US3586377A - Method of retorting oil shale in situ - Google Patents

Method of retorting oil shale in situ Download PDF

Info

Publication number
US3586377A
US3586377A US831945A US3586377DA US3586377A US 3586377 A US3586377 A US 3586377A US 831945 A US831945 A US 831945A US 3586377D A US3586377D A US 3586377DA US 3586377 A US3586377 A US 3586377A
Authority
US
United States
Prior art keywords
shale
oil
oil shale
communication
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US831945A
Inventor
Rex T Ellington
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Atlantic Richfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Richfield Co filed Critical Atlantic Richfield Co
Application granted granted Critical
Publication of US3586377A publication Critical patent/US3586377A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Definitions

  • the heat of retorting is supplied through one of the access means, as by a gas, and the pyrolyzed oil is recovered from the other access means.
  • the second such recovery method is the retorting of the oil shale in situ, or in place, which eliminates the need for a retorting plant and its attendant apparatus.
  • the in situ method has used conventional injection and producing wells in naturally fractioned zones in the shale body, or the use of communication paths established between the wells by explosive, hydraulic, chemical or electric fractioning means.
  • nuclear devices have been considered to create a chimney of broken shale with which communication could be established for pyrolysis.
  • Retorting oil shale in situ as shown by the prior art has certain disadvantages. Operation through wells in naturally fractioned zones has the disadvantage that fracture patterns may not be known and the effective porosity and penneability of the formation may not represent desirable values. In addition, all the oil that is developed may not be carried to the producing well because of it banking up ahead of the driving gas. In technical terms, the displacement efficiencies and the sweep efficiency may thus be so low as to render the process uneconomic. Also, if the natural fracturing does not expose sufficient surface area, it may not be possible to pass sufficient heat into the shale body to develop sufficient oil in a given period of time to make the process profitable.
  • U.S. Pat. No. 3,342,257 discloses the utilization of nuclear devices to fragment shale to recovery of the hydrocarbons in situ.
  • the chimney may, however, fill with water and require operating at pressures too high to be profitable.
  • the hazards of such a process are apparent.
  • the broken shale may also be distributed nonuniformly as to size and give rise to channeling of combustion gases and result in technical and economic failure.
  • Massive walls will also have to be left between successive shots to prevent breakthrough and these will remain largely unretorted resulting in a waste of natural resources.
  • this method cannot be used in shallow or thin beds near outcrops, or near mine workings.
  • the first oil and gas produced from nuclear chimney retorting may be contaminated with radioactive products and be unuseable. Ground water may be contaminated. Further, nuclear chimneys may be so tall that the loading of material above retorting zones in the lower part of the chimney may exceed the strength of the oil shale at high temperatures and cause local collapse with resulting shutoff of flows.
  • the present invention is a process for breaking up and pyrolyzing oil shale in situ in a wide variety of areas, such as near outcrops, above and below mine workings, under close control, thereby eliminating the need for a crushing plant, conventional materials handling, retorting plant, and spent shale disposal.
  • This invention can also be used in the production of raw shale oil underground by the thermal treatment of the solid carbonaceous material in outcrop zones which may be too incompetent or too lean for mining.
  • the present invention also creates relatively small chimneys of broken oil shale for pyrolysis under closely controlled conditions so that fragmentation is optimized.
  • the present invention also provides for control of the rate of pyrolysis not possible with current in situ methods by generating and distributing porosity in the body.
  • the present invention also produces raw shale oil underground by means which do not require transport of a major amount of the shale to the surface and do not require construction of a surface retorting plant, although such may be desirable for optimum utilization. Further, the present invention provides an inexpensive method of processing essentially in situ zones of oil shale too lean for profitable recovery by other means.
  • An object of this invention is to minimize residence times at temperatures above about l,500 F. to minimize solubility of secondary minerals in order to facilitate their recovery.
  • a further object is to follow the retorting operation with leaching of the shale ash with water or specific solutions to leach out and recover mineral values as taught in copending application Ser. No. 571,649, filed Aug. 10, 1966, now U.S. Pat. No. 3,516,787.
  • oil shale contains quartz, dolomite and dawsonite (sodium aluminum carbonate hydroxide). The above application discloses a method to recover aluminum values from a mixture of this type without substantial precipitation of SiO,,. 7
  • the present invention comprises establishing access means at at least two points in a zone of unmined oil shale, establishing communication between these access means through the zone, fragmenting at least part of the oil shale in the zone in the area of the communication to produce a porous means of fragmented oil shale, supplying heating means to said fragmented oil shale through one of said access means to pyrolyze shale oil in the oil shale and collecting the said shale oil through other of said access means.
  • FIGS. la, lb and 1c are a graphic representation of one embodiment of this invention.
  • FIG. 2 is a representation of another embodiment of this invention using two contiguous zones
  • FIG. 3 is a representation of another embodiment of this invention particularly applicable to zones of great height.
  • FIG. la shows a side view of a section of an oil shale zone, generally designated as a.
  • Two access means such as tunnels or drifts l and 2 are cut into the zone. If the oil shale zone is relatively shallow, these'points can be substantially near the top and bottom of the zone, respectively.
