US3574493A - Vane-type pumps - Google Patents
Vane-type pumps Download PDFInfo
- Publication number
- US3574493A US3574493A US817827A US3574493DA US3574493A US 3574493 A US3574493 A US 3574493A US 817827 A US817827 A US 817827A US 3574493D A US3574493D A US 3574493DA US 3574493 A US3574493 A US 3574493A
- Authority
- US
- United States
- Prior art keywords
- rotor
- fluid
- shaft
- vane
- piston
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
- F01C21/0818—Vane tracking; control therefor
- F01C21/0854—Vane tracking; control therefor by fluid means
- F01C21/0863—Vane tracking; control therefor by fluid means the fluid being the working fluid
Definitions
- This invention is directed to improvements in fluid pressure energy translating devices of the vane type which include hydraulic means for vane control and which are known in the art as three-area devices. More specifically, the invention relates to valve means in a vane pump for preventing damage to the vane tips and the cam ring such as is normally encountered where there is an insufficient total force acting outwardly on the vanes as the vanes traverse the cam ring surface.
- a typicalhydraulic pump of the vane type includes a rotor having a plurality of radially movable vanes carried in slots around its periphery.
- vanes engage'the cam ring surface of a fixed stator or cam ring which surrounds the rotor.
- inlet and outlet ports open at spaced positions into the area between the periphery of the rotor and the cam surface and are swept or traversed sequentially by the vanes as the rotor turns, whereby fluid received at the inlet port is transferred by the vanes to the outlet port.
- the fluid pressures acting on two of the areas associated with each vane are substantially equal but act in opposite directions. And the forces resulting from these pressures thus tend to counteract each other.
- the first area comprises a surface on the radially outer end of the vane and is subjected to pressure which urges the vane inwardly in its slot.
- the second vane area comprises a surface and on the radially inner end of the vane. The second area is subjected to a pressure equal but opposed to that acting on the first area, which pressure urges the vane outwardly in its slot.
- a third area associated with each vane is also subjected to fluid pressure which urges the vane outwardly. Pressure on this third area provides a controlling hydraulic force which, in addition to centrifugal force, urges the vane outwardly to effect and maintain a fluid seal between the outer end of the vane or vane tip and cam ring surface.
- Three-area pumps of the type to which this invention relates include a rotor assembly having an internal pressure chamber and a pressure operated pin or piston associated with each vane, the piston being slidable in a bore intersecting the pressure chamber and leading radially to the vane. Fluid pressure in the chamber acts on the pistons and provides the third area force holding the vanes outwardly against the cam surface. Pressure is supplied to this chamber through passageways from a high-pressure zone of the pump whenever the pressure in the chamber tends to drop sufficiently below the pressure in the high-pressure zone.
- one object of this invention includes the provision of a pump including the three-area vane control principle in which the passageway through which fluid under pressure is supplied to the third area is contained wholly within the rotating assembly including the rotor body and shaft and, therefore, is not exposed to leakage paths (such as the mentioned clearance gaps) from which leakage of highpressure fluid from the high-pressure fluid passageway can occur.
- a further object of the present invention is to provide a valve means disposed in the internal passageway or conduit means for maintaining under pressure the fluid acting upon the pistons.
- FIG. 1 is a vertical longitudinal or axial sectional'view of a three-area vane-type pressure energy-translating device including the invention
- FIG. 2 is a view in section taken generally on line 2-2 of FIG. 1 and showing an enlarged view of the relative positions of'the fluid ports;
- FIG. 3 is an enlarged perspective view depicting the resilient sleeve structure used in one embodiment of the invention.
- FIG. 4 is an enlarged view of another embodiment showing a unitary shaft and rotor element which includes the features of this invention.
- the three-area vane pump of this invention is a first described with reference to FIG. 1 of the drawings. It includes a housing or casing formed by a body casing 10 having a generally cylindrical interior chamber. An end cap 11 having a cylindrical boss 12 telescopes into the end of the body and is sealed by an O-ring 13.
- the end wall 14 of the body opposite end cap 11 includes a bore through which the pump operating shaft 15 extends.
