US3568764A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
US3568764A
US3568764A US855586A US3568764DA US3568764A US 3568764 A US3568764 A US 3568764A US 855586 A US855586 A US 855586A US 3568764D A US3568764D A US 3568764DA US 3568764 A US3568764 A US 3568764A
Authority
US
United States
Prior art keywords
fluid
tube
channel
outlet
tube sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US855586A
Inventor
Daniel J Newman
Louis A Klein
Richard T Britt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3568764A publication Critical patent/US3568764A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0282Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry of conduit ends, e.g. by using inserts or attachments for modifying the pattern of flow at the conduit inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings

Definitions

  • the invention relates to shell and tube heat exchangers, for indirect heat exchange between fluid streams, one of which is passed through the tubes while the other circulates through the shell of the unit external to the tubes.
  • a typical application is the preheating of the tail gas from a high pressure nitric acid process, prior to passing the tail gas through an expander-for power recovery, by passing the cold tail gas through the tubes of a heat exchanger.
  • the tail gas is heated by heat exchange with a hot process gas stream formed by the catalytic oxidation of ammonia vapor with air to form nitrogen oxides, for subsequent conversion to nitric acid.
  • the tube sheet tends to have substantially different temperatures at the sections where the tube side fluid is respectively admitted and removed.
  • these temperatures are substantially different, the thermal expansion of each part will be correspondingly different, resulting in different forces being exerted at the opposite sides of the joint between the tube sheet and shell.
  • Such differing stresses will lead to a relative loosening of part of the gasket seal at these points, or cracking of a welded seal when provided, requiring at least the tightening of the bolts after each heating or cooling of the unit, and ultimately requiring replacement of the gasket after a few cycles.
  • the difference in temperatures between, for example, the top and bottom of the tube sheet is minimized by providing a baffle and tube ferrules on the downstream half of the tube sheet so as to permit some inlet fluid to bypass to the outlet fluid side, thus making the latter half of the tube sheet temperature more nearly approach that of the inlet half.
  • Internal insulation can also be provided in the channel to minimize differences between top and bottom temperature, or these differences relative to the new uniform tube sheet temperature could become a problem.
  • the ferrules provided should be tapered or be a nonheat conductive material, not only to facilitate assembly but also to insure against their contacting the tube wall, which could permit transfer of heat from the tube side fluid to the tube sheet.
  • spacers could be provided on each ferrule, to permit some of the inlet gas to directly cool the tube wall before mixing with the outlet gas, thus further reducing temperature variations on the tube sheet.
  • the baffle or shield is supported and spaced from the outlet half of the tube sheet on ferrules rolled lightly into each outlet tube. Holesprovided in the channel partition plate permit the bypassing of sufficient inlet fluid to flow behind the shield and ferrules, and generally between the shield and the tube sheet, to hold the entire sheet at close to the inlet fluid temperature.
  • the external leakage problem may be transferred to some extent to the channel flange joint.
  • internal insulation may be provided in at least the top half of the head in order to further minimize temperature differences.
  • the outer edge of the shield is flanged in order to direct sufficient cooler fluid across the body flