US3588088A - Transport device for a web material folding or processing machine - Google Patents
Transport device for a web material folding or processing machine Download PDFInfo
- Publication number
- US3588088A US3588088A US791720*A US3588088DA US3588088A US 3588088 A US3588088 A US 3588088A US 3588088D A US3588088D A US 3588088DA US 3588088 A US3588088 A US 3588088A
- Authority
- US
- United States
- Prior art keywords
- web
- folded
- web material
- air
- stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title abstract description 66
- 239000004753 textile Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H45/00—Folding thin material
- B65H45/02—Folding limp material without application of pressure to define or form crease lines
- B65H45/06—Folding webs
- B65H45/10—Folding webs transversely
- B65H45/101—Folding webs transversely in combination with laying, i.e. forming a zig-zag pile
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41H—APPLIANCES OR METHODS FOR MAKING CLOTHES, e.g. FOR DRESS-MAKING OR FOR TAILORING, NOT OTHERWISE PROVIDED FOR
- A41H43/00—Other methods, machines or appliances
- A41H43/02—Handling garment parts or blanks, e.g. feeding, piling, separating or reversing
- A41H43/0285—Tables
- A41H43/0292—Air-cushion or suction tables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2406/00—Means using fluid
- B65H2406/10—Means using fluid made only for exhausting gaseous medium
- B65H2406/11—Means using fluid made only for exhausting gaseous medium producing fluidised bed
- B65H2406/113—Details of the part distributing the air cushion
Definitions
- Transport device for a web material processing machine comprising a support having a substantially horizontal tabletop surface formed with an array of compressed-air nozzle openings and divided into a plurality of nozzle field zones extending in the longitudinal direction of a web of material being folded thereon, and means for supplying compressed air selectively to the nozzles of one of the field zones so as to form an air cushion underlying the folded web materiallocated over the one field zone.
- TRANSPORT DEVlCE FOR A WEB MATERIAL FOLDING R PROCESSING MACHINE Our invention relates to transport device for a web material processing machine, especially for textile machines, such as fabric web folding machines.
- Such folding machines serve to arrange long webs of material in folds so as to form a stack of the folded material by means of a device reciprocated over a fold table. After the stack of folded material has attained a specific level, it must be removed from the fold table. This is generally effected manually and by means of an available transport carriage.
- the compressed air for forming the air cushions emerges without resistance from the nozzle openings not covered by the folded material and located laterally thereof. Since the air flow tends to take the path of least resistance, the effect of the air cushion beneath the folded material stack becomes questionable.
- the .nozzle field or array serving to produce the air cushion can be increased or decreased in accordance with the width of the material web and, if desired, in accordance with the length of the folds.
- Means are provided for blocking the supply of compressed air to those nozzles formed in the support surface for the stack of folded web material that are located laterally outside the width of the web or outside the area covered by the stack of folded web material.
- transport device for a web material processing machine comprising a support having a substantially horizontal tabletop surface formed with an array of compressed-air nozzle openings and divided into a plurality of nozzle field zones extending in the longitudinal direction of a web of material being folded thereon, and means for supplying compressed air selectively to the nozzle openings of one of the field zones so as to form an air cushion underlying the folded web material located over the one field zone.
- the nozzle field or array subjected to compressed air is always limited to an area covered by the stack of web material; the compressed air cannot flow out of the nozzles without meeting any resistance, and the effect of the air cushion cannot then be impaired by an undesired pressure drop.
- the central nozzle field zone and the adjacent pairs of marginal zones located on opposite sides of the central zone are connected to a main compressed-air inlet duct through a valve which is actuated by hand or by an automatic system in response to means for sensing the width of the material web.
- the support of our invention which is formed with nozzle field zones can be divided into two separate cooperating tables, in accordance with a further feature of the invention, one being a table of a processing machine and the other being a transport table that is capable of being driven to and from the processing machine table for the purpose of delivering folded web material to or removing it from the processing machine.
- Both tables may be of substantially similar construction. in a corresponding manner, several of such nozzle fields can be disposed alongside one another in the longitudinal feed direction of the web material being folded, so to accommodate the resulting entire nozzle field to various lengths of stacks of the web material to be transported.
- the fold table thereof is preferably provided with 'a plurality of suction nozzles which are connectable to a suction source for firmly holding the initial layer of a stack of web material at the beginning of the folding operation.
- the compressed-air valves belonging to the individual nozzle field zones or nozzle rows are constructed in accordance with an additional feature of our invention, as pressure control valves, so that the rows of nozzles do not receive too great a pressure of air when the width of the material web is relatively small.
