US3578116A - Device for selective combustion in a multicylinder engine - Google Patents
Device for selective combustion in a multicylinder engine Download PDFInfo
- Publication number
- US3578116A US3578116A US775239A US3578116DA US3578116A US 3578116 A US3578116 A US 3578116A US 775239 A US775239 A US 775239A US 3578116D A US3578116D A US 3578116DA US 3578116 A US3578116 A US 3578116A
- Authority
- US
- United States
- Prior art keywords
- piston
- cylinder
- engine
- switch
- intake manifold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 20
- 239000000446 fuel Substances 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 33
- 230000007935 neutral effect Effects 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 8
- 230000000903 blocking effect Effects 0.000 claims description 4
- 239000012080 ambient air Substances 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 239000003570 air Substances 0.000 description 8
- 238000011109 contamination Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D17/00—Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
- F02D17/04—Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M3/00—Idling devices for carburettors
- F02M3/02—Preventing flow of idling fuel
- F02M3/04—Preventing flow of idling fuel under conditions where engine is driven instead of driving, e.g. driven by vehicle running down hill
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
Definitions
- the present invention relates to an apparatus for saving fuel and cleansing the exhaust gas in a multicylinder vehicle engine having at least one intake manifold with a carburetor means and a plurality of branches communicating engine cylinderinlets with the manifold.
- the reason for incomplete combustion of the supply gas mixture in the combustion chamber during coasting is due to the fact that the intake amount of air in the supply gas mixture decreases and a large amount of residual gas stays in the combustion chamber during the coasting, so that either ignition fails or the barely ignited combustion dies out without spreading through the combustion chamber;
- This is one of the problems related to the fundamental structure of 'intemal combustion engines, and the only way to effectively burn the supply gas mixture in the combustion chamber under such conditions is to increase the intake amount of the supply gas mixture to the combustion chamber.
- a known method of preventing air contamination is to retard the spark advance during idling, and to keep the enginerevolving speed at a comparatively high level, so as to improve the fuel combustion in the combustion chamber as far as possible.
- the idling throttle valve opening is increased to allow a large intake amount of the supply gas mixture during the deceleration.
- such niethod has a disadvantage in that the throttle valve cannot be opened widely due to the danger of overheating and the occurrence of run-on phenomenon.
- An object of the present invention is to obviate the aforesaid difficulties of the known air contamination preventing devices, by providing an improved device for effectively preventing the air contamination and at the same time reducing the fuel consumption.
- the operative principles of the device according to the present invention are as follows.
- Another object of the present invention is to fulfill the function of preventing air contamination without sacrificing the effectiveness of the engine-braking action, as experienced in the case of known device controlling the negative pressure at the intake manifold, and without causing any mechanical shocks as experienced with a known device limiting fuel shut off.
- FIG. 1 is a partial sectional plan view of the inlet pipe of a four-cylinder-type engine with a device according to the present invention, shown with a carburetor removed therefrom;
- FIG. 2 is a schematic composite vertical sectional view, prepared by combining a section at the line [HI and another section at the line II-Il of FIG. 1;
- FIGS. I and 2 a carburetor 1, having venturies 2 and throttle valves 3, is connected to an intake manifold 4 with branches 5, 6, 7, and 8.
- FIG. 1 illustrates .an engine with four cylinders, but the number of cylinders is not limited to four, but any other number of plural cylinders can be used.
- the dash-dot lines 9 of FIG. 2 represent a cylinder head.
- butterfly valves 10 are mounted on branches 6 and 7, in such a manner that the butterfly valves are rotatable around the shafts 11 secured to the intake manifold across the branches.
- An arm 12 is secured to the shaft 11.
- one end of a pipe 13 is connected to open in the wall of the intake manifold 4 at a position of upstream of the butterfly valves 10, and the opposite end of the pipe I3 is communicated with a cylinder 15 having a piston 14 slidably fitted therein.
- the piston 14 has a hollow chamber 14a formed inside thereof and communicated with the pipe 13, throughholes 14b communicating the hollow chamber to the outside of the piston 14, and an annular recess 14c formed on the outer periphery of the piston 14.
- the cylinder 15 has an annularrecess formed on the inner peripheral surface thereof.
- a port 16 is bored at the bottom of the annular recess 150 so as to communicate the inside of the cylinder 15 with another cylinder 20 to be described later.
