R | Method and apparatus for a cold flow subsea hydrocarbon production system |
US7530398B2 (en) * | 2004-12-20 | 2009-05-12 | Shell Oil Company | Method and apparatus for a cold flow subsea hydrocarbon production system |
US9435186B2 (en) | 2006-10-27 | 2016-09-06 | Statoil Petroleum As | Sub sea processing system |
EP2087201A4 (en) * | 2006-10-27 | 2015-07-22 | Statoil Petroleum As | Sub sea processing system |
US8400871B2 (en) | 2006-11-14 | 2013-03-19 | Statoil Asa | Seafloor-following streamer |
US20080264642A1 (en) * | 2007-04-24 | 2008-10-30 | Horton Technologies, Llc | Subsea Well Control System and Method |
US7921919B2 (en) * | 2007-04-24 | 2011-04-12 | Horton Technologies, Llc | Subsea well control system and method |
EP2372078A3 (en) * | 2007-09-26 | 2014-09-17 | Cameron International Corporation | Choke assembly |
US9164188B2 (en) | 2007-11-16 | 2015-10-20 | Statoil Petroleum As | Forming a geological model |
US8442770B2 (en) | 2007-11-16 | 2013-05-14 | Statoil Asa | Forming a geological model |
US20110046885A1 (en) * | 2007-12-20 | 2011-02-24 | Statoil Asa | Method of and apparatus for exploring a region below a surface of the earth |
US9116254B2 (en) | 2007-12-20 | 2015-08-25 | Statoil Petroleum As | Method of and apparatus for exploring a region below a surface of the earth |
US9389325B2 (en) | 2007-12-20 | 2016-07-12 | Statoil Petroleum As | Method of exploring a region below a surface of the earth |
US20110085420A1 (en) * | 2007-12-20 | 2011-04-14 | Statoil Asa | Method of and apparatus for exploring a region below a surface of the earth |
NO20091818L (no) * | 2009-05-09 | 2010-11-10 | Tool Tech As | Fremgangsmåte for prøvetaking og analyse av produksjon fra en undervannsbrønn for måling av saltinnhold i produsert vann samt volumforhold mellom væskefraksjonene |
US8720573B2 (en) | 2009-05-09 | 2014-05-13 | Tool-Tech As | Method for sampling and analysis of production from a subsea well for measuring salinity of produced water and also volumetric ratio between liquid fractions |
US9389323B2 (en) | 2010-04-01 | 2016-07-12 | Statoil Petroleum As | Apparatus for marine seismic survey |
US9081111B2 (en) | 2010-04-01 | 2015-07-14 | Statoil Petroleum As | Method of providing seismic data |
US20110290497A1 (en) * | 2010-05-28 | 2011-12-01 | Karl-Atle Stenevik | Subsea hydrocarbon production system |
US20140251632A1 (en) * | 2010-05-28 | 2014-09-11 | Statoil Asa | Subsea hydrocarbon production system |
US9121231B2 (en) * | 2010-05-28 | 2015-09-01 | Statoil Petroleum As | Subsea hydrocarbon production system |
US9376893B2 (en) * | 2010-05-28 | 2016-06-28 | Statoil Petroleum As | Subsea hydrocarbon production system |
US8757270B2 (en) * | 2010-05-28 | 2014-06-24 | Statoil Petroleum As | Subsea hydrocarbon production system |
US8146667B2 (en) * | 2010-07-19 | 2012-04-03 | Marc Moszkowski | Dual gradient pipeline evacuation method |
CN102305052A (zh) * | 2011-09-05 | 2012-01-04 | 中国科学院广州能源研究所 | 天然气水合物三维多井联合开采实验装置及其实验方法 |
AU2013360888B2 (en) * | 2012-12-21 | 2016-12-08 | Subsea 7 Norway As | Subsea processing of well fluids |
US11091995B2 (en) | 2012-12-21 | 2021-08-17 | Subsea 7 Norway As | Subsea processing of well fluids |
WO2014095942A1 (en) * | 2012-12-21 | 2014-06-26 | Subsea 7 Norway As | Subsea processing of well fluids |
US9644457B2 (en) | 2012-12-21 | 2017-05-09 | Subsea 7 Norway As | Subsea processing of well fluids |
