US3582706A - Deflection system for cathode-ray tubes - Google Patents
Deflection system for cathode-ray tubes Download PDFInfo
- Publication number
- US3582706A US3582706A US832298A US3582706DA US3582706A US 3582706 A US3582706 A US 3582706A US 832298 A US832298 A US 832298A US 3582706D A US3582706D A US 3582706DA US 3582706 A US3582706 A US 3582706A
- Authority
- US
- United States
- Prior art keywords
- coil
- current
- inductor
- deflection system
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010079 rubber tapping Methods 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims description 4
- 230000004048 modification Effects 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000008859 change Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000009125 cardiac resynchronization therapy Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 208000019300 CLIPPERS Diseases 0.000 description 1
- 208000021930 chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/04—Modifications for accelerating switching
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/04—Modifications for accelerating switching
- H03K17/041—Modifications for accelerating switching without feedback from the output circuit to the control circuit
- H03K17/04113—Modifications for accelerating switching without feedback from the output circuit to the control circuit in bipolar transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K4/00—Generating pulses having essentially a finite slope or stepped portions
- H03K4/06—Generating pulses having essentially a finite slope or stepped portions having triangular shape
- H03K4/08—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape
- H03K4/48—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices
- H03K4/60—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth current is produced through an inductor
- H03K4/69—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth current is produced through an inductor using a semiconductor device operating as an amplifier
- H03K4/696—Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements semiconductor devices in which a sawtooth current is produced through an inductor using a semiconductor device operating as an amplifier using means for reducing power dissipation or for shortening the flyback time, e.g. applying a higher voltage during flyback time
Definitions
- An electromagnet deflection system for CRTs has an energy-storing inductor connected between a voltage supply and a center tapping of a double-ended deflection coil.
- the system includes circuits responsive to the potentials at the ends of the coil, and when a rapid beam deflection occurs, the passage of one or other potential beyond a predetermined level is detected by the circuits which then cause energy to be removed from the inductors.
- Energy is replenished in the inductor either when a deflection is over, or in a modification having a switch regulator, simultaneously with the withdrawal of energy from the inductor.
- the present invention relates to a deflection system for the electromagnetic coils of a cathode-ray tube.
- the invention is particularly useful in relation to radar displays and oscilloscopes in which the beam may be required intermittently to execute a rapid deflection from a datum position.
- CRT deflection systems in radar displays andv oscilloscopes are normally electromagnetic, electromagnetic deflection gives rise to a problem in that it requires the stored energy in the deflection coils to be changed and a rapid deflection requires a rapid energy change. This in turn requires a high supply voltage since the speed is governed by the relation dI a where dI/dt is the rate of change of current in the deflection coil of inductance L and V is the supply voltage.
- the disadvantage of employing a high supply voltage is that the power dissipation of the circuit becomes large, the high voltage being continuously applied.
- the object of this invention is to provide a deflection system which enables a lower supply voltage to be used, for a given speed of deflection, than in known systems.
- a deflection system for a cathode-ray tube comprises a deflection coil the wholeor part of which is connected at one end through a current amplifier to one of two terminals for connection to a source of operating potential and at the other end through an inductor to the other of the two terminals, the amplifier being responsive to an input signal to vary the current in the coil, a further current amplifier connected between the said one terminal and the said other end of the coil or part thereof, and a circuit arranged so to control the further amplifier in response to the potential on the said one end of the coil or part thereof that, when the current through the first said amplifier rises sufficiently to cause the potential at the said one end to pass beyond a predetermined level, the further amplifier is caused to conduct less strongly.
- the effect of this arrangement is that, when a heavy current is required in the deflection coil and the further amplifier conducts less strongly, energy is removed from the inductor. Accordingly the operating potential can be lower than would otherwise be required, thus reducing the power dissipation in the first said amplifier.
- the amplifiers are preferably junction transistors.
- a center-tapped deflection coil is used with two first current amplifiers connected to its two ends respectively and arranged to operate in push-pull in response to the input signal, the inductor and the further current amplifier being connected to the center tap of the coil and the said control circuit being arranged to cause the further amplifier to conduct less strongly when the potential at either end of the coil passes beyond the predetermined level.
- the required magnitude of the operating potential is dependent on the number of fast deflections required per second, and the inductor must be rather large to cope with a group of several large deflections before its energy can be replenished.
- a further improvement in the invention enables the energy to be restored continually to the inductor as energy is withdrawn from it.
- the inductor also serves as the series-smoothing inductor of a current regulator circuit.
- the current regulator circuit which preferably util-' izes a junction transistor as a series-switching element, causes current to be withdrawn from the operating potential source in order to replace the energy stored in the inductor. In-this way a still lower operating potential is satisfactory and therefore the power dissipated is further reduced, since energy is replaced while it is being withdrawn, so that the minimum permissible time between fast deflections is reduced.
- FIG. 1 is a circuit diagram of a push-pull deflection system known in the art
- FIG. 2 is a circuit diagram of a system embodying the invennon
- FIG. 3 is a circuit diagram of a further system embodying the invention and an improvement thereto, and
- FIG. 4 is a sketch of some waveforms corresponding to the circuit in FIG. 2.