- Shaft 15 is supported for rotation in this bore by a bearing (not shown) which is secured against axial movement in the bore.
- Shaft 15 extends from the body 10 into end cap 11 and is carried for rotation therein by a plain bearing 16 mounted within a central bore 17 in the end cap 11.
- the bearing i6 is held against axial movement at one end by a snap ring 18.
- Cylindrical boss 12 of end cap 11 is finished to form a flat inner surface which is clamped against a side or radial face 19 of a cam ring or stator 20. It may be mentioned here that the cam ring itself as well as the housing and cam ring together is sometimes referred to in the art as a stator.
- a fluid intake passageway 21 extends radially into body 14 and communicates with a pair of annular channels 22, 23 which encircle the internal cavity within the body 14. These annular channels 22, 23 distribute fluid from the intake passageway 21 to suction ports later to be described in detail.
- the cam ring 20 is supported radially by an annular rib 24 formed in the body 11 between the annular channels 22, 23.
- the cam ring 20 encircles a rotor 25 which is connected to and supported by the shaft 15 through a motion permitting spline joint 26 that permits proper running alignment between the rotor, the flat surface of the cylindrical boss 19, and a movable cheek or port plate 27.
- the rotor 25 is provided with a plurality of radial vane slots 28 in each of which a radially pressure balanced vane 29 is mounted. This may best may be seen in FIG. 2 of the drawings.
- the cam ring 20 has a cam surface 30 that is contouredto provide a balanced or symmetrical pump construction in which there are diametrically opposite low-pressure or suction zones 31, fluid transfer zones 32, high-pressure or exhaust zones 33, and sealing zones 34 formed between the cam surface and the rotor 25. ln order to provide the opposed zones, the cam surface 30 is formed in part, by a first pair of arcs of equal radii which extend across the fluid transfer zones 32 and, in part, by a second pair of arcs of shorter radii than the first pair of arcs which extends across the sealing zones 34. These pairs of arcs are interconnected by cam surfaces which extend across the lowand high-pressure zones 31 and 33, respectively.
- Cheek plate 27 is finished to provide a smooth flat radial surface on the inner side thereof which abuts the cam ring 20.
- a central bore 35 in cheek plate 27 is surrounded by a cylindrical boss 36 which extends into the bore in the wall 14 of the body and is sealed by an O-ring 37.
- the outer cylindrical surface of cheek plate 27 is sealed with respect to body 10 by an O-ring 38.
- the cheek plate 27 is movable axially in the body 10 and is urged toward rotor 25 by fluid pressure supplied from the high-pressure zone 33 through passageways 39 and 40 to a pressure chamber 41 formed between the body and the outer face 31 of the cheek plate.
- the cheek plate functions in the nature of an axially movable, nonrotatable piston, under pressure supplied by the fluid in chamber 41 to maintain it in engagement with the adjacent side face of the cam n'ng'20.
- lntake passageway 21 communicates through annular channels 22 and 23 around cam ring to suction ports spaced 180 apart.
- Two suction ports, 43 and 44 shown in FIG. 2 are formed in cheek plate 27 and are fed by channel 23.
- Two additional suction ports are formed in end cap 11 and are fed by channel 22.
- These suction ports in the end cap and cheek plate are identical in shape and are axially aligned with the suction zone 31 between the rotor and cam surface 30.
- Each suction port has a branch passage, the opening of one of which is designated at 45, and the other of which is designated at 46, whereby these suction ports communicate with the inner ends 47 of vane slots 28 in the rotor 25 as well as with the inlet zones 31.
- the end cap 11 includes two diametrically opposed crescent-shaped exhaust or pressure ports 48 which are based substantially 90 from the suction ports.
- pressure ports 49 are formed in cheek plate 27 and are axially aligned with the pressure zones 33 and with ports 48 in the end cap 11.
- Each pressure port 48 and 49 communicates with the inner ends 47 of the vane slots 28 in the rotor 25 as the vane slots pass the ports through branch ports 50 and 51.
- Pressure ports 48 are connected with a fluid outlet or delivery port 52 by passageway 53 in the end cap 11.
- the cam surface progressively approaches the rotor 25 as it comes into close proximity with the periphery of the rotor 25 in the sealing zone 34. Fluid from the suction ports 43 and 44 is drawn into the fluid transport pockets defined between the successive vanes as those pockets become larger when the vanes 29 move through the suction zones 31. As the vanes move through the pressure zones 33, the volume of the pockets between the vanes diminishes and the fluid is positively displaced to effect a pumping action.
- Each vane 29 is provided with grooves 54 which are formed in the radially outer surface 70 and opposite side surfaces 71.
- One ore more channels or bores 55 are also provided in each vane which communicate between the outer groove 54 of the vane and the inner end 47 of the vane slot.
- the grooves 54 and channels or bores 55 insure that fluid pressure acting on the first area or outer end surface of any given vane will be substantially balanced at all times by the pressure acting on the secondary or inner end surface of that vane.
- seal 58 may be constructed from neoprene or any similar material. With some materials it may be desirable to bond seal 58 to rotor 25.
- a generally cylindrical piston or hydraulic actuator 59 is slidingly and sealingly disposed within the cylinder 56.
- Each piston 59 is closely fitted to the bore 56 so that leakage of fluid along the external walls of the piston is negligible.
- Fluid which is admitted under pressure to the radial bores 56 flows from the high-pressure chamber or exhaust port 53, through passageways 60 in end cap 11, ports 61 in bushing 16, ports 62 in shaft 15, port 63 in bushing 64, around check valve 65, spring 65', passageway 66 and into radially interconnecting passageways 67 through ports 68 in resilient seal 58 and thus into bores 56.
- the bushing 64, check valve 65 and spring 65 are retained within the shaft 15 by a threaded plug 69.
- the check valve 65 will maintain that fluid under pressure. If for any reason, the pressure of the fluid in the aforesaid mentioned passageway should become less than the pressure of the fluid in the outlet chamber 53, then high-pressure fluid will flow from chamber 53 past the check valve 65 and into the passageways previously described, thus maintaining the fluid in those passageways at a pressure substantially equal to the pressure in the outlet or exhaust chamber 53.
- FIG. 4 The basic elements of the pump are included in a modified embodiment of the invention which is illustrated in FIG. 4.
- Component elements of the pump 10 similar to components of the pump structure previously described are identified by the same reference numbers used in E10. 1.
- the embodiment illustrated in FIG. 4 of the drawings differs from the one shown in FIG. 1 in that the shaft and rotor in FIG. 4 is one unitary element 15, Le, the rotor and shaft are made of one piece of metal.
- the unitary rotor and shaft element 15 as illustrated in H6. 4 it is possible to eliminate the need for the seal 58 and spline connection 26, that are required with the multiple piece structure (rotor 25 and shaft 15) shown in H6. 1.
- a fluid energy-translating device of the vane type comprising:
- a casing having side and peripheral walls forming a rotor chamber, circumferentially spaced low and high-pressure ports in the walls;
- a rotor supported on a shaft for rotation in the chamber
- vanes mounted in vane slots in the rotor, the vanes and rotor cooperating with the side and peripheral walls to form fluid transfer pockets;
- imperforate piston means disposed in the rotor and operable to urge each vane outwardly, each piston having an end surface interconnected with the high pressure port by a fluid passage means, said passage means including a portion within said shaft into which pressure fluid is applied from said pressure port;
- one-way valve means in said passage means within said shaft for preventing release of fluid acting on the end surface of each piston.
- a fluid energy-translating device of the vane type comprising:
- a casing having side and peripheral walls forming a rotor chamber, circumferentially spaced lowand highpressure ports in the walls;
- vanes mounted in vane slots in the rotor, the vanes and rotor cooperating with the side and peripheral walls to form fluid transfer pockets;
- imperforate piston means disposed in the rotor and operable to urge each vane outwardly, each piston having an end surface interconnected with the high-pressure port by a fluid passage means internally of the shaft and rotor;
- passage means including a portion extending longitudinally within said shaft into which pressure fluid is admitted radially through said shaft, said passage means also including a portion in said rotor which opens to the end surfaces of the pistons;
- valve means in said longitudinal portion of said passage means for controlling the fluid acting on the end surface of each piston.
- a fluid energy-translating device of the vane type comprising:
- a casing having side and peripheral walls forming a rotor chamber, circumferentially spaced lowand highpressure ports in the walls;
- a rotor supported by a shaft for rotation in the chamber
- vanes mounted in vane slots in the rotor, the vanes and rotor cooperating with the side and peripheral walls to form fluid transfer pockets;
- imperforate piston means disposed in the rotor and operable to urge each vane outwardly, each piston having an end surface interconnected with the high-pressure port by a fluid passage means internally of the shaft and rotor;
- valve means for controlling the fluid acting on the end surface of each piston, said valve means being disposed in the fluid passage means internally of the shaft.
- a fluid energy-translating device of the vane type comprising:
- a casing having side and peripheral walls forming a rotor chamber, circumferentially spaced lowand highpressure ports in the walls;
- a rotor supported by a shaft for rotation in the chamber
- vanes mounted in vane slots in the rotor, the vanes and rotor cooperating with the side and peripheral walls to form fluid transfer pockets;
- imperforate piston means disposed in the rotor and operable to urge each vane outwardly, each piston having an end surface interconnected with the high-pressure port by a fluid passage means internally of the shaft and rotor;
- valve means for controlling the fluid acting on the end surface of each piston, said valve means being a spring biased ball-type check valve.
- a fluid energy-translating device of the rotary vane type comprising:
- a casing having side and peripheral walls forming a rotor chamber, circumferentially spaced fluid inlet and outlet ports in the wall, the peripheral wall having a cam surface;
- a rotor disposed upon a shaft and supported for rotation in the chamber
- vanes projecting from the rotor in slots, the vanes engaging the sidewalls and cam surface to form fluid transfer pockets;
- conduit means provided internally of the rotor and the shaft for supplying fluid under pressure from the outlet port to end surface of the pistons;
- valve disposed in the conduit means in the shaft for controlling the fluid acting on the end surface of each piston.
- a fluid energy-translating device of the vane type comprising:
- a casing having side and peripheral walls forming a rotor chamber, circumferentially spaced lowand highpressure ports in the walls;
- said rotor being integral with the shaft
- vanes mounted in vane slots in the rotor, the vanes and rotor cooperating with the side and peripheral walls to form fluid transfer pockets;
- imperforate piston means disposed in the rotor and operable to urge each vane outwardly, each piston having an end surface interconnected with the high-pressure port by a fluid passage means internally of the shaft and rotor;
- valve means for controlling the fluid acting on the end surface of each piston, said valve means being disposed in the passage means internally of the integral shaft and rotor.
- a fluid energy-translating device of the vane type comprising:
- a casing having side and peripheral walls forming a rotor chamber, circumferentially spaced lowand highpressure ports in the walls;
- vanes mounted in vane slots in the rotor, the vanes and rotor cooperating to form fluid transfer pockets;
- imperforate piston means disposed in the rotor and operable to urge each vane outwardly, each piston having an end surface interconnected with the high-pressure port by a fluid passage means internally of the unitary shaft and rotor and bearing means;
- valve means for controlling the fluid acting on the end surface of each piston.
- a fluid energy-translating device as defined in claim 8, wherein the fluid passageway passes through the sidewall of the bearing means.
- a fluid energy-translating device of the rotary vane type comprising:
- a casing forming side and peripheral walls forming a rotor chamber, circumferentially spaced fluid inlet and outlet ports in the wall, the peripheral wall forming a cam surface;
- a rotor connectedly disposed upon a shaft and supported for rotation in the chamber;
- vanes projecting from the rotor in slots, the vanes engaging the sidewalls and cam surface to form fluid transfer pockets;
- pistons disposed in the rotor in relation to each vane such that a force applied to the pistons will be applied outwardly to each vane;
- conduit means provided in the shaft, resilient seal and the rotor for supplying fluid under pressure from the outlet port to the underside of the pistons;
- valve disposed in the conduit means in the shaft for controlling the fluid acting on the end surface of each piston.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Hydraulic Motors (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US81782769A | 1969-04-21 | 1969-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3574493A true US3574493A (en) | 1971-04-13 |
Family
ID=25223968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US817827A Expired - Lifetime US3574493A (en) | 1969-04-21 | 1969-04-21 | Vane-type pumps |
Country Status (4)
Country | Link |
---|---|
US (1) | US3574493A (xx) |
DE (1) | DE2017595A1 (xx) |
FR (1) | FR2042065A5 (xx) |
GB (1) | GB1296775A (xx) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999905A (en) * | 1975-11-17 | 1976-12-28 | Caterpillar Tractor Co. | Rotary mechanism |
EP0068354A1 (en) * | 1981-06-22 | 1983-01-05 | Vickers Incorporated | A fluid pump or motor of the sliding vane type |
US4629406A (en) * | 1984-02-10 | 1986-12-16 | Atos Oleodinamica S.P.A. | Volumetric vane pump for fluid-hydraulic drive |
US5518379A (en) * | 1994-01-13 | 1996-05-21 | Harris; Gary L. | Downhole motor system |
US5642991A (en) * | 1996-03-11 | 1997-07-01 | Procon Products | Sliding vane pump with plastic housing |
US5785509A (en) * | 1994-01-13 | 1998-07-28 | Harris; Gary L. | Wellbore motor system |
US5833444A (en) * | 1994-01-13 | 1998-11-10 | Harris; Gary L. | Fluid driven motors |
US20050019161A1 (en) * | 2001-09-21 | 2005-01-27 | Hiroshi Ichikawa | Rotary fluid machine |
US20080253913A1 (en) * | 2005-09-30 | 2008-10-16 | Christian Langenbach | Vane Pump |
US20090104049A1 (en) * | 2007-10-18 | 2009-04-23 | Jie Jang | Sliding Vane Pump |
US20090291010A1 (en) * | 2004-12-16 | 2009-11-26 | Achim Koehler | Vane pump |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2531491A1 (de) * | 1975-07-15 | 1977-02-03 | Bosch Gmbh Robert | Fluegelzellenmaschine |
FR2479913B1 (fr) * | 1980-04-04 | 1985-09-13 | Sulzer Ag | Moteur hydrostatique a palettes a coulissement axial |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US674258A (en) * | 1900-03-16 | 1901-05-14 | Thomas Croston | Rotary engine. |
US2362420A (en) * | 1941-02-06 | 1944-11-07 | Hydraulic Dev Corp Inc | Vane pump |
US2808004A (en) * | 1952-02-19 | 1957-10-01 | John D Durant | Pumping mechanism |
US2818813A (en) * | 1954-09-09 | 1958-01-07 | Vickers Inc | Power transmission |
US2931314A (en) * | 1955-05-17 | 1960-04-05 | Sundstrand Corp | Air purging apparatus for pumps |
US3223044A (en) * | 1963-07-18 | 1965-12-14 | American Brake Shoe Co | Three-area vane type fluid pressure energy translating devices |
-
1969
- 1969-04-21 US US817827A patent/US3574493A/en not_active Expired - Lifetime
-
1970
- 1970-02-20 FR FR7006130A patent/FR2042065A5/fr not_active Expired
- 1970-04-10 GB GB1296775D patent/GB1296775A/en not_active Expired
- 1970-04-13 DE DE19702017595 patent/DE2017595A1/de active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US674258A (en) * | 1900-03-16 | 1901-05-14 | Thomas Croston | Rotary engine. |
US2362420A (en) * | 1941-02-06 | 1944-11-07 | Hydraulic Dev Corp Inc | Vane pump |
US2808004A (en) * | 1952-02-19 | 1957-10-01 | John D Durant | Pumping mechanism |