DK179107B1 (en) * | 2012-12-21 | 2017-11-06 | Subsea 7 Norway As | Subsea processing of well fluids |
US10066472B2 (en) | 2012-12-21 | 2018-09-04 | Subsea 7 Norway As | Subsea processing of well fluids |
RU2668611C2 (ru) * | 2012-12-21 | 2018-10-02 | Сабси 7 Норвэй Ас | Подводная обработка скважинных текучих сред |
CN103520961A (zh) * | 2013-10-30 | 2014-01-22 | 天津市化工设计院 | 减少长输油品管道中热力释放引起污染的油气分离装置 |
CN111236893A (zh) * | 2020-01-02 | 2020-06-05 | 海洋石油工程股份有限公司 | 水下生产系统扩展回接设施 |
CN111236893B (zh) * | 2020-01-02 | 2022-05-17 | 海洋石油工程股份有限公司 | 水下生产系统扩展回接设施 |
CN111827936A (zh) * | 2020-08-13 | 2020-10-27 | 中国石油大学(华东) | 一种批钻滚动式井群开采天然气水合物的系统及方法 |
CN111827936B (zh) * | 2020-08-13 | 2021-04-16 | 中国石油大学(华东) | 一种批钻滚动式井群开采天然气水合物的系统及方法 |
US20230287764A1 (en) * | 2022-03-14 | 2023-09-14 | Marine Well Containment Company Llc | Advanced extended flowback system |
US12065908B2 (en) * | 2022-03-14 | 2024-08-20 | Marine Well Containment Company | Advanced extended flowback system |
Also Published As
Publication number | Publication date |
---|---|
GB1309826A (en) | 1973-03-14 |
JPS4945126B1 (enrdf_load_html_response) | 1974-12-02 |
NO128231B (enrdf_load_html_response) | 1973-10-15 |
NL7010365A (enrdf_load_html_response) | 1971-03-10 |
CA920945A (en) | 1973-02-13 |
DE2044448A1 (de) | 1971-03-11 |
ZA704064B (en) | 1972-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3590919A (en) | Subsea production system | |
US4589434A (en) | Method and apparatus to prevent hydrate formation in full wellstream pipelines | |
CA2537779C (en) | Subsea compression system and method | |
EP1907705B1 (en) | System for cleaning a compressor | |
US6253855B1 (en) | Intelligent production riser | |
AU2019300069B2 (en) | Subsea fluid storage unit | |
US5988283A (en) | Vertical combined production facility | |
NO832034L (no) | Anlegg for utvinning av hydrokarboner | |
WO2003087535A1 (en) | Subsea process assembly | |
WO2004074629A1 (en) | Sub-sea compressor | |
GB2242373A (en) | Crude oil separator | |
CA2277109A1 (en) | Method and apparatus for producing and shipping hydrocarbons offshore | |
AU2018401713B2 (en) | Well annulus fluid expansion storage device | |
US20170028316A1 (en) | Dual helix cycolinic vertical seperator for two-phase hydrocarbon separation | |
US3012629A (en) | Methods and means for low temperature separation | |
US20060054327A1 (en) | System for neutralizing the formation of slugs in a riser | |
US1101605A (en) | Method for conserving natural gas and oil. | |
WO2018026352A1 (en) | Dual helix cyclonic vertical separator for two-phase hydrocarbon separation | |
US2971376A (en) | Metering emulsion treaters and treating methods | |
Scott et al. | Assessment of subsea production & well systems | |
Hill et al. | Steady-state, and interrupted, production through a deep water black oil system | |
Ronalds et al. | Subsea and Platform Options for Satellite Field Developments | |
BR112020002565B1 (pt) | Dispositivo de armazenamento de expansão de fluido de coroa circular de poço de pressão nominal, processo para gerenciar pressão de coroa circular de poço, assim como processo para remoção ou adição de fluido a uma coroa circular de poço | |
AU735485B2 (en) | Method and apparatus for producing and shipping hydrocarbons offshore | |
Parshall | Brazil Parque das Conchas Project Sets Subsea Separation, Pumping Milestone |