- the cylinder 15 has an additional opening 17 bored in the proximity of the annular recess 150, a stop ring 18 fitted on the inner surface of the cylinder 15 at the right-hand end thereof for stopping the piston 14, and a spring 19 fitted between the left-hand end of the cylinder 15 and the left-hand end of the piston I4, as shown in FIG. 2.
- the cylinder 20 is connected to the aforesaid cylinder IS in such a manner that the port 16 communicates with the two cylinders 15 and 20.
- a piston 21 slidably fitted in said other cylinder 20 has a piston rod 22, which is connected to the free end of said arm through a link 23.
- a spring 24 is engaged with the arm 12 to force the arm 12 to a counterclockwise direction and the link 23 downwards, as seen in FIG. 2.
- the branches 6, 7 have holes 25 bored thereon at positions between the respective butterfly valves 10 and the cylinder I head 9.
- the holes 25 of the branches 6 and 7 are communicated with each other through a tube 26.
- a short open tube 27 is connected to the tube 26 so as to communicatethe inside of the tube 16 with the atmosphere.
- a valve lever 28 is pivotally supported by the branch passage portion 7 by means of a pin 29, to selectively close and open the upper end opening-of the open tube 27.
- a projection 30 is secured to the piston rod 22 in such a manner that when the butterfly valve 10 is closed, the projection 30 raises the free end of the valve lever 28 to open the upper end opening of the tube 27.
- a packing 31 is mounted on that portion of the valve lever 28 where the hole 27 engages the valve lever 28, and a spring 32 engages the valve lever 28 so as to bias the valve lever 28 toward the lowered position, as seen in FIG. 2, for keeping the open tube 27 closed.
- FIGS. 1 and 2 illustrate-the device under the conditions when the automobile is neither decelerating nor coasting.
- the thus increased negative pressure at the intake manifold is delivered to the space A, so as to pull up the piston 21.
- the arm 12 rotates clockwise, as shown by the arrow B in FIG. 2, through the piston rod 22 and the link 23, so as to close the butterfly valves 10, as shown by dash-dot lines.
- the supply gas mixture is absorbed only by the cylinder branches 5 and 8 having no butterfly valves 10, so that the amount of the supply gas mixture to the branches 5 and 8 is considerably increased and the combustion conditions in the engine is greatly improved.
- the downstream side space of the butterfly valves 10 is communicatable with the atmosphere through the holes 25, the tube 26, and the short open tube 26 blockable by the valve lever 28.
- the projection 30 secured to the piston rod 22 connected to the piston 21 engages the free end of the valve lever 28 upon the closure of the butterfly valve 10, so that the valve lever 28 turns clockwise against the elasticity of the spring 32, as seen in FIG. 2, to deblock the short tube 27.
- the atmospheric pressure enters into the back of the butterfly valves 10 through the short tube 27, the tube 26, and the holes 25.
- the pressure at the back of the butterfly valves 10 increases to insure the complete interruption of the supply gas mixture by stopping the leakage through fine gaps around outer periphery of the butterfly valves 10. Furthermore, the air delivered to the back of the butterfly valves 10 through the holes 25 proceeds to the exhaust tube and acts to oxidize the incompletely burnt hydrocarbons contained in the exhaust gas to convert them into hannless carbon dioxide gas. Thereby, the cleansing effect of the exhaust gas is further improved.
- FIG. 3 shows another embodiment of the device according to the present invention, in which an electric control means is incorporated.
- the electric control means comprises a vacuum switch 33 to sense the negative pressure at the intake manifold of an automobile engine, a solenoid valve 34 whose solenoid is connected in series with said vacuum switch 33, power source batteries BT connected in series with the series-connected vacuum switch 33 and the solenoid valve 34, and a manual switch 35 connected across the vacuum switch 33.
- the performance characteristics of the vacuum switch 33 is such that when the automobile is decelerated to reduce the negative pressure at the engine intake manifold, a diaphragm 36 is deflected downwards against the elasticity of a spring 37, as seen in FIG.
- the operation of the solenoid valve 34 is controlled by the vacuum switch 33, but the actuator of the solenoid valve in the device of the invention is not limited to only such vacuum switch.
- an accelerator switch, a clutch switch, and a gear neutral switch can be connected in series, so that the solenoid valve can be actuated only when i.e. accelerator is not stepped down while connecting the clutch with the gear at any position other than neutral position.
- FIG. 4 shows another embodiment of the present invention, using three electric switches, i.e. a clutch switch 46, an accelerator switch 47, and a gear neutral switch48, for the purpose of detecting the coasting operation of an automobile.
- FIG. 5 shows an electric switch 'usable in the embodiment of FIG. 4, which comprises brushes 49, 52, a push rod 51 made of electric insulating material, an electric conductor member 50 secured to the push rod 51, a bias spring 54, and terminals B and C.
- the solenoid valve can be actuated through such switches. More particularly, in FIG. 4, when an automobile runs in coasting mode, a circuit is completed, which traces from one terminal of the power source BT through switches 46, 47, 48, and the solenoid valve 34, and back to the opposite terminal of the power source BT.
- the solenoid 40 acts to pull an armature 41 rightwards against the elasticity of a spring 42 to communicate a pipe 13 to the space A above a piston 21, in the same manner as the preceding embodiment described hereinbefore referring to FIG. 3.
- the right-hand end 44 'of the armature 41 blocks an opening 45 communicating the inside of the solenoid valve to the outside atmosphere.
- the manual switch 35 in the circuit of FIG. 3 or FIG. 4 can be closed to improve the fuel consumption in a multicylinder engine during low speed running by actuating only a part of the multicylinders. More particularly, with the switch 35 thus closed, the supply gas mixture delivered to nonvalved cylinders burns well, while those valved cylinders do not receive any supply gas mixture at all, and hence, the overall fuel combustion rate is improved. Thus, the fuel consumption can be improved.
- a perfect balance of engine can be maintained by interrupting the intake of the supply gas mixture to the fourth, fifth, and sixth cylinders.
- the extent of the interrupting of the intake of the supply gas mixture is not limited to one half of all the cylinders of an engine. if the balance does not present any serious problems to a particular engine, any number of cylinders of the engine may be clocked against the supply of the mixture during deceleration and coasting.
- the fuel supply mechanism to a multicylinder engine is so constructed that during deceleration, the intake of the supply gas mixture is interrupted to some of the engine cylinders, so that the amount of the supply gas mixture delivered to each of the remaining cylinders is increased as compared with the corresponding amount for the case of delivering the mixture to all the cylinders.
- the compression pressure is increased accordingly, for instance when the mixture supply to two cylinders of a four-cylinder engine is interrupted, the compression pressure in the remaining cylinders is roughly doubled.
- the compression pressure exceeds the combustion limit pressure, and accordingly, perfect explosion takes place in the cylinders which is receiving the supply gas mixture. Therefore, the amount of raw hydrocarbons exhausted without burning can be greatly reduced, as compared with the corresponding amount of known engines.
- a device for saving fuel and cleansing the exhaust gas in a multicylinder automobile engine having at least one intake manifold and a carburetor means communicating therewith, and a plurality of branch passages communicating said intake manifold with the engine cylinder inlets
- said apparatus comprising, a plurality of butterfly valves mounted in selected branch passages for isolating the engine cylinders connected thereto from said intake manifold, a first spring means biasing said butterfly valves to an open position, a first piston and cylinder assembly for closing said butterfly valves, connecting means connecting said butterfly valves with said first piston, a conduit means having one end thereof communicating with said intake manifold between said carburetor means and said butterfly valves and the other end thereof in communication with said first piston and cylinder assembly on that side of said first piston opposite said connecting means to communicate negative pressure from said intake manifold to said first piston to close said butterfly valve, the second piston and cylinder assembly connected in said conduit means, said second cylinder having a port therein communicating with the ambient atmosphere, said second piston having a first position for
- a device for saving fuel and cleansing the exhaust gases of a multicylinder engine as claimed in claim 1 further comprising, an opening in said selected branches of said intake manifold for communicating said selected cylinders with the ambient atmosphere, said opening positioned in said selected branches between the butterfly valves and the engine cylinder inlets, and a valve means having a first position for blocking said openings and a second position for allowing the ambient air to enter said openings, said valve means normally biased to said first position and being controlled by said connecting means to open said opening when said first piston is actuated.