  • a short communication lateral 3 is formed in the zone at a point above tunnel 2 and a cavity 4 is excavated at a point in the zone intermediate access means 1 and 2 but generally in proximity to one or the other of the access means. Any of a number of conventional methods can be used to form the cavity such as by drilling.
  • a communicating hole or pattern of holes 5 is formed from the other of said access means to the cavity 4.
  • the hole (or holes) 5 is loaded with explosive and detonated in such a manner as to result in a chimney 6 filled with fragmented oil shale indicated generally as b in FIG. 1c.
  • the mass of fragmented oil shale b is a porous mass.
  • Heating means can then be supplied through one 'of the access means to heat the fragmented oil shale to pyrolyze the oil contained therein.
  • the pyrolyzed oil can then be collected by means located in or attached to the other access means.
  • the heating means can be, for example, a heated gas, which can be noncombustion supporting, such as natural gas or a mixture of natural gas and up to about 20 volume percent carbon dioxide, or it can be combustion supporting, such as oxygen or air.
  • the gas can further be a mixture of natural gas and air.
  • a combustion supporting gas is preferred, such as air or a mixture of natural gas and air.
  • the fragmented mass of oil shale be subjected to retorting at a temperature of from about 500 to 1,200 F. to drive off the oil contained therein, followed by a substantially complete combustion of shale.
  • the spent shale can then be treated with an alkaline solution, at atemperature of up to about 220 F. to dissolve any aluminum values present, as in dawsonite, without substantial precipitation of SiO: and the aluminum values can be recovered from the alkaline solution.
  • the leaching and recovery steps are more fully explained in U.S. Pat. application Ser. No. 571,649, filed Aug. 10, 1966, now US. Pat. No. 3,5 [6,787.
  • HO. 2 shows another embodiment of this invention in which two contiguous zones or two contiguous chimneys in one zone are treated simultaneously although the operation in each zone or chimney at any given moment may be somewhat different as is explained more fully below.
  • Chimneys 6' and 6 contain porous masses of fragmented oil shale indicated as b' and b, formed as porous mass 6 explained above.
  • Air from compressor 7 flows through headworks 8 which contain an ignition system and is ignited therein. The air then flows through the shale mass to offtake duct 9 to the oil recovery system 10, which can be any known oil separation system.
  • the oil contained in the shale is retorted during the airflow and also flows into oil recovery system 10.
  • the gas 11 which has been denuded of oil in recovery system 110 is returned, mixed with air from compressor 13 and is passed to the bottom of the second chimney 6".
  • the gas 11 contains primarily combustion products from the air burning and the other noncombustible air compounds.
  • the gas-air mixture is ignited at the bottom of the chimney and preheats the shale mass in chimney 6" in its passage therethrough to a temperature of about 200 to 400 F.
  • the mixture of combustion products and recycle gas passes out through headworks l4 and recycle compressor 15 and can be combined with the air in the headworks 8.
  • the recycle gas has the effect of recovering heat from the spent shale indicated as 16 above the combustion zone 17, of reducing peak temperature in the combustion zone to minimize fusion and clinkering and of increasing the length of the zone above any given temperature up to the maximum.
  • This invention may be applied in many ways. in very thick oil shales sections there may be zones which are rich enough for profitable mining and above ground retorting. Such a zone would provide a natural access to the top or bottom of a section in which chimneys are to be developed.
  • the process of the instant invention can be combined with a known above ground retorting process.
  • three access tunnels can be originally formed and chimneys developed above and below the middle tunnel.
  • FIG. 3 illustrates an embodiment of the instant invention in which a chimney of great height can be developed in sections with choke points 18 left in the oil shale structure. At this smaller opening on choke point 18 the oil shale will bridge the opening as it is fragmented and limit the static load of the broken shale at any point in the chimney while still allowing a steady flow of gas and oil.
  • the communication tunnels and drifts although shown essentially round, can have many shapes.
  • the advantage of the process is that a large proportion of the oil shale in a given section or bed can be pyrolyzed in situ. This can be done at a fraction of the usual costs per ton for mining, hauling, crushing, handling to retort and spent shale disposal, investment in supply, ignition and recovery systems of the usual above ground retorting plant.
  • the invention is further advantageous for processing leaner shales, operating in areas where disposal and other such problems would preclude surface or subsurface mining and utility and/or more efficiency in areas precluded for other in situ methods.
  • a method of obtaining shale oil from a zone of unmined oil shale which comprises establishing access means at at least two points in said zone, establishing communication between these access means through the zone, fragmenting at least part of the oil shale in the zone in the area of the communication to produce a porous mass of fragmented oil shale, supplying heating means to said fragmented oil shale through one of said access points to pyrolyze shale oil in the oil shale and collecting said shale oil through the other of said access means.
  • the establishing of communication between said access means includes establishing a cavity in the zone intermediate the access means and proximate to one of said access means in which it is in communication and establishing communication between said cavity and the other of said access means.
  • the mineral values include quartz, dolomite and dawsonite
  • the aqueous solution is an alkaline solution
  • the pyrolyzed shale is treated with the alkaline solution at a temperature of up to about 220 F. to dissolve aluminum values in said dawsonite without substantial precipitation of SiO,.