- a known push-pull arrangement will firstly be described and then it will be shown how the invention is applicable to snch an arrangement, which has the advantage that a single power supply only is needed for the coil. It will be appreciated however that the invention is also applicable to a single-ended arrangement.
- FIG. 1 The known arrangement of FIG. 1 has a deflection coil 10 with a center tap 11 connected to the high-voltage terminal 16 of two terminals 16 and 1 7 between which the operating potential V, is applied.
- the two ends of the coil are connected through two transistors 12 and 13 respectively to the low-voltage terminal 17.
- the current in the coil is controlled by a signal applied to a terminal 14 driving the bases of the transistors in push-pull by way of a phase splitter circuit 15.
- High supply voltages are required for high-speed operation, as mentioned earlier, which is disadvantageous and moreover the coil current tends to overshoot and may take many microseconds to settle, which time may be a significant proportion of the total deflection time.
- FIG. 2 A first embodiment of the invention is shown in FIG. 2.
- the deflection coil 10 is driven by the transistors 12 and 13 which are run in Class A, their bases being fed as in FIG. 1.
- the transistors carry a total current 1,.
- a shunt transistor 22 is connected between the center tap ll of the coil 10 and the lowvoltage terminal 17 and an inductor 21 is connected between the center tap l1 and the terminal 16.
- the transistor 22 normally draws a current 1 which is preferably approximately 1 /3.
- the currents in the transistors 12 and 13 change differentially and the potentials of their collectors differ from V,. If the collector current in the transistor 12 increases, then its collector potential will fall below V,.
- An auxiliary control circuit 23 is provided which reduces the current 1 flowing through the transistor 22 when-' ever the collector potential in the transistor 12 falls below a threshold value V,,,,,,,. This decrease in 1 causes a decrease in I,,, so that the potential V applied to the deflector coil rises; Some of the energy for the deflection is thus removed from the inductor 21.
- the circuit 23 is of the nature of a threshold or'clipper circuit which only passes a signal to the base of the transistor 22 when the collector potential of the transistor 12 falls below V,,,,,,.
- a like circuit 24 is provided for the collector of transistor 13 so that the current in the transistor 22 is reduced irrespective of which collector potential falls.
- a single threshold circuit could'be used'with an OR input arrangement making it responsive to the lower of the two collector potentials.
- A is an input'waveform comprising a slow ramp 40 and a much faster ramp 41*.
- Waveform'B is the voltage waveform for the collector of transistor 12
- waveform'C is the corresponding waveform for the collector potential of transistor 13'.
- WaveformC is inverted with respect to B since the two transistors operate in push-pull.
- a slow ramp requires a very small voltage across the coil to produce the necessary rate .of change of current, so that a high supply voltage is not needed.
- This amplifier has the advantage that it operates on a low voltage V, but high voltage is available as required.
- the inductor must have a high inductance since several fast deflections may be required before the energy used can be replenished, and the supply voltage required depends on the number of fast deflections required per second.
- the inductor 21 provides the large voltages as required and also acts as the smoothing inductor of a switching regulator arranged to maintain the energy stored in the inductor by drawing current from the supply only as required.
- a switching regulator arranged to maintain the energy stored in the inductor by drawing current from the supply only as required.
- a deflection system for a cathode-ray tube comprising:
- a deflection system according to claim 1, wherein said coil has a center tap which is connected through the inductor to said other supply terminal.
- a deflection system according to claim 2, wherein there are two current amplifiers connected respectively between the two opposite ends of said coil and the said one of the supply terminals.
- a deflection system according to claim 3, wherein separate control circuits, individual to each of said two current amplifiers, are connected to said further amplifier to control the same in response to the potentials at the two opposite ends of said coil.
- a deflection system wherein a single control circuit is connected through an OR" gate to said further amplifier to control the same, whereby both the potentials at the two opposite ends of said coil are applied to the single control circuit.
- a deflection system according to claim 1, further includ ing a switchin re ulator circuit connected between said inductor and sai ot er supply terminal, whereby the switching regulator circuit passes current from the voltage supply to said inductor, when energy is withdrawn therefrom.
- said switching regulator circuit comprises a resistor, a switching transistor, and a switching control circuit responsive to changes in potential drop across said resistor, said switching transistor being connected between said resistor and said other supply terminal.
- a deflection system wherein a shunt diode is provided to supply current to said inductor until said switching transistor switches on, said shunt diode being connected between the said one supply terminal and the supply side of said resistor.
- a deflection system according to claim 1, wherein the current amplifiers are junction transistors.
- a deflection system for a cathode-ray tube comprising:
- a deflection coil connected from a center tapping thereof to a first of two supply terminals
- control circuit responsive to the collector potentials of said two junction transistors which is connected to the base of said further junction transistor to reduce the conduction thereof when either of said collector potentials crosses a threshold value
- a deflection system according to claim 10, further ineluding a switching regulator circuit connected between said inductor and said other supply terminal, whereby the switching regulator circuit passes current from the voltage supply to said inductor, when energy is withdrawn therefrom.
