US3571476A - Heating element and electric furnace equipped with such an element - Google Patents

Heating element and electric furnace equipped with such an element Download PDF

Info

Publication number
US3571476A
US3571476A US825306A US3571476DA US3571476A US 3571476 A US3571476 A US 3571476A US 825306 A US825306 A US 825306A US 3571476D A US3571476D A US 3571476DA US 3571476 A US3571476 A US 3571476A
Authority
US
United States
Prior art keywords
heating element
parts
electric furnace
suspension means
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US825306A
Other languages
English (en)
Inventor
Anne-Marie Anthony
Michele Faucher
Krzysztof Dembinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bpifrance Financement SA
Original Assignee
Agence National de Valorisation de la Recherche ANVAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agence National de Valorisation de la Recherche ANVAR filed Critical Agence National de Valorisation de la Recherche ANVAR
Application granted granted Critical
Publication of US3571476A publication Critical patent/US3571476A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces

Definitions

  • Heating elements of the type in question and electric furnaces comprising heating elements made of refractory materials are known, as well as preheating means and heat-insulating means.
  • the known heating elements and furnaces do not give satisfaction when it is necessary to reach very high temperatures, in particular temperatures which exceed 2,000 C.
  • An object of this invention is to remedy this disadvantage.
  • a heating element in accordance with this invention has the form of two hollow hemicylindrical parts, disposed face to face by their concave portions at a slight distance from each other, these two hemicylindrical parts being supplied with current at one of their ends and connected together at their other end by a common cylindrical part; and this heating element is characterized by the fact that, on the one hand, the exterior radii of the hemicylindrical parts and of the common cylindrical part, as well as the thicknesses of these parts, decrease from the end of the two hemicylindrical parts by which these latter parts are supplied with electric current, to the end of the common cylindrical parts, and by the fact that, on the other hand, the distance between the corresponding opposing edges of the two hemicylindrical parts decreases in the direction of the common cylindrical part.
  • a heating element in accordance with the invention is constituted in the form of a compound element, comprising two tubular elements disposed coaxially one inside the other and joined together by one of their ends, the other end of each of these two elements constituting one of the terminals of the compound element.
  • An electric furnace in accordance with the invention, comprises preheating means surrounding the heating element, the ensemble being disposed at the interior of a heat-insulating container, and this furnace is characterized by the fact that it comprises means on which the heating element is suspended at the interior of the cavity, formed by the container, by the ends of this heating element via which the electric current is supplied, the other end of the heating element being free, these suspension means being such that they prevent direct contact between the heating element and the constituent parts of the preheating means.
  • FIGS. 1 to 6, of these drawings show in section a first embodiment of a heating element according to the invention, as well as six variants of the suspension means according to the invention;
  • FIG. 7 shows in section a second embodiment of the heating element according to the invention, as well as the corresponding suspension means
  • FIG. 8 shows in axial section a heating element according to a variant of the invention
  • FIG. 9 shows in axial section a electric furnace according to the invention.
  • FIG. 10 is a sectional view of a part of the furnace of FIG. 9, arranged according to a variant.
  • FIG. 11 is a schematic diagram showing the means for supplying electricity to the various parts of that furnace.
  • the heating element designated as a whole by 1, comprises two concave hemicylindrical parts la and 1b disposed face to face at a slight distance from each other, and connected together by one of their ends by a common cylindrical part 2; the two hemicylindrical parts la and 1b are supplied with electric current via their respective free ends 3 and By the cooperation of the parts 1a and lb, a heating cavity C is delimited.
  • a collar 5 is provided, directed towards the exterior, and permitting the element 1 to be supported at the interior of the electric furnace (which will be described later on) by suspension means (which will also be described later on).
  • the element 1 in order to avoid the production of arcs in the cool parts by reason of the segregation of the impurities and of their volatilization, and in order not to disturb the transverse thermal gradient, the element 1 is established such that the distance d separating the corresponding opposing edges of the parts la and lb decreases from the free ends to the common part 2.