Abstract

This invention relates to a process for the recovery of oil from an underground, unmined zone of oil shale. Access is obtained at at least two points in the zone, which can be, for example, in a shallow zone, near the top and bottom of the zone, communication is established between the access means, and at least part of the oil shale zone is fragmented. The heat of retorting is supplied through one of the access means, as by a gas, and the pyrolyzed oil is recovered from the other access means.

Description

United States Patent [56] References Cited UNITED STATES PATENTS [72] Inventor Rex'LEllington Tulsa, Okla.
fin 9 9 9R9 262 6 n w n Pd m gm r. VVP 60 667 999 111 //l 923 672 767 42 90 333 W m o C 0 1m 67 99k 1R 0 2 M12! mm B JA 0 e N mm L n w Ha AFPA .lIlltl. I253 2247 [till Primary Examiner-Ernest R. Purser New York, N.Y.
AnorneyMcLean, Morton and Boustead [54] METHOD OF RETORTING OIL SHALE IN SITU e. 8 m n f0 [02 cmnvnv m m we m..m.m amm. u w,m m wum h eg nd On m n 2 1mm .mmw f T E n r C w WA mm e W ms 9Clalms, 5 Drawing Figs.
ple, in a shallow zone, near the top and mmunication is established between the 299/4, which can be, for exam bottom of the zone, co
[Sl] Int. 2lb43/26. access means, and at least part of the oil shale zone is frag- E2lc 43/00 299/2, 4, 5; 166/259, 272
mented. The heat of retorting is supplied through one of the access means, as by a gas, and the pyrolyzed oil is recovered from the other access means.
[50] Field AIR METHOD OF RETORTING OIL SHALE IN SITU The recovery of oil from oil shale has heretofore generally been accomplished by one of two methods. The first such method includes mining the oil shale out of the ground, crushing and then retorting or pyrolyzing the crushed oil shale in a fixed retorting plant or structure to retort the oil contained therein. The predominant processes of retorting oil shale are the downflow and upflow gas combustion retorts processes and the hot pebble solid-solid heat transfer process. The second such recovery method is the retorting of the oil shale in situ, or in place, which eliminates the need for a retorting plant and its attendant apparatus. Generally, the in situ method has used conventional injection and producing wells in naturally fractioned zones in the shale body, or the use of communication paths established between the wells by explosive, hydraulic, chemical or electric fractioning means. Recently, nuclear devices have been considered to create a chimney of broken shale with which communication could be established for pyrolysis.
The above ground retorting operations employed generally are cumbersome and expensive, involving large equipment and high operating costs per unit of shale processed. Important factors contributing to these economic burdens have been poor heat heat recovery in the retorting system and the expense, equipment and time consumed in mining and crushing the shale, and in subsequently recovering the products of retorting. These conditions have led to many efforts to process the oil shale in place to eliminate the expense of a crushing and retorting plant.
Retorting oil shale in situ as shown by the prior art has certain disadvantages. Operation through wells in naturally fractioned zones has the disadvantage that fracture patterns may not be known and the effective porosity and penneability of the formation may not represent desirable values. In addition, all the oil that is developed may not be carried to the producing well because of it banking up ahead of the driving gas. In technical terms, the displacement efficiencies and the sweep efficiency may thus be so low as to render the process uneconomic. Also, if the natural fracturing does not expose sufficient surface area, it may not be possible to pass sufficient heat into the shale body to develop sufficient oil in a given period of time to make the process profitable.
U.S. Pat. No. 3,342,257 discloses the utilization of nuclear devices to fragment shale to recovery of the hydrocarbons in situ. The chimney may, however, fill with water and require operating at pressures too high to be profitable. Furthermore, the hazards of such a process are apparent. The broken shale may also be distributed nonuniformly as to size and give rise to channeling of combustion gases and result in technical and economic failure. Massive walls will also have to be left between successive shots to prevent breakthrough and these will remain largely unretorted resulting in a waste of natural resources. Furthermore, this method cannot be used in shallow or thin beds near outcrops, or near mine workings.
It is also known that the first oil and gas produced from nuclear chimney retorting may be contaminated with radioactive products and be unuseable. Ground water may be contaminated. Further, nuclear chimneys may be so tall that the loading of material above retorting zones in the lower part of the chimney may exceed the strength of the oil shale at high temperatures and cause local collapse with resulting shutoff of flows.
The present invention is a process for breaking up and pyrolyzing oil shale in situ in a wide variety of areas, such as near outcrops, above and below mine workings, under close control, thereby eliminating the need for a crushing plant, conventional materials handling, retorting plant, and spent shale disposal. This invention can also be used in the production of raw shale oil underground by the thermal treatment of the solid carbonaceous material in outcrop zones which may be too incompetent or too lean for mining. The present invention also creates relatively small chimneys of broken oil shale for pyrolysis under closely controlled conditions so that fragmentation is optimized. The present invention also provides for control of the rate of pyrolysis not possible with current in situ methods by generating and distributing porosity in the body. The present invention also produces raw shale oil underground by means which do not require transport of a major amount of the shale to the surface and do not require construction of a surface retorting plant, although such may be desirable for optimum utilization. Further, the present invention provides an inexpensive method of processing essentially in situ zones of oil shale too lean for profitable recovery by other means.