- Both the quantity of air as well as the flow resistance are considerably smaller for a relatively narrow nozzle field ie a relatively narrow width of web material, than for a relatively wide one.
- FIG. 1 is a front elevational view of the transport device of our invention in use with a schematically illustrating processing machine
- FIG. 2 is another view of FIG. 1 showing the transport device at a stage wherein it receives a stack of web material from the processing machine;
- FIG. 3 is a top plan view of FIG. 2;
- FIG. 4 is a schematic view of a system for automatically actuating the compressed valves of the transport device of our invention.
- the folding machine 1 has a folding table 2 which is automatically lowered as the level of the folded stack 3 of web material, such as textile cloth, is increased.
- fold tables are well known in the art and, in their simplest form, may be considered as having a substantially horizontal table top supported by springs that are yieldable in a vertical direction in accordance with the increased number of folds of textile material ie the increased weight thereof, superimposed on the table top.
- a transport carriage 4 is driven by hand, or preferably automatically, up to the folding machine 1, so that the folded stack 3 of web material can be transferred thereto and removed from the folding machine I as represented by the elements shown in solid and phantom lines in FIG. 2.
- the fold table 2 has a hollow interior boxlike chamber to which compressed air is supplied and from which the com pressed air is ejected through the nozzles 5.
- the hollow interior of the fold table 2 is subdivided into several noncommunicating subchambers by partitions 6, these subchambers being capable of being supplied with compressed air independently of one another.
- nozzle field zones A, B, C, D and E (FIG. 3) encompassing increasing areas on the surface of the fold table top 2, are thereby provided.
- the width of the central nozzle field zone A corresponds to the width of the narrowest textile web being folded on the fold table 2.
- the chambers located on both sides of the central nozzle field zone A are of such width that by suitably additionally subjecting one or more pairs of the subchambers on both sides of the nozzle field zone A to compressed air, the resulting nozzle field zones B, C, D and E respectively can be selected so as to correspond to the textile web widths mainly used in practice.
- the individual subchambers of the fold table 2 are connected by tubes 7 through manually actuated valves 9, located in a central control console 8 to a main compressed-air duct 10, which is in turn connected to a nonillustrated compressed air storage tank or conventional air compressor.
- the central nozzle field zone A is supplied with compressed air by actuation of one of the manually operated valves 9, the remaining pairs of nozzle field zone areas on both sides of the zone A and forming therewith the respective zones B, C, D and E are supplied with compressed air from the respective subchambers of the fold table 2 by suitable actuation of the other valves 9 in the console 8. 1
- valves 9 are constructed as automatically operating control valves so as to attain the same or at least similar pressure relationships for different widths of the stacks 3 of textile webs.
- the table of the transport carriage 4 is constructed similarly to the fold table 2, the subchamber of the transport carriage 4 being connected by flexible tubes 11 with the same valves 9 of the control console 8.
- the valves 9 By suitable actuating one or more of the valves 9, the corresponding nozzle field zone or zones of both the fold table 2 as well as of the transport carriage table 4 are simultaneously rendered effective, compressed air being ejected through the openings in the particular field zone or zones against the undersigned of a stack 3 of textile web folded on the surface of the respective table.
- the transport carriage 4 as aforedescribed, is driven up to the folding machine 1.
- the fold table 2 has become lowered due to the weight of the folded web material thereon, to the level of the table surface of the transport carriage 4.
- the system for producing an air cushion between the stack 3 of web material and the surface of the fold table 2 is then activated so that the displacement of the stack 3 from the fold table 2 to the table top of the transport carriage 4 may be effected with a minimum of expended force.
- the width of the folded web stack 3 to be transported exceeds the width of the central nozzle field zone A by the width of one subchamber adjacent thereto on each side thereof, thus defining the nozzle field zone B.
- a third valve 9 would be actuated to admit compressed air to the two subchambers located respectively on opposite sides of the central and immediately adjacent chambers, constituting the zone B.
- the automatic actuating system shown in FIG. 4 can be employed.
- the fold table 2 can be provided with web sensing members in the form of spring-biased pushbutton contacts 14, for example, which protrude slightly from the surface of the table 2, just inside the lateral limits of the nozzle field zones A to E.
- the pushbuttons 14 at the left-hand side of the table 2 in FIG. 4 are electrically connected to one another, and the pushbuttons 14 at the right-hand side thereof, are similarly connected to one another and, through a microswitch 16 (see also FIG. 1) and a power source, to a number of parallel-connected relay coils 17, each of which is, in turn, connected between the pushbuttons 14 shown at the left-hand side of the table 2 in FIG. 4.
- Fixed contacts 15 are mounted in the table 2 for engagement by the corresponding pushbutton contacts 14.
- the two'fixed contacts located at the lateral limits of the respective nozzle field zones A to E are electrically connected to one another.
- the contacts 14 and 15 are engaged in accordance with the width of the web material folded on the fold table 2 and, as the level of the fold table 2 reaches that of the transport carriage 4, the microswitch 16 is closed.
- a thin air cushion 12 (FIG. 2) is formed between the table 2 and the stack 3 of web material over the entire zone B, none of the compressed air being able to flow from the nozzles without meeting the resistance of the overlying stack of web material, and the stack can then be slid manually with little force from the fold table 2 onto the transport carriage 4. The latter is then driven away from the folding machine 1 to a suitable location at which a further processing step is applied to the stack of web material.
- the compressed-air valves 9 can thereafter be closed again, the fold table 2 can then be restored to its original raised position, and a new folding operation can be started at the folding machine 1. It is noted, that no compressed air is ejected from the nozzle openings of any of the field zones A to E while the folding operation per se is taking place.
- the inlet tube 10 can be momentarily connected to a negative pressure source, such as the suction side of the air compressor, and the respective valves can be suitable opened to provide suction through the nozzle openings in the particular field zones A to E underlying those initial folds of the web stack.
- a negative pressure source such as the suction side of the air compressor
- Certain of the nozzles can be provided with conventional check valves 13, as shown in FIG. 3 for the central nozzle field zone A.
- a sheet of paper, cardboard, fiberboard or the like can be used as an underlay or carrier sheet for the folded web layers.
- This underlay offers no obstruction but rather prevents soiling of the lowermost layer of the folded web material and, when provided with a roughened upper surface, can prevent sliding of the material layers thereon. If such un derlays are employed with folding machines, the connection of the nozzles 5 through the respective subchambers of the zones A to E and tubes 7 to a suction source or the provision of suction nozzles 13 can be dispensed with.
- the air cushion 12 is adjusted to the width of the stack 3 of web material that is being transported. It is, however, within the scope and range of our invention to effect in a corresponding manner, separately or simultaneously, an adjustment or accommodation of the air cushion 12 to the'length of the folded web stack 3 being transported.
- our invention is not limited to folding machines, but rather can be employed to the same advantage for all kinds of textile machines that receive in the form of stacked folds the web of material that is being processed or that lay down the processed web in the form of stacked folds such as, for example, at the input and output ends of textile fabric supply machines.
- Transport device for a web material processing machine comprising a support having a substantially horizontal tabletop surface formed with an array of compressed-air noz zle openings and divided into a plurality of nozzle field zones extending in a given direction, means for feeding an elongated web of material in longitudinal direction thereof in said given direction, means for folding said elongated web of material transversely to said longitudinal direction thereof into a stack of folds at a given station of said support, means for supplying compressed air selectively to the nozzles of one of said field zones so as to form an air cushion underlying the stack of folded web material over said one field zone, means connecting said compressed-air supply means separately to the nozzles of said central zone and to the nozzles of said respective pairs of marginal zones, valve means for opening and closing said connecting means so as to supply compressed air to the nozzles of the respective nozzle field zones corresponding to a web of material of given width, means for sensing the width of the web of material being folded on said tabletop surface, and automatic means for actuating said valve means to supply
- Transport device for a web material processing machine comprising a support having a substantially horizontal tabletop surface formed with an array of compressed air nozzle openings and divided into a plurality of nozzle field zones extending in a given direction, means for feeding an elongated web of material in longitudinal direction thereof in said given direction, means for folding said elongated web of material transversely to said longitudinal direction thereof into a stack of folds at a given station of said support, means for supplying compressed air selectively to the nozzles of one of said filed zones so as to form an air cushion underlying the stack of folded web material over said one field zone, a movable transport table having a top surface corresponding to that of said support and subdivided into corresponding nozzle field zones, said zones of said transport table being connected to said compressed-air supply means for selectively forming an air cushion underlying a web of folded material located over a field zone of corresponding width, whereby said transport table is movable to a position adjacent said support for either receiving from or delivering to said support of said web material processing machine
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Preliminary Treatment Of Fibers (AREA)
- Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19681710581 DE1710581A1 (de) | 1968-01-25 | 1968-01-25 | Transportvorrichtung an einer Behandlungsmaschine fuer bahnfoermiges Gut,insbesondere fuer Textilmaschinen |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3588088A true US3588088A (en) | 1971-06-28 |
Family
ID=5689258
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US791720*A Expired - Lifetime US3588088A (en) | 1968-01-25 | 1969-01-16 | Transport device for a web material folding or processing machine |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3588088A (OSRAM) |
| CH (1) | CH478043A (OSRAM) |
| FR (1) | FR1601579A (OSRAM) |
| GB (1) | GB1204105A (OSRAM) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4747329A (en) * | 1986-01-13 | 1988-05-31 | Phillocraft Company | Mobile air-equipped transfer table and method of use |
| US4759677A (en) * | 1986-01-13 | 1988-07-26 | Phillocraft Company | Transfer table system |
| US5271706A (en) * | 1991-10-31 | 1993-12-21 | Hkm Corporation | Self-loading paper transport system |
| EP1254853A3 (de) * | 2001-04-30 | 2004-01-02 | Gämmerler AG | Handhabungssystem |
| US7080962B1 (en) | 2005-05-31 | 2006-07-25 | Kimberly-Clark Worldwide, Inc. | Air conveyance apparatus |
| US20090290969A1 (en) * | 2008-05-23 | 2009-11-26 | Ferag Ag | Rotary lifting table |
| US7939435B2 (en) | 1995-02-02 | 2011-05-10 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2504807B1 (de) * | 1975-02-05 | 1976-07-29 | Guenter Stumpf | Vorrichtung zum zuschneiden von stofflagenpaketen |
| GB2320004A (en) * | 1996-12-09 | 1998-06-10 | Thomas Rice | Air conveyor |
-
1968
- 1968-12-17 CH CH1879268A patent/CH478043A/de not_active IP Right Cessation
- 1968-12-20 FR FR1601579D patent/FR1601579A/fr not_active Expired
-
1969
- 1969-01-13 GB GB0885/69A patent/GB1204105A/en not_active Expired
- 1969-01-16 US US791720*A patent/US3588088A/en not_active Expired - Lifetime
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4747329A (en) * | 1986-01-13 | 1988-05-31 | Phillocraft Company | Mobile air-equipped transfer table and method of use |
| US4759677A (en) * | 1986-01-13 | 1988-07-26 | Phillocraft Company | Transfer table system |
| US5271706A (en) * | 1991-10-31 | 1993-12-21 | Hkm Corporation | Self-loading paper transport system |
| US7939435B2 (en) | 1995-02-02 | 2011-05-10 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method |
| EP1254853A3 (de) * | 2001-04-30 | 2004-01-02 | Gämmerler AG | Handhabungssystem |
| US7080962B1 (en) | 2005-05-31 | 2006-07-25 | Kimberly-Clark Worldwide, Inc. | Air conveyance apparatus |
| US20060266621A1 (en) * | 2005-05-31 | 2006-11-30 | Kruse Mark W | Air Conveyance System |
| US7165918B2 (en) | 2005-05-31 | 2007-01-23 | Kimberly-Clark Worldwide, Inc. | Air conveyance system |
| US20090290969A1 (en) * | 2008-05-23 | 2009-11-26 | Ferag Ag | Rotary lifting table |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1204105A (en) | 1970-09-03 |
| FR1601579A (OSRAM) | 1970-08-31 |
| CH478043A (de) | 1969-09-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3588088A (en) | Transport device for a web material folding or processing machine | |
| US3741116A (en) | Vacuum belt | |
| US4033579A (en) | Offset stacker | |
| JP5392802B2 (ja) | ビニール袋の折畳・積層装置 | |
| US4026540A (en) | Selective tray sheet sorting machine | |
| US3361424A (en) | Cross folder with sheet elevating means | |
| US2902278A (en) | Pneumatic controlled sheet feeder | |
| US1623195A (en) | Apparatus for piling sheets of paper | |
| US2224606A (en) | Stacking device | |
| US3328027A (en) | Sheet delivery unit | |
| CA2042193C (en) | Formation, maintenance and tensioning of a tying loop | |
| US4117799A (en) | Apparatus for coating blanks or the like formed of textile material, especially clothing inserts | |
| US3275317A (en) | Method and mechanism for transferring fabric blanks | |
| US2805858A (en) | Money counting machine | |
| JPH0641331B2 (ja) | 底部シート分離送り装置 | |
| US2754113A (en) | Sheet folding machine | |
| JPS60143959A (ja) | カバーシートを備えた印刷製品の積重ねを製造するための装置 | |
| US2901249A (en) | Collating machine | |
| US3398841A (en) | Apparatus for stacking material and automatically feeding the material to a worktable of a paper-cutting machine | |
| US3918699A (en) | Folding machine for soft goods | |
| US3169763A (en) | Apparatus to transfer pliable material | |
| US2906530A (en) | Feeding and stacking method and machine | |
| JP3653481B2 (ja) | インターフォルダ | |
| JPH07194900A (ja) | 布類の投入装置 | |
| US1029316A (en) | Machine for piling textile fabrics. |