  • the common part 2 is given a length such that the cross section for the passage of current from one of the hemicylindrical parts to the other, this passage cross section being obtained by cutting the heating element through a diametrical plane passing through the slot separating the corresponding opposing edges of the parts In and lb, is at least equal to the cross section for the passage of current in the useful part of the heating element (which corresponds to the level of the part indicated by C in FIG. 4).
  • the part 2 is given a very short length, this part 2 being then reduced to a ring as can be seen in FIG. 3a
  • the thickness of the wall at the level of the useful part of the cavity C should be chosen smaller than 8 millimeters.
  • a heating element made of zirconia, which has given excellent results (it has not shown any sign of deterioration after having been maintained for more than 500 hours in service at a temperature of 2,000 C in air) has the following characteristics:
  • FIG. 8 One can then use a variant of the heating element (FIG. 8) which has the form of a compound element comprising two tubular elements 11 an 12 disposed coaxially one inside the other and joined together by one of their ends, designated respectively by 11a and 12a, the other end of each of these elements, these ends are designated respectively by 11b and 12b, constituting the terminals of the compound element.
  • the tubular elements 11 and !12 are constituted such that the ratio of the cross sections taken respectively at the level of the end forming the temiinal and at the level of the heating cavity, designated by C and delimited by the tubular element 12, is greater than 1.5. Moreover, in order to avoid a noncontinuous gradient of resistivity, the cross section of each of the tubular elements varies in a continuous manner between the heating cavity and the end forming the terminal.
  • tubular elements 11 and 12 In order to solidly join together the tubular elements 11 and 12 by their ends 11a and 12a which advantageously have the form shown in FIG. 8, there can be interposed between the mutually contacting surfaces of these ends, some powder of the constituent material of the tubular elements in question (for example zirconia-lime of formula ZrO -6 CaO), and the ensemble can be brought to a sufficient temperature to cause the joining by melting of the powder (temperature higher than 1,700 C).
  • some powder of the constituent material of the tubular elements in question for example zirconia-lime of formula ZrO -6 CaO
  • a powder of a compound for example A1 0 which forms with the zirconia a eutectic (1,700 C for A1 0 Due to this construction, the element 12 which delimits the cavity C being itself disposed at the interior of a heated cavity C delimited by the element 11, the conditions of heating in the cavity C are excellent from he isothermal point of view.
  • the electric furnace (FIG. 9) equipped with a heating element I such as described above, comprises preheating means designated as a whole by 22 which surround the heating element, the ensemble of the heating element and the preheating means being disposed at the interior of a cavity C coaxial with the cavity C of the heating element 1 and formed by this heatinsulating container designated as a whole by 23.
  • the heat-insulating container is surrounded by a metallic envelope 24 which can be cooled by circulation of water, and the samples to be studied are put in place at the interior of the furnace and extracted from this furnace by means of a movable sample-holder designated as a whole by 25.
  • this furnace comprises suspension means on which the element 1 is suspended by the collar mentioned above at the interior of the cavity formed by the heat-insulating means 23, these suspension means being such that they prevent direct contact between the element 1 and the constituent parts of the preheating means 22.
  • the preheating means 22 can be constituted as shown by a tube 29 in the form of a cylinder of revolution, made for example of sintered alumina, and comprising a winding constituted by an electric resistance 30 made, for example, of platinum, rhodium platinum, or an alloy such as kanthal or the like; these preheating means should be capable of bringing the temperature of the element 1 to more than I,0O0 C.
  • the heat-insulating container 23 can be made of ceramic bricks for high temperatures, for example of the IRAD type, and this container 23 is such that the temperature prevailing at the interior of the cavity C is in the neighborhood of the temperature of the element 1.
  • the preheating means and the heat-insulating means are such that the heating element can be brought to its starting temperature, that is to say the temperature at which it becomes electrically conductive, without the preheating winding becoming overheated, and such that the temperature around the heating element is homogeneous and relatively high.
  • good operation of the heating element requires that the following relation be satisfied 4T 1 T, T (1- with A the exponent of the exponential in the expression of the resistivity T temperature at the interior of the cavity C l T temperature of the heating element.
  • the metallic envelope 24 which surrounds the heat-insulating container 23 has a double wall, as visible in FIG. 9, which permits circulation of cooling liquid brought in by supply conduits 32a, 32b and evacuated by an evacuation conduit 33.