An object of this invention is to minimize residence times at temperatures above about l,500 F. to minimize solubility of secondary minerals in order to facilitate their recovery. A further object is to follow the retorting operation with leaching of the shale ash with water or specific solutions to leach out and recover mineral values as taught in copending application Ser. No. 571,649, filed Aug. 10, 1966, now U.S. Pat. No. 3,516,787. Frequently, oil shale contains quartz, dolomite and dawsonite (sodium aluminum carbonate hydroxide). The above application discloses a method to recover aluminum values from a mixture of this type without substantial precipitation of SiO,,. 7
The present invention comprises establishing access means at at least two points in a zone of unmined oil shale, establishing communication between these access means through the zone, fragmenting at least part of the oil shale in the zone in the area of the communication to produce a porous means of fragmented oil shale, supplying heating means to said fragmented oil shale through one of said access means to pyrolyze shale oil in the oil shale and collecting the said shale oil through other of said access means.
The invention will be further illustrated with reference to the appended drawings in which:
FIGS. la, lb and 1c are a graphic representation of one embodiment of this invention;
FIG. 2 is a representation of another embodiment of this invention using two contiguous zones;
FIG. 3 is a representation of another embodiment of this invention particularly applicable to zones of great height.
FIG. la shows a side view of a section of an oil shale zone, generally designated as a. Two access means such as tunnels or drifts l and 2 are cut into the zone. If the oil shale zone is relatively shallow, these'points can be substantially near the top and bottom of the zone, respectively. A short communication lateral 3 is formed in the zone at a point above tunnel 2 and a cavity 4 is excavated at a point in the zone intermediate access means 1 and 2 but generally in proximity to one or the other of the access means. Any of a number of conventional methods can be used to form the cavity such as by drilling. A communicating hole or pattern of holes 5 is formed from the other of said access means to the cavity 4. The hole (or holes) 5 is loaded with explosive and detonated in such a manner as to result in a chimney 6 filled with fragmented oil shale indicated generally as b in FIG. 1c. The mass of fragmented oil shale b is a porous mass. Heating means can then be supplied through one 'of the access means to heat the fragmented oil shale to pyrolyze the oil contained therein. The pyrolyzed oil can then be collected by means located in or attached to the other access means. The heating means can be, for example, a heated gas, which can be noncombustion supporting, such as natural gas or a mixture of natural gas and up to about 20 volume percent carbon dioxide, or it can be combustion supporting, such as oxygen or air. The gas can further be a mixture of natural gas and air. A combustion supporting gas is preferred, such as air or a mixture of natural gas and air. In operation, it is preferred that the fragmented mass of oil shale be subjected to retorting at a temperature of from about 500 to 1,200 F. to drive off the oil contained therein, followed by a substantially complete combustion of shale. The spent shale can then be treated with an alkaline solution, at atemperature of up to about 220 F. to dissolve any aluminum values present, as in dawsonite, without substantial precipitation of SiO: and the aluminum values can be recovered from the alkaline solution. The leaching and recovery steps are more fully explained in U.S. Pat. application Ser. No. 571,649, filed Aug. 10, 1966, now US. Pat. No. 3,5 [6,787.
HO. 2 shows another embodiment of this invention in which two contiguous zones or two contiguous chimneys in one zone are treated simultaneously although the operation in each zone or chimney at any given moment may be somewhat different as is explained more fully below. Chimneys 6' and 6 contain porous masses of fragmented oil shale indicated as b' and b, formed as porous mass 6 explained above. Air from compressor 7 flows through headworks 8 which contain an ignition system and is ignited therein. The air then flows through the shale mass to offtake duct 9 to the oil recovery system 10, which can be any known oil separation system. The oil contained in the shale is retorted during the airflow and also flows into oil recovery system 10. Preferably, the gas 11 which has been denuded of oil in recovery system 110 is returned, mixed with air from compressor 13 and is passed to the bottom of the second chimney 6". The gas 11 contains primarily combustion products from the air burning and the other noncombustible air compounds. The gas-air mixture is ignited at the bottom of the chimney and preheats the shale mass in chimney 6" in its passage therethrough to a temperature of about 200 to 400 F. The mixture of combustion products and recycle gas passes out through headworks l4 and recycle compressor 15 and can be combined with the air in the headworks 8. The recycle gas has the effect of recovering heat from the spent shale indicated as 16 above the combustion zone 17, of reducing peak temperature in the combustion zone to minimize fusion and clinkering and of increasing the length of the zone above any given temperature up to the maximum.