- Apparatus claimed in claim 1 wherein one end surface of said second piston is communicated with said conduit and the other end surface of said second piston being open to communicate with atmospheric pressure, whereby said second piston is urged to said first position by the pressure difference at both end surfaces prevailing at a coasting condition of the vehicle.
- Apparatus for saving fuel and cleansing exhaust gas in a multicylinder vehicle engine having at least one intake manifold with a carburetor means and a plurality of branches communicating engine cylinder inlets with the manifold, said apparatus comprising,
- a second cylinder communicating with said conduit means and having a port communicating with said first cylinder, a second piston slidably accommodated in said second cylinder and adapted to establish communication between said first cylinder and said conduit in one position and to interrupt said communication in a second position, and second spring means biasing said second piston to said second position,
- a solenoid valve means connected to said second cylinder means and operably connected to said second piston to urge said second piston to said one position when said solenoid valve is actuated
- sensing means responding to a coasting condition of the vehicle for actuating said solenoid valve, whereby said selected engine cylinders receive decreased fuel mixture supply to improve combustion when the vehicle is coastmg.
- sensing means comprises a negative manifold pressure sensing means including a vacuum switch connected to said solenoid valve and operably connected to said intake manifold for energizing said solenoid valve when said vehicle is coasting.
- said sensing means comprises, a clutch pedal actuated switch, said switch being closed when a clutch pedal of said vehicle is in the clutch-engaging position, an accelerator actuated switch, said switch being closed when an accelerator pedal of said vehicle is in the engine idle position, and a transmission gearshift neutral switch, said neutral switch being closed when a transmission of said vehicle is in a driving gear position, said clutch pedal switch, said accelerator pedal switch and said transmission gear switch being connected in series with said solenoid valve to actuate said solenoid when said switches are closed simultaneously.
- Apparatus as claimed in claim 6 further comprising, a manual switch shunting said clutch switch, accelerator switch and gear neutral switch.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Control Of Transmission Device (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP398668 | 1968-01-25 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3578116A true US3578116A (en) | 1971-05-11 |
Family
ID=11572333
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US775239A Expired - Lifetime US3578116A (en) | 1968-01-25 | 1968-11-13 | Device for selective combustion in a multicylinder engine |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3578116A (OSRAM) |
| FR (1) | FR1595799A (OSRAM) |
| GB (1) | GB1221470A (OSRAM) |
| SE (1) | SE348262B (OSRAM) |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3698371A (en) * | 1970-04-28 | 1972-10-17 | Toyo Kogyo Co | Surging prevention device for use in vehicle having multicylinder spark-ignition internal combustion engine |
| US3800772A (en) * | 1971-12-21 | 1974-04-02 | Volkswagenwerk Ag | Process for preheating an exhaust gas purifying device |
| US3874358A (en) * | 1974-03-20 | 1975-04-01 | Crower Cams And Equipment Comp | Engine conversion system |
| US4030293A (en) * | 1974-05-20 | 1977-06-21 | Nissan Motor Co., Ltd. | Multi-cylinder internal combustion engine |
| US4036014A (en) * | 1973-05-30 | 1977-07-19 | Nissan Motor Co., Ltd. | Method of reducing emission of pollutants from multi-cylinder engine |
| US4061055A (en) * | 1975-08-28 | 1977-12-06 | Nissan Motor Co., Ltd. | Fuel injection control system for an internal combustion engine of a vehicle |