- said switching regulator circuit comprises a resistor, a switching transistor, a switching control circuit responsive to changes in potential drop across said resistor, said switching transistor being connected between said resistor and said first supply terminal, and a shunt diode connected between said second supply terminal and the supply side of said resistor whereby said diode supplies current to said inductor until said switching transistor switches on.
Landscapes
- Details Of Television Scanning (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB609168 | 1968-02-07 | ||
US83229869A | 1969-06-11 | 1969-06-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3582706A true US3582706A (en) | 1971-06-01 |
Family
ID=26240418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US832298A Expired - Lifetime US3582706A (en) | 1968-02-07 | 1969-06-11 | Deflection system for cathode-ray tubes |
Country Status (4)
Country | Link |
---|---|
US (1) | US3582706A (enrdf_load_stackoverflow) |
DE (1) | DE1903200A1 (enrdf_load_stackoverflow) |
FR (1) | FR1595484A (enrdf_load_stackoverflow) |
NL (1) | NL6900704A (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3743882A (en) * | 1970-10-15 | 1973-07-03 | Philips Corp | Circuit arrangement for generating an amplitude-modulated sawtooth voltage |
FR2287722A1 (fr) * | 1974-10-09 | 1976-05-07 | United Technologies Corp | Circuit d'alimentation de courant module conservateur d'energie |
US4588929A (en) * | 1983-05-25 | 1986-05-13 | Rca Corporation | Power supply and deflection circuit providing multiple scan rates |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155873A (en) * | 1961-04-18 | 1964-11-03 | Hughes Aircraft Co | Transistorized deflection circuit with selective feedback |
US3426241A (en) * | 1966-11-07 | 1969-02-04 | Gen Electric | Magnetic deflection system for cathode ray tubes |
-
1968
- 1968-12-26 FR FR1595484D patent/FR1595484A/fr not_active Expired
-
1969
- 1969-01-16 NL NL6900704A patent/NL6900704A/xx unknown
- 1969-01-23 DE DE19691903200 patent/DE1903200A1/de active Pending
- 1969-06-11 US US832298A patent/US3582706A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155873A (en) * | 1961-04-18 | 1964-11-03 | Hughes Aircraft Co | Transistorized deflection circuit with selective feedback |
US3426241A (en) * | 1966-11-07 | 1969-02-04 | Gen Electric | Magnetic deflection system for cathode ray tubes |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3743882A (en) * | 1970-10-15 | 1973-07-03 | Philips Corp | Circuit arrangement for generating an amplitude-modulated sawtooth voltage |
FR2287722A1 (fr) * | 1974-10-09 | 1976-05-07 | United Technologies Corp | Circuit d'alimentation de courant module conservateur d'energie |
US4588929A (en) * | 1983-05-25 | 1986-05-13 | Rca Corporation | Power supply and deflection circuit providing multiple scan rates |
Also Published As
Publication number | Publication date |
---|---|
DE1903200A1 (de) | 1969-08-21 |
FR1595484A (enrdf_load_stackoverflow) | 1970-06-08 |
NL6900704A (enrdf_load_stackoverflow) | 1969-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5107190A (en) | Means and method for optimizing the switching performance of power amplifiers | |
JPH0618564B2 (ja) | Nmr装置用勾配高速化回路 | |
US3582706A (en) | Deflection system for cathode-ray tubes | |
US3070727A (en) | Transistor circuit for applying sawtooth currents to an inductance | |
US2767364A (en) | Motor control system | |
US3111632A (en) | Transistor oscillator | |
US4864197A (en) | Horizontal deflection circuit for video display monitor | |
CA1191620A (en) | Magnetic deflection sweep amplifier with intelligent flyback | |
US3074020A (en) | Bistable multivibrator which changes states in response to a single limited range, variable input signal | |
US4229685A (en) | Electrical circuit for regulating the current in the windings of certain step motors | |
US3092753A (en) | Magnetic deflection apparatus for cathode ray type tube | |
US4262235A (en) | Deflection amplifier | |
US3365587A (en) | Circuit for generating large pulses of electrical currents having short rise and fall times | |
US3403288A (en) | Dynamic intensity corrections circuit | |
US3181008A (en) | Amplitude sensitive peak signal selector with compensating means | |
US3579023A (en) | Control apparatus | |
US4556825A (en) | Switching circuit | |
US3624417A (en) | High-speed pulse driver for modulators, magnetic memories, and the like, having a complementary push-pull output stage | |
GB1043376A (en) | Circuit for controlling beam deflection in cathode ray tubes | |
US4179643A (en) | Circuit for varying an operating voltage of a deflection amplifier of a magnetodynamic deflection system | |
GB1312943A (en) | Current-switching amplifiers | |
US3603967A (en) | Character generator | |
US3488552A (en) | Electro-magnetic deflection coil arrangements for cathode ray tubes | |
US2564279A (en) | Vibrator system for supplying a plurality of direct currents with different voltages | |
US4180765A (en) | High speed deflection yoke driver circuit |