This control of temperature and time is especially useful in converting minerals which may be contained in the shale oil such as dawsonite to a soluble for ultimate recovery as is more fully explained in the aforesaid copending application Ser. No. 571,649, now U.S. Pat. No. 3,516,787.
When the oil shale in chimney 6 is completely retorted and the combustion zone reaches the bottom of the chimney, air injection can be ceased and an inert gas injected to quench burning. Suitable connections can be made to start ignition in chimney 6" thus beginning retorting while another contiguous chimney (not shown) can be preheated in the same manner as has been previously described.
This invention may be applied in many ways. in very thick oil shales sections there may be zones which are rich enough for profitable mining and above ground retorting. Such a zone would provide a natural access to the top or bottom of a section in which chimneys are to be developed. Thus, the process of the instant invention can be combined with a known above ground retorting process. In sections of lean shale which are too thick to be retorted in a single chimney without the shapes of the chimney, three access tunnels can be originally formed and chimneys developed above and below the middle tunnel.
FIG. 3 illustrates an embodiment of the instant invention in which a chimney of great height can be developed in sections with choke points 18 left in the oil shale structure. At this smaller opening on choke point 18 the oil shale will bridge the opening as it is fragmented and limit the static load of the broken shale at any point in the chimney while still allowing a steady flow of gas and oil. The communication tunnels and drifts, although shown essentially round, can have many shapes.
The advantage of the process is that a large proportion of the oil shale in a given section or bed can be pyrolyzed in situ. This can be done at a fraction of the usual costs per ton for mining, hauling, crushing, handling to retort and spent shale disposal, investment in supply, ignition and recovery systems of the usual above ground retorting plant. The invention is further advantageous for processing leaner shales, operating in areas where disposal and other such problems would preclude surface or subsurface mining and utility and/or more efficiency in areas precluded for other in situ methods.
Also, if mineral dawsonite exists in the oil shale, it will be converted to soluble form by the temperatures of retorting and combustion. Thus, after retorting is completed, water or special solutions may be injected into the chimney to leach out the aluminum salt and soluble sodium salts as is more fully explained in the aforesaid Ser. No. 571,649. The liquor from this operation would be sent to recovery systems designed for this purpose.
While the process described herein has been directed particularly to the recovery of shale oil from oil shale, the present invention may be adopted for the recovery of oil from any subterranean oil-containing or oil-producing solid substance. Accordingly, it is to be understood that the above description is merely illustrative of preferred embodiments of the invention, of which many variations may be made within the scope of the following claims without departing from the spirit thereof.
The embodiments of the invention in which I claim an exclusive property or privilege are defined as follows:
1. A method of obtaining shale oil from a zone of unmined oil shale which comprises establishing access means at at least two points in said zone, establishing communication between these access means through the zone, fragmenting at least part of the oil shale in the zone in the area of the communication to produce a porous mass of fragmented oil shale, supplying heating means to said fragmented oil shale through one of said access points to pyrolyze shale oil in the oil shale and collecting said shale oil through the other of said access means.
2. The method of claim 1 wherein the establishing of communication between said access means includes establishing a cavity in the zone intermediate the access means and proximate to one of said access means in which it is in communication and establishing communication between said cavity and the other of said access means.
3. The method of claim 1 wherein said fragmenting is performed using explosives.
4. The method of claim 1 wherein the heating means is a gas.
5. The method of claim 4 wherein a second porous mass of fragmented oil shale is formed in another area of communication contiguous to the first porous mass and the gas from the first mass is transferred through the second porous mass to thereby preheat the second porous mass.
6. The method of claim 5 wherein the first porous mass is heated to a retorting temperature of from about 500 F. to 1,200 F. and the second porous mass is preheated to a temperature of from about 200 to 400 F.
7. The method of claim 1 wherein the oil shale in the zone is fragmented with two porous masses in the area of the communication separated by an unfragmented area of the communication.
8. The method of claim 1 wherein the pyrolyzed oil shale is treated with an aqueous solution to recover soluble mineral values contained in the pyrolyzed shale.
9. The method of claim 8 wherein the mineral values include quartz, dolomite and dawsonite, the aqueous solution is an alkaline solution, and the pyrolyzed shale is treated with the alkaline solution at a temperature of up to about 220 F. to dissolve aluminum values in said dawsonite without substantial precipitation of SiO,.