| US4070994A (en) * | 1975-11-10 | 1978-01-31 | Dudley B. Frank | Modification for selectively operating a fraction of multiple rotors of a rotary engine |
| US4073278A (en) * | 1976-01-16 | 1978-02-14 | Glenn Edward R | Carburator |
| US4076003A (en) * | 1975-11-05 | 1978-02-28 | Dudley B. Frank | Split engine vacuum control fuel metering system |
| US4080948A (en) * | 1977-01-25 | 1978-03-28 | Dolza Sr John | Split engine control system |
| US4080947A (en) * | 1975-12-08 | 1978-03-28 | Nissan Motor Company, Limited | Apparatus and method for controlling ignition of multi-cylinder internal combustion engines with a passageway that bypasses throttle valve |
| US4106471A (en) * | 1975-06-24 | 1978-08-15 | Nissan Motor Company, Ltd. | Internal combustion engine system with an air-fuel mixture shut off means |
| US4112908A (en) * | 1976-06-28 | 1978-09-12 | Robert Kuitunen | Fuel system modification |
| US4130102A (en) * | 1977-09-01 | 1978-12-19 | George A. Stanford | Adaptor and control system arrangement for converting multiple cylinder carburetor engines for split operation |
| US4135484A (en) * | 1977-05-24 | 1979-01-23 | Malott John O | Coordinated and integrated fuel and auxiliary-exhaust system for internal combustion engines for automobiles |
| US4153033A (en) * | 1976-07-30 | 1979-05-08 | Nissan Motor Company, Limited | System for disabling some cylinders of internal combustion engine |
| US4194417A (en) * | 1977-10-12 | 1980-03-25 | Nissan Motor Company, Limited | Apparatus for improving fuel economy of multi-cylinder I. C. engine followed by automatic transmission via hydrokinetic unit |
| US4194416A (en) * | 1977-10-12 | 1980-03-25 | Nissan Motor Company, Limited | Control system for hydraulic pressure regulating valve in automatic transmission connected to multi-cylinder I.C. engine with means for operating the engine on selected cylinders of all |
| US4207856A (en) * | 1977-07-15 | 1980-06-17 | Nissan Motor Company, Limited | I.C. Engine operable in party-cylinder mode |
| US4216758A (en) * | 1978-03-22 | 1980-08-12 | Toyo Kogyo Co., Ltd. | Automobile fuel intake system |
| US4217795A (en) * | 1977-01-06 | 1980-08-19 | Nissan Motor Company, Limited | Engine load detection system for automatic power transmission |
| US4296719A (en) * | 1978-09-22 | 1981-10-27 | Toyo Kogyo Co., Ltd. | Multiple cylinder internal combustion engine having mixture cut off means |
| US4331113A (en) * | 1979-02-17 | 1982-05-25 | Toyo Kogyo Co., Ltd. | Device for selective combustion in a multi-cylinder engine |
| US4345432A (en) * | 1979-07-16 | 1982-08-24 | Toyo Kogyo Co., Ltd. | Exhaust gas purifying system for internal combustion engine |
| US4348994A (en) * | 1979-06-22 | 1982-09-14 | Nissan Motor Company, Limited | Internal combustion engine |
| US4365597A (en) * | 1979-11-15 | 1982-12-28 | Nissan Motor Company, Limited | Split type internal combustion engine |
| US4376426A (en) * | 1979-12-20 | 1983-03-15 | Nissan Motor Company, Limited | Split type internal combustion engine |
| US4502435A (en) * | 1978-03-24 | 1985-03-05 | Mazda Motor Corporation | Intake system for multiple cylinder internal combustion engine |
| CN103016179A (zh) * | 2011-09-23 | 2013-04-03 | 福特全球技术公司 | 在滑行操作模式下操作机动车辆的方法及装置 |
| US20130116906A1 (en) * | 2011-09-23 | 2013-05-09 | Ford Global Technologies Llc | Method and Device for Operating a Motor Vehicle With an Internal Combustion Engine in a Coasting Operating Mode |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4449496A (en) * | 1980-09-10 | 1984-05-22 | Suzuki Motor Company Limited | Cylinder-number-controlled engine |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1410098A (en) * | 1920-07-13 | 1922-03-21 | George M Hamilton | Fuel-control mechanism for internal-combustion engines |
| US2114655A (en) * | 1935-02-26 | 1938-04-19 | William E Leibing | Method and apparatus for operating internal combustion engines |
| US2250814A (en) * | 1937-08-30 | 1941-07-29 | Karl W Rohlin | Internal combustion engine of the multicylinder type |