  • the cavity C communicates with the exterior via an upper opening 34 and a lower opening 35 opening both of which pass through the container 23 and the enveloped 24. Due to these openings, it is possible to bring into the cavity C a sample (not shown) intended to be studied.
  • the opening 34 is provided with an apertured tube 38 comprising a sighting device 39a for permitting the observation of the cavity C and the determination of the temperature which prevails there.
  • a second sighting device 39b is advantageously provided, passing through, as shown in FIG. 9, the envelope 24, the heat-insulating means 23 and the tube 29.
  • the sighting device 3912 permits in reality the interior of the cavity C to be observed via the slot formed by the parts la and lb," in FIG. 9 the element 1 has been shown in a position which is not its normal position and which is obtained by a rotation of about its axis.
  • the furnace and the sample holder 25 can be mounted on a common vertical support 40 fixed on a foot 41.
  • the foot 41 can comprise passages, not shown, for the inlet and the outlet of the water and for the electric supply.
  • the furnace is preferably maintained in a fixed position on the support 40, as shown, by a bracket P, whereas the sample holder 25 is connected to the support 40 by an arm 42 which can be moved along the support 40, for example by means of a rack system 43, known per se; this system is controlled by a handle 44.
  • a clamping screw 45 it is possible to immobilize the arm 42 in different positions around the support 40.
  • the suspension means which prevent direct contact between the element 1 and the preheating means 22 and on which is suspended the element 1, are constituted by elements 46 made of a metal resistant to oxidation, for example a metal of the platinum group. In the absence of such a precaution, a eutectic between the zirconia of the element 1 and the alumina of the tube 29 would be formed at high operating temperatures.
  • the suspension means which prevent direct contact between the element I and the preheating means 22 and on which is suspended the element I are
  • a first collar respectively 48a and 4812, directed towards the exterior and by which the semicylindrical elements 47a and 47b are suspended on parts of the heat-insulating means,
  • a second collar respectively 4% and 49b, directed towards the interior and on which rests the collar 8 of the element I.
  • the suspension means which prevent direct contact between the heating element and the constituent parts of the preheating means and on which is suspended the heating element comprise two parts, made of refractory oxides, bearing respectively the two hemicylindrical parts of the heating element; the ensemble is arranged such that no electric current can circulate between the two constituent parts of these suspension means, even if, by reason of temperatures of more than 2,000 C reached by the heating element, certain zones of these constituent parts of the suspension means become conductive of electricity.
  • the refractory oxides constituting respectively the suspension means and the heating element are chosen in such a manner that no reaction is possible between them; otherwise, metal elements resistant to oxidation are interposed.
  • the heating element is made of zirconia, this same material can advantageously be used for constituting the suspension means.
  • the suspension means comprise a tube 50, made of refractory oxide, slotted parallel to its axis along a certain part of its length by two tronconical slots 50a which open at one of its ends; the interior diameter D of the tube is chosen such that the two hemicylindrical parts of the element I can rest respectively by the collar 5 on the ends of the two parts of the tube 50, separated by the slots 50a.
  • the tube 50 is disposed as shown in FIGS. I and 2 in a support, designated as a whole by 5 I, which comprises water-or air-cooling means due to which it is avoided that the end of the tube becomes conductive of electricity.
  • the cooling means use water
  • the ensemble SI comprises for this purpose an annular circuit 52 through which can be made to flow the water brought in via an inlet 53 and flowing out via an outlet 54.
  • the cooling is by air
  • the ensemble 5i comprises cooling fins 55 disposed in a star.
  • the suspension means comprise two hemicylindrical pieces 56a and 56b of refractory oxide. These pieces are disposed face to face by their concave portion, the distance separating the corresponding opposing edges being at the least I millimeter in order to avoid any possible contact following deformation due to the elevation of the temperature.
  • These two pieces 56a and 56b are each composed of two parts of different thicknesses, E and E By the one of its parts whose thickness is smaller, each of these pieces supports one of the hemicylindrical parts of the heating element I in the same manner as the tube 50 of the embodiment of FIGS. I and 2.
  • the suspension means comprise an annular base 58 on which are fixed, as shown, for example cemented, two hemicylindrical parts 590 and 59b.