Claims (8)

  1. 2. The method of claim 1 wherein the establishing of communication between said access means includes establishing a cavity in the zone intermediate the access means and proximate to one of said access meaNs in which it is in communication and establishing communication between said cavity and the other of said access means.
  2. 3. The method of claim 1 wherein said fragmenting is performed using explosives.
  3. 4. The method of claim 1 wherein the heating means is a gas.
  4. 5. The method of claim 4 wherein a second porous mass of fragmented oil shale is formed in another area of communication contiguous to the first porous mass and the gas from the first mass is transferred through the second porous mass to thereby preheat the second porous mass.
  5. 6. The method of claim 5 wherein the first porous mass is heated to a retorting temperature of from about 500* F. to 1,200* F. and the second porous mass is preheated to a temperature of from about 200* to 400* F.
  6. 7. The method of claim 1 wherein the oil shale in the zone is fragmented with two porous masses in the area of the communication separated by an unfragmented area of the communication.
  7. 8. The method of claim 1 wherein the pyrolyzed oil shale is treated with an aqueous solution to recover soluble mineral values contained in the pyrolyzed shale.
  8. 9. The method of claim 8 wherein the mineral values include quartz, dolomite and dawsonite, the aqueous solution is an alkaline solution, and the pyrolyzed shale is treated with the alkaline solution at a temperature of up to about 220* F. to dissolve aluminum values in said dawsonite without substantial precipitation of SiO2.
US831945A 1969-06-10 1969-06-10 Method of retorting oil shale in situ Expired - Lifetime US3586377A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83194569A 1969-06-10 1969-06-10

Publications (1)

Publication Number Publication Date
US3586377A true US3586377A (en) 1971-06-22

Family

ID=25260263

Family Applications (1)

Application Number Title Priority Date Filing Date
US831945A Expired - Lifetime US3586377A (en) 1969-06-10 1969-06-10 Method of retorting oil shale in situ

Country Status (1)

Country Link
US (1) US3586377A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675715A (en) * 1970-12-30 1972-07-11 Forrester A Clark Processes for secondarily recovering oil
US3765722A (en) * 1971-08-02 1973-10-16 Continental Oil Co Method for recovering petroleum products or the like from subterranean mineral deposits
US3951456A (en) * 1973-08-03 1976-04-20 Occidental Petroleum Corporation Process for effecting even retort working fluid flow throughout an in situ retort containing carbonaceous deposits
US3957305A (en) * 1974-02-11 1976-05-18 Rapidex, Inc. In situ values extraction
US3987851A (en) * 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3994343A (en) * 1974-03-04 1976-11-30 Occidental Petroleum Corporation Process for in situ oil shale retorting with off gas recycling
US4005752A (en) * 1974-07-26 1977-02-01 Occidental Petroleum Corporation Method of igniting in situ oil shale retort with fuel rich flue gas
US4045085A (en) * 1975-04-14 1977-08-30 Occidental Oil Shale, Inc. Fracturing of pillars for enhancing recovery of oil from in situ oil shale retort
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4082145A (en) * 1977-05-18 1978-04-04 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring
US4084640A (en) * 1976-11-04 1978-04-18 Marathon Oil Company Combined combustion for in-situ retorting of oil shales
US4089375A (en) * 1976-10-04 1978-05-16 Occidental Oil Shale, Inc. In situ retorting with water vaporized in situ
US4093026A (en) * 1977-01-17 1978-06-06 Occidental Oil Shale, Inc. Removal of sulfur dioxide from process gas using treated oil shale and water
US4105072A (en) * 1976-11-29 1978-08-08 Occidental Oil Shale Process for recovering carbonaceous values from post in situ oil shale retorting
US4109964A (en) * 1976-01-22 1978-08-29 Occidental Oil Shale, Inc. Method for preconditioning oil shale preliminary to explosive expansion and in situ retorting thereof
US4120354A (en) * 1977-06-03 1978-10-17 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by pressure monitoring
US4126180A (en) * 1976-08-16 1978-11-21 Occidental Oil Shale, Inc. Method of enhancing yield from an in situ oil shale retort
US4147389A (en) * 1977-02-22 1979-04-03 Occidental Oil Shale, Inc. Method for establishing a combustion zone in an in situ oil shale retort
US4147388A (en) * 1976-08-23 1979-04-03 Occidental Oil Shale, Inc. Method for in situ recovery of liquid and gaseous products from oil shale deposits
US4150722A (en) * 1978-03-10 1979-04-24 Occidental Oil Shale, Inc. Determining the locus of a retorting zone in an oil shale retort by rate of shale oil production
US4162706A (en) * 1978-01-12 1979-07-31 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an oil shale retort by monitoring pressure drop across the retort
US4171146A (en) * 1978-01-23 1979-10-16 Occidental Research Corporation Recovery of shale oil and magnesia from oil shale
US4191251A (en) * 1974-04-29 1980-03-04 Occidental Oil Shale, Inc. Process for recovering carbonaceous values from in situ oil shale retorting
US4202412A (en) * 1978-06-29 1980-05-13 Occidental Oil Shale, Inc. Thermally metamorphosing oil shale to inhibit leaching
US4246965A (en) * 1979-09-04 1981-01-27 Occidental Oil Shale, Inc. Method for operating an in situ oil shale retort having channelling
US4260192A (en) * 1979-02-21 1981-04-07 Occidental Research Corporation Recovery of magnesia from oil shale
US4263970A (en) * 1977-01-27 1981-04-28 Occidental Oil Shale, Inc. Method for assuring uniform combustion in an in situ oil shale retort
US4265307A (en) * 1978-12-20 1981-05-05 Standard Oil Company Shale oil recovery
US4285547A (en) * 1980-02-01 1981-08-25 Multi Mineral Corporation Integrated in situ shale oil and mineral recovery process
US4328863A (en) * 1980-03-14 1982-05-11 Standard Oil Company (Indiana) In situ retorting of oil shale
US4378949A (en) * 1979-07-20 1983-04-05 Gulf Oil Corporation Production of shale oil by in-situ retorting of oil shale
US4379590A (en) * 1979-03-27 1983-04-12 Occidental Oil Shale, Inc. Ventilation air and process air distribution for in situ oil shale retorts
US4440444A (en) * 1981-06-15 1984-04-03 Occidental Oil Shale, Inc. Method for controlling void in an in situ oil shale retort
US4458948A (en) * 1981-01-23 1984-07-10 Occidental Oil Shale, Inc. Horizontal free face blasting for minimizing channeling and mounding in situ retort with cusp at intermediate elevation
US4611856A (en) * 1981-03-23 1986-09-16 Occidental Oil Shale, Inc. Two-level, horizontal free face mining system for in situ oil shale retorts
US20160215604A1 (en) * 2015-01-28 2016-07-28 Schlumberger Technology Corporation Well treatment
WO2022225569A1 (en) * 2021-04-19 2022-10-27 Red Leaf Resources, Inc. Low temperature homogeneous charge continuous oxidation pyrolysis of carbon ores