US2818813A (en) * | 1954-09-09 | 1958-01-07 | Vickers Inc | Power transmission |
US2931314A (en) * | 1955-05-17 | 1960-04-05 | Sundstrand Corp | Air purging apparatus for pumps |
US3223044A (en) * | 1963-07-18 | 1965-12-14 | American Brake Shoe Co | Three-area vane type fluid pressure energy translating devices |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999905A (en) * | 1975-11-17 | 1976-12-28 | Caterpillar Tractor Co. | Rotary mechanism |
EP0068354A1 (en) * | 1981-06-22 | 1983-01-05 | Vickers Incorporated | A fluid pump or motor of the sliding vane type |
US4629406A (en) * | 1984-02-10 | 1986-12-16 | Atos Oleodinamica S.P.A. | Volumetric vane pump for fluid-hydraulic drive |
US5833444A (en) * | 1994-01-13 | 1998-11-10 | Harris; Gary L. | Fluid driven motors |
US5785509A (en) * | 1994-01-13 | 1998-07-28 | Harris; Gary L. | Wellbore motor system |
US5518379A (en) * | 1994-01-13 | 1996-05-21 | Harris; Gary L. | Downhole motor system |
US5642991A (en) * | 1996-03-11 | 1997-07-01 | Procon Products | Sliding vane pump with plastic housing |
US20050019161A1 (en) * | 2001-09-21 | 2005-01-27 | Hiroshi Ichikawa | Rotary fluid machine |
US20090291010A1 (en) * | 2004-12-16 | 2009-11-26 | Achim Koehler | Vane pump |
US7878779B2 (en) | 2004-12-16 | 2011-02-01 | Robert Bosch Gmbh | Vane pump with housing end wall having an annular groove and a pressure groove that communicate via a curved connecting groove |
US20080253913A1 (en) * | 2005-09-30 | 2008-10-16 | Christian Langenbach | Vane Pump |
US7845922B2 (en) * | 2005-09-30 | 2010-12-07 | Robert Bosch Gmbh | Vane pump |
US20090104049A1 (en) * | 2007-10-18 | 2009-04-23 | Jie Jang | Sliding Vane Pump |
US8419384B2 (en) * | 2007-10-18 | 2013-04-16 | Standex International Corporation | Sliding vane pump |
Also Published As
Publication number | Publication date |
---|---|
FR2042065A5 (xx) | 1971-02-05 |
GB1296775A (xx) | 1972-11-15 |
DE2017595A1 (xx) | 1970-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3223044A (en) | Three-area vane type fluid pressure energy translating devices | |
US3574493A (en) | Vane-type pumps | |
US3216362A (en) | Flexible ring pump drive device | |
GB1465250A (en) | Positive displacement rotary screw machines | |
US2832293A (en) | Vane pump | |
US2725013A (en) | Rotary engine | |
US3221665A (en) | Hydraulic pump or motor with hydraulic pressure-responsive vane | |
US3401641A (en) | Three area vane type hydraulic pump having force modulating flow restrictor means | |
US3790307A (en) | Flow control arrangement for a piston pump | |
US2688924A (en) | Piston pump, in particular with eccentric drive | |
US2820417A (en) | Fluid pressure energy translating device | |
US2962972A (en) | Power transmission | |
US3563678A (en) | Pumps | |
US3737254A (en) | Regenerative rapid stroke reciprocating hydraulic pressure converter | |
US2823615A (en) | Pump with pressure loaded bushings | |
US4484863A (en) | Rotary vane pump with undervane pumping and an auxiliary outlet | |
US3762843A (en) | Van type rotary hydraulic transducer | |
US2739539A (en) | Power transmission | |
US3614274A (en) | Hydraulic rotary piston machine | |
US3567350A (en) | Power transmission | |
US3694114A (en) | Fluid flow machine with axially biassed rotor assembly | |
US3447476A (en) | Rotary fluid device | |
US2952215A (en) | Variable delivery high speed and pressure vane pump | |
US3650642A (en) | Pumping system including variable displacement vane pump | |
US3122104A (en) | Balance ring for pulsating fluid machinery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HAGGLUNDS DENISON CORPORATION, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABEX CORPORATION;REEL/FRAME:004737/0427 Effective date: 19870630 Owner name: HAGGLUNDS DENISON CORPORATION, 1220 DUBLIN ROAD, C Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ABEX CORPORATION, A CORP. OF DE;REEL/FRAME:004737/0427 Effective date: 19870630 |