| GB771649A (en) * | 1955-08-25 | 1957-04-03 | Moorwood Arthur George | A fuel economising device for internal combustion engines |
| CA651837A (en) * | 1962-11-06 | Maurice E. Bale, Jr. | Engine device for reducing unburned hydrocarbons | |
| CA653400A (en) * | 1962-12-04 | M. Udale Stanley | Fuel supply system |
-
1968
- 1968-11-13 US US775239A patent/US3578116A/en not_active Expired - Lifetime
- 1968-11-21 GB GB55220/68A patent/GB1221470A/en not_active Expired
- 1968-11-25 SE SE16005/68A patent/SE348262B/xx unknown
- 1968-11-28 FR FR1595799D patent/FR1595799A/fr not_active Expired
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA651837A (en) * | 1962-11-06 | Maurice E. Bale, Jr. | Engine device for reducing unburned hydrocarbons | |
| CA653400A (en) * | 1962-12-04 | M. Udale Stanley | Fuel supply system | |
| US1410098A (en) * | 1920-07-13 | 1922-03-21 | George M Hamilton | Fuel-control mechanism for internal-combustion engines |
| US2114655A (en) * | 1935-02-26 | 1938-04-19 | William E Leibing | Method and apparatus for operating internal combustion engines |
| US2250814A (en) * | 1937-08-30 | 1941-07-29 | Karl W Rohlin | Internal combustion engine of the multicylinder type |
| GB771649A (en) * | 1955-08-25 | 1957-04-03 | Moorwood Arthur George | A fuel economising device for internal combustion engines |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3698371A (en) * | 1970-04-28 | 1972-10-17 | Toyo Kogyo Co | Surging prevention device for use in vehicle having multicylinder spark-ignition internal combustion engine |
| US3800772A (en) * | 1971-12-21 | 1974-04-02 | Volkswagenwerk Ag | Process for preheating an exhaust gas purifying device |
| US4036014A (en) * | 1973-05-30 | 1977-07-19 | Nissan Motor Co., Ltd. | Method of reducing emission of pollutants from multi-cylinder engine |
| US3874358A (en) * | 1974-03-20 | 1975-04-01 | Crower Cams And Equipment Comp | Engine conversion system |
| US4030293A (en) * | 1974-05-20 | 1977-06-21 | Nissan Motor Co., Ltd. | Multi-cylinder internal combustion engine |
| US4106471A (en) * | 1975-06-24 | 1978-08-15 | Nissan Motor Company, Ltd. | Internal combustion engine system with an air-fuel mixture shut off means |
| US4061055A (en) * | 1975-08-28 | 1977-12-06 | Nissan Motor Co., Ltd. | Fuel injection control system for an internal combustion engine of a vehicle |
| US4076003A (en) * | 1975-11-05 | 1978-02-28 | Dudley B. Frank | Split engine vacuum control fuel metering system |
| US4070994A (en) * | 1975-11-10 | 1978-01-31 | Dudley B. Frank | Modification for selectively operating a fraction of multiple rotors of a rotary engine |
| US4080947A (en) * | 1975-12-08 | 1978-03-28 | Nissan Motor Company, Limited | Apparatus and method for controlling ignition of multi-cylinder internal combustion engines with a passageway that bypasses throttle valve |
| US4073278A (en) * | 1976-01-16 | 1978-02-14 | Glenn Edward R | Carburator |
| US4112908A (en) * | 1976-06-28 | 1978-09-12 | Robert Kuitunen | Fuel system modification |
| US4153033A (en) * | 1976-07-30 | 1979-05-08 | Nissan Motor Company, Limited | System for disabling some cylinders of internal combustion engine |
| US4217795A (en) * | 1977-01-06 | 1980-08-19 | Nissan Motor Company, Limited | Engine load detection system for automatic power transmission |
| DE2802793A1 (de) * | 1977-01-25 | 1978-07-27 | Dolza Sen | Ladung bildendes system fuer einen brennkraftmotor |
| US4080948A (en) * | 1977-01-25 | 1978-03-28 | Dolza Sr John | Split engine control system |
| US4135484A (en) * | 1977-05-24 | 1979-01-23 | Malott John O | Coordinated and integrated fuel and auxiliary-exhaust system for internal combustion engines for automobiles |
| US4207856A (en) * | 1977-07-15 | 1980-06-17 | Nissan Motor Company, Limited | I.C. Engine operable in party-cylinder mode |
| US4130102A (en) * | 1977-09-01 | 1978-12-19 | George A. Stanford | Adaptor and control system arrangement for converting multiple cylinder carburetor engines for split operation |