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675715A (en) * 1970-12-30 1972-07-11 Forrester A Clark Processes for secondarily recovering oil
US3765722A (en) * 1971-08-02 1973-10-16 Continental Oil Co Method for recovering petroleum products or the like from subterranean mineral deposits
US3951456A (en) * 1973-08-03 1976-04-20 Occidental Petroleum Corporation Process for effecting even retort working fluid flow throughout an in situ retort containing carbonaceous deposits
US3957305A (en) * 1974-02-11 1976-05-18 Rapidex, Inc. In situ values extraction
US3994343A (en) * 1974-03-04 1976-11-30 Occidental Petroleum Corporation Process for in situ oil shale retorting with off gas recycling
US4191251A (en) * 1974-04-29 1980-03-04 Occidental Oil Shale, Inc. Process for recovering carbonaceous values from in situ oil shale retorting
US4005752A (en) * 1974-07-26 1977-02-01 Occidental Petroleum Corporation Method of igniting in situ oil shale retort with fuel rich flue gas
US4045085A (en) * 1975-04-14 1977-08-30 Occidental Oil Shale, Inc. Fracturing of pillars for enhancing recovery of oil from in situ oil shale retort
US3987851A (en) * 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US4109964A (en) * 1976-01-22 1978-08-29 Occidental Oil Shale, Inc. Method for preconditioning oil shale preliminary to explosive expansion and in situ retorting thereof
US4126180A (en) * 1976-08-16 1978-11-21 Occidental Oil Shale, Inc. Method of enhancing yield from an in situ oil shale retort
US4147388A (en) * 1976-08-23 1979-04-03 Occidental Oil Shale, Inc. Method for in situ recovery of liquid and gaseous products from oil shale deposits
US4089375A (en) * 1976-10-04 1978-05-16 Occidental Oil Shale, Inc. In situ retorting with water vaporized in situ
US4084640A (en) * 1976-11-04 1978-04-18 Marathon Oil Company Combined combustion for in-situ retorting of oil shales
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4105072A (en) * 1976-11-29 1978-08-08 Occidental Oil Shale Process for recovering carbonaceous values from post in situ oil shale retorting
US4093026A (en) * 1977-01-17 1978-06-06 Occidental Oil Shale, Inc. Removal of sulfur dioxide from process gas using treated oil shale and water
US4140181A (en) * 1977-01-17 1979-02-20 Occidental Oil Shale, Inc. Two-stage removal of sulfur dioxide from process gas using treated oil shale
US4263970A (en) * 1977-01-27 1981-04-28 Occidental Oil Shale, Inc. Method for assuring uniform combustion in an in situ oil shale retort
US4147389A (en) * 1977-02-22 1979-04-03 Occidental Oil Shale, Inc. Method for establishing a combustion zone in an in situ oil shale retort
US4082145A (en) * 1977-05-18 1978-04-04 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by sound monitoring
US4120354A (en) * 1977-06-03 1978-10-17 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort by pressure monitoring
US4162706A (en) * 1978-01-12 1979-07-31 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an oil shale retort by monitoring pressure drop across the retort
US4171146A (en) * 1978-01-23 1979-10-16 Occidental Research Corporation Recovery of shale oil and magnesia from oil shale
US4150722A (en) * 1978-03-10 1979-04-24 Occidental Oil Shale, Inc. Determining the locus of a retorting zone in an oil shale retort by rate of shale oil production
US4202412A (en) * 1978-06-29 1980-05-13 Occidental Oil Shale, Inc. Thermally metamorphosing oil shale to inhibit leaching
US4265307A (en) * 1978-12-20 1981-05-05 Standard Oil Company Shale oil recovery
US4260192A (en) * 1979-02-21 1981-04-07 Occidental Research Corporation Recovery of magnesia from oil shale
US4379590A (en) * 1979-03-27 1983-04-12 Occidental Oil Shale, Inc. Ventilation air and process air distribution for in situ oil shale retorts
US4378949A (en) * 1979-07-20 1983-04-05 Gulf Oil Corporation Production of shale oil by in-situ retorting of oil shale
US4246965A (en) * 1979-09-04 1981-01-27 Occidental Oil Shale, Inc. Method for operating an in situ oil shale retort having channelling
US4285547A (en) * 1980-02-01 1981-08-25 Multi Mineral Corporation Integrated in situ shale oil and mineral recovery process
US4328863A (en) * 1980-03-14 1982-05-11 Standard Oil Company (Indiana) In situ retorting of oil shale
US4458948A (en) * 1981-01-23 1984-07-10 Occidental Oil Shale, Inc. Horizontal free face blasting for minimizing channeling and mounding in situ retort with cusp at intermediate elevation
US4611856A (en) * 1981-03-23 1986-09-16 Occidental Oil Shale, Inc. Two-level, horizontal free face mining system for in situ oil shale retorts
US4440444A (en) * 1981-06-15 1984-04-03 Occidental Oil Shale, Inc. Method for controlling void in an in situ oil shale retort
US20160215604A1 (en) * 2015-01-28 2016-07-28 Schlumberger Technology Corporation Well treatment
WO2022225569A1 (en) * 2021-04-19 2022-10-27 Red Leaf Resources, Inc. Low temperature homogeneous charge continuous oxidation pyrolysis of carbon ores
US11920088B2 (en) 2021-04-19 2024-03-05 Red Leaf Resources, Inc. Low temperature homogeneous charge continuous oxidation pyrolysis of carbon ores