  • the relative disposition of the two parts 590 and 59b is such that their corresponding opposing edges are distant by at least I mm for the reasons as indicated above. It is by the free end of the two hemicylindrical parts that are supported the hemicylindrical parts of the heating element I by the collar 5.
  • the heating element I rests by the collar 5 on the edge of a hole formed in a plate 61 whichis placed on a tube 62 and which is separated by a slot 63 into two portions joined together by a zone 6Ia situated in a region sufiiciently cool so that there is no current leakage between the two portions of the plate.
  • FIG. 5 there has been shown, schematically, the tube 29 which is housed at the interior of the tube 62, on which rests the plate 6i, the ensemble being placed in the cavity C of the electric furnace.
  • the thickness of the plate 61 is small but at least equal to 2 millimeters.
  • the suspension means are constituted by a tube 65 slotted parallel to its axis along a certain part of its length by two slots 66 diametrically opposed, of width m, this tube 65 comprising at the end where the slots 66 open, a collar 67 directed towards the exterior.
  • the two hemicylindrical parts of the element I can bear by their interior collar 8 on the collar 67 of the two parts of the tube 65.
  • the value of m is at least 1 millimeter.
  • the cylindrical part of the tube 65 is situated in a region where the tempera tures are sufficiently low to avoid any current leakage.
  • the ensemble constituted by the element 1 and the suspension means is placed at the interior of the tube 29.
  • the suspension means have a sufficient length below the part 2 of the element I so that their end which must not become conductive is placed outside the influence of the winding 30.
  • the clamping means shown in FIGS. 9 and 10, which maintain the current inputs 26a and 26b against the ends 3 and 4 can be constituted by two semicylindrical elements 70a and 7% whose form can be seen from FIGS. 9 and I0. These elements are maintained in place, either by a centering member 71 whose form appears in FIG. 9 with regard to the first embodiment, or by a centering member 72 whose form appears in FIG. I0 and which cooperates with the elements 47a and 4712 with regard to the second embodiment.
  • the electric current arrives at the current inputs 26a and 2612 as well as at the resistance 30 from an electric socket 74, indicated schematically in FIG. 9.
  • the means for supplying electricity to the preheating resistance 30 on the one hand, and to the heating element I on the other hand, are arranged such that they assure the stability of the temperature of the element I.
  • FIG. II there is schematically shown an advantageous embodiment of these means which comprise a preheating circuit and a circuit for supplying the element 1, both of these circuits being connected to a source S of alternating current.
  • the preheating circuit supplies the resistance 30 by the intermediary of a mechanism 75 comprising a multioutput transformer which permits medium or high preheating according to the position of the setting of a time counter which is also contained in the mechanism 75. For, in order to guaranty a long life for the heating element, it is necessary to bring it slowly and regularly to the operating temperature.
  • a double contactor 76 is also provided on this circuit.
  • the time counter controls a medium preheating for 1 hour, then a high preheating until the tempera-.
  • the circuit for supplying the element I comprises, in series, besides the element I itself, an element 77 and a self-inductance of variable saturation 78 which will be described hereafter, as well as an amperemeter 79.
  • the element 77 is chosen such that it is capable of detecting the starting of the element I. It can be constituted, for example, by a resistance, as shown.
  • the starting of the element that is to say, the starting of current flow through the element 1, produces a difference of potential at the terminals of the re sistance 77. This difference of potential energizes a relay, not shown, provided in a conventional circuit-breaker device 80, which actuates the double-contactor 76; this double-contactor 76 then cuts off the preheating supply circuit.
  • the above-mentioned self-inductance of variable saturation comprises a control winding 78 a and a work winding 78b which is mounted in series with the element 1.
  • a control winding 78 a By acting on the intensity of the continuous current which flows through the control winding 78a, the magnetizing field in the work winding, and consequently, the impedance of this work winding, are varied.
  • the continuous current of variable intensity supplying the control winding is obtained with the aid of a variable autotransformer 81 and a rectifier bridge 82.
  • the autotransformer 81 is regulated so that the saturation voltage is such that the temperature of the element 1 stabilizes towards l,500 C. Once this temperature is reached, the temperature increase is continued by acting manually on the autotransformer 81.
  • the sample-holder 25 (FIG. 9), it comprises essentially a tubular element 84 fixed on the arm 42, for example by screwing as shown; the tubular element 84 comprises a member 85, in accordance with the invention, which is constituted by a tube element 86 which carries at each of its ends a plurality of jaws 87 (four in the present embodiment) which are operated in the manner of the jaws of a chuck and which are consequently capable of ensuring the clamping of a given sample along two circles, due to which it is possible to use the same member 85 for samples of different diameters varying within much wider limits than it would be possible to do with a conventional chuck having a single clamping circle.