| US4194417A (en) * | 1977-10-12 | 1980-03-25 | Nissan Motor Company, Limited | Apparatus for improving fuel economy of multi-cylinder I. C. engine followed by automatic transmission via hydrokinetic unit |
| US4194416A (en) * | 1977-10-12 | 1980-03-25 | Nissan Motor Company, Limited | Control system for hydraulic pressure regulating valve in automatic transmission connected to multi-cylinder I.C. engine with means for operating the engine on selected cylinders of all |
| US4216758A (en) * | 1978-03-22 | 1980-08-12 | Toyo Kogyo Co., Ltd. | Automobile fuel intake system |
| US4502435A (en) * | 1978-03-24 | 1985-03-05 | Mazda Motor Corporation | Intake system for multiple cylinder internal combustion engine |
| US4296719A (en) * | 1978-09-22 | 1981-10-27 | Toyo Kogyo Co., Ltd. | Multiple cylinder internal combustion engine having mixture cut off means |
| US4331113A (en) * | 1979-02-17 | 1982-05-25 | Toyo Kogyo Co., Ltd. | Device for selective combustion in a multi-cylinder engine |
| US4348994A (en) * | 1979-06-22 | 1982-09-14 | Nissan Motor Company, Limited | Internal combustion engine |
| US4345432A (en) * | 1979-07-16 | 1982-08-24 | Toyo Kogyo Co., Ltd. | Exhaust gas purifying system for internal combustion engine |
| US4365597A (en) * | 1979-11-15 | 1982-12-28 | Nissan Motor Company, Limited | Split type internal combustion engine |
| US4376426A (en) * | 1979-12-20 | 1983-03-15 | Nissan Motor Company, Limited | Split type internal combustion engine |
| CN103016179A (zh) * | 2011-09-23 | 2013-04-03 | 福特全球技术公司 | 在滑行操作模式下操作机动车辆的方法及装置 |
| US20130116906A1 (en) * | 2011-09-23 | 2013-05-09 | Ford Global Technologies Llc | Method and Device for Operating a Motor Vehicle With an Internal Combustion Engine in a Coasting Operating Mode |
| US8958969B2 (en) * | 2011-09-23 | 2015-02-17 | Ford Global Technologies, Llc | Method and device for operating a motor vehicle with an internal combustion engine in a coasting operating mode |
| CN103016179B (zh) * | 2011-09-23 | 2016-11-16 | 福特全球技术公司 | 在滑行操作模式下操作机动车辆的方法及装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| FR1595799A (OSRAM) | 1970-06-15 |
| SE348262B (OSRAM) | 1972-08-28 |
| DE1903413A1 (de) | 1969-08-07 |
| GB1221470A (en) | 1971-02-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3578116A (en) | Device for selective combustion in a multicylinder engine | |
| US4106471A (en) | Internal combustion engine system with an air-fuel mixture shut off means | |
| US3812832A (en) | Dual function thermal valve | |
| US3638626A (en) | Engine spark timing control device | |
| US3606871A (en) | Engine spark timing control device | |
| US4198940A (en) | Split operation type multi-cylinder internal combustion engine | |
| US3289659A (en) | Engine control device | |
| US3521609A (en) | Apparatus for controlling ignition time of automobile engine | |
| US3433242A (en) | Fluid bypass and pressure relief valve assembly | |
| US3768452A (en) | Engine exhaust gas recirculating control | |
| US4181105A (en) | Ignition timing control for internal combustion engine having a dual induction type intake system | |
| US4051823A (en) | Internal combustion engine | |
| US3800758A (en) | Temperature actuated engine spark vacuum control system | |
| US4077373A (en) | Ignition timing control device for an internal combustion engine | |
| US3698366A (en) | Engine spark timing control system | |
| ES424386A1 (es) | Aparato de control de admision para un motor de combustion interna. | |
| US4359034A (en) | Exhaust gas recirculation control system | |
| US4200083A (en) | Split operation type multi-cylinder internal combustion engine | |
| US3486595A (en) | Internal combustion engines | |
| US3712279A (en) | Vacuum spark advance cutoff | |
| US4296719A (en) | Multiple cylinder internal combustion engine having mixture cut off means | |
| US4098850A (en) | Orifice device for air flow restriction | |
| US4164205A (en) | Internal combustion engine having a dual induction type intake system | |
| US3919985A (en) | Variable size torch nozzle for internal combustion engine | |
| US3810452A (en) | Engine spark timing system control |