Similar Documents

Publication Publication Date Title
US3586377A (en) Method of retorting oil shale in situ
US3572838A (en) Recovery of aluminum compounds and oil from oil shale formations
US3113620A (en) Process for producing viscous oil
US3516495A (en) Recovery of shale oil
US4483398A (en) In-situ retorting of oil shale
US4091869A (en) In situ process for recovery of carbonaceous materials from subterranean deposits
US3537528A (en) Method for producing shale oil from an exfoliated oil shale formation
US3987851A (en) Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3513913A (en) Oil recovery from oil shales by transverse combustion
US4444258A (en) In situ recovery of oil from oil shale
US3513914A (en) Method for producing shale oil from an oil shale formation
US3618663A (en) Shale oil production
US4366864A (en) Method for recovery of hydrocarbons from oil-bearing limestone or dolomite
US3759574A (en) Method of producing hydrocarbons from an oil shale formation
US3734184A (en) Method of in situ coal gasification
US3434757A (en) Shale oil-producing process
US4241952A (en) Surface and subsurface hydrocarbon recovery
CN112096380A (en) High-strength mining rock stratum migration grouting control and grouting amount calculation method
US3001775A (en) Vertical flow process for in situ retorting of oil shale
US3303881A (en) Underground nuclear detonations for treatment and production of hydrocarbons in situ
US4043597A (en) Multiple level preparation of oil shale retort
US4117886A (en) Oil shale retorting and off-gas purification
US4096912A (en) Methods for minimizing plastic flow of oil shale during in situ retorting
US3734180A (en) In-situ gasification of coal utilizing nonhypersensitive explosives
US3465818A (en) Undercutting of nuclearly detonated formations by subsequent nuclear detonations at greater depth and uses thereof in the recovery of various minerals