  • a member 85 in accordance with the invention, which is constituted by a tube element 86 which carries at each of its ends a plurality of jaws 87 (four in the present embodiment) which are operated in the manner of the jaws of a chuck and which are consequently capable of ensuring the clamping of a given sample along two circles
  • the actuation of the jaws of the member 85 is obtained by the action of a screw 90 which can be screwed on the element 84, this screw thencooperating, due to an inclined plan 90a, with the jaws carried by one of the ends of the tube 86, the jaws carried by the other end of the same tube cooperating with an inclined plane 91 provided at the interior of the ele ment 84.
  • the furnace thus established has numerous advantages, in particular;
  • Electric furnace equipped with a heating element made of a refractory material resistant to oxidation and comprising two parts connected together at one'end, the other ends of these two parts constituting terminals via which electric current can be supplied to the heating element, said electric furnace comprising preheating means surrounding the heating element, t e ensemble formed by the heating element, the ensemble formed by the heating element and preheating means being disposed at the interior of a cavity formed by a heat-insulating container. said furnace further comprising suspension means on which the heating element is suspended at the interior of said cavity by the ends of said heating element by which the electric current is supplied, the other end of said heating element being free, said suspension means preventing direct contact between said heating element and said preheating means.
  • said suspension means which prevent direct contact between the heating element and the preheating means and'on which is suspended the heating element, are constituted by elements made of a metal resistant to oxidation.
  • said suspension means which prevent direct contact between the heating element and the preheating means and on which is suspended the heating element, comprise two semicylindrical elements, which have a first collar directed towards the exterior by which they are suspended on parts of the heat-insulating means and a second collar directed towards the interior by which they support the heating element.
  • said suspension means which prevent direct contact between the heating element and the preheating means and on which is suspended the heating element, comprise two parts made of refractory oxide and on which two parts bear respectively the two hemicylindrical parts of the heating element, said suspension means being arranged ina manner such that no electric current can circulate between the two constituent parts of said suspension means even if, by reason of temperatures higher than 2,000 C reached by the heating element, certain zones 7 of said constituent parts of the suspension means become conductive of electricity, the refractory oxides constituting respectively the suspension means and the heating element being chosen such that no reaction is possible between these two refractory oxides.
  • said suspension means on which is suspended the heating element comprise a tube partially slotted axially, resting by one of its ends in a cooled base and supporting the two hemicylindrical parts of the heating element by the ends of its two parts separated by the axial slots.
  • said suspension means on which is suspended the heating element comprise two hollow hemicylindrical parts disposed face to face at a slight distance from each other.
  • said suspension means on which is suspended the heating element comprise a plate having a central hole on the edge of which can be suspended the heating element, said plate being separated into two parts joined together by a common zone.
  • Electric furnace according to claim I further comprising means for supplying electricity comprising a preheating circuit and a circuit for supplying the heating element, the preheating circuit comprising a mechanism for regulating the intensity of preheating, and the circuit for supplying the heating element comprising an element for detecting the starting of the heating element and for causing the cutoff of the preheating circuit.
  • Electric furnace according to claim I further comprising a member constituted by a tube element carrying at each of its ends a plurality of jaws operated in the manner of the jaws of a chuck and consequently capable of gripping, along two circles, a sample intended to be maintained at the interior of the heating cavity of the heating element comprised by the furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Furnace Details (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
US825306A 1968-05-17 1969-05-16 Heating element and electric furnace equipped with such an element Expired - Lifetime US3571476A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR152366 1968-05-17
FR171236 1968-10-24
FR182837 1968-12-31

Publications (1)

Publication Number Publication Date
US3571476A true US3571476A (en) 1971-03-16

Family

ID=27244837

Family Applications (2)

Application Number Title Priority Date Filing Date
US825306A Expired - Lifetime US3571476A (en) 1968-05-17 1969-05-16 Heating element and electric furnace equipped with such an element
US00098831A Expired - Lifetime US3709998A (en) 1968-05-17 1970-12-16 Heating element for an electric furnace

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00098831A Expired - Lifetime US3709998A (en) 1968-05-17 1970-12-16 Heating element for an electric furnace

Country Status (3)

Country Link
US (2) US3571476A (de)
DE (2) DE1966175C3 (de)
GB (1) GB1278658A (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764718A (en) * 1972-01-27 1973-10-09 Dravo Corp Vacuum furnace with an electric heater assembly
US3800057A (en) * 1972-07-24 1974-03-26 Preussag Ag Electrically heated furnace utilizing ceramic heating elements
US3835296A (en) * 1972-01-27 1974-09-10 Dravo Corp Improvement in industrial electric resistance heater
US4152572A (en) * 1974-06-10 1979-05-01 Daido Steel Co., Ltd. Method of applying electrodes to high temperature heating elements for use in resistance furnaces

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2307431A1 (fr) * 1975-04-11 1976-11-05 Commissariat Energie Atomique Four a elements chauffants ceramiques
JPS55110829A (en) * 1979-02-15 1980-08-26 Tokai Rika Co Ltd Ceramic heat generating body for cigaret lighter
US4475029A (en) * 1982-03-02 1984-10-02 Nippondenso Co., Ltd. Ceramic heater
JPS59174593A (ja) * 1983-03-25 1984-10-03 Toshiba Corp 単結晶製造装置用発熱抵抗体
JPS62169321A (ja) * 1986-01-21 1987-07-25 Hitachi Ltd 真空蒸着用蒸発源
CN107432058B (zh) * 2015-05-15 2020-08-25 株式会社东热 熔液保持炉用加热器保护管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160693A (en) * 1962-04-26 1964-12-08 Titanium Metals Corp Furnace for determining melting points of metals
US3213177A (en) * 1963-06-04 1965-10-19 Gen Electric Resistance furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2271838A (en) * 1939-11-06 1942-02-03 Dow Chemical Co Electric furnace resistor element
US3057936A (en) * 1959-05-13 1962-10-09 Richard D Brew And Company Inc Electrical heating device
US3469013A (en) * 1966-11-04 1969-09-23 Varian Associates Segmented mesh type heating element formed with reinforcing mesh structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160693A (en) * 1962-04-26 1964-12-08 Titanium Metals Corp Furnace for determining melting points of metals
US3213177A (en) * 1963-06-04 1965-10-19 Gen Electric Resistance furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764718A (en) * 1972-01-27 1973-10-09 Dravo Corp Vacuum furnace with an electric heater assembly
US3835296A (en) * 1972-01-27 1974-09-10 Dravo Corp Improvement in industrial electric resistance heater
US3800057A (en) * 1972-07-24 1974-03-26 Preussag Ag Electrically heated furnace utilizing ceramic heating elements
US4152572A (en) * 1974-06-10 1979-05-01 Daido Steel Co., Ltd. Method of applying electrodes to high temperature heating elements for use in resistance furnaces

Also Published As

Publication number Publication date
DE1966175A1 (de) 1971-10-14
GB1278658A (en) 1972-06-21
DE1925087B2 (de) 1972-02-10
DE1966175C3 (de) 1974-01-03
DE1925087A1 (de) 1969-12-18
US3709998A (en) 1973-01-09
DE1966175B2 (de) 1973-05-30

Similar Documents

Publication Publication Date Title
US3571476A (en) Heating element and electric furnace equipped with such an element
Calverley et al. The floating-zone melting of refractory metals by electron bombardment
US3580976A (en) Device for regulating the temperature of glass at the outlet of a very high temperature glass melting furnace
US3636229A (en) Electrically resistive crucible
US3147328A (en) Electric glassmaking furnace
US3391236A (en) Electrode holder for glass melting furnace
Roberts et al. A MICRO‐FURNACE FOR TEMPERATURES ABOVE 1000°
Harris et al. Controlled atmosphere levitation system
Davenport et al. Design and performance of electric furnaces with oxide resistors
US9247586B2 (en) Unit for conductively heatable melting
US4072814A (en) Furnace for melting metal by the Joule effect
GB1186334A (en) Micro-Furnace
Geller A RESISTOR FURNACE, WITH SOME PRELIMINARY RESULTS UP TO 2,000 C
Sale An automatic spherical high temperature adiabatic calorimeter
US4152572A (en) Method of applying electrodes to high temperature heating elements for use in resistance furnaces
US2769074A (en) Pyristor-device for rapid measurement of high temperatures of fluids up to 4000 deg.
Alberman A Small High-Temperature High-Vacuum Furnace
Payne et al. A resistance-heated high temperature furnace for drawing silica-based fibres for optical communications
RU131180U1 (ru) Устройство для определения плотности металлических расплавов
Kitchener et al. Notes on the experimental technique of some physico-chemical measurements between 1000° and 2000° C
Lieberman et al. Design and Construction of a Self‐calibrating Dilatometer for High‐Temperature Use
US3218925A (en) Microscope furnace stage
Feild A Method for Measuring the Viscosity of Blast-furnace Slag at High Temperatures
Lambertson et al. Microfurnace for Thermal Microscopy and Studies at High Temperatures
Sowman et al. A Quenching Furnace for High‐Temperature Studies of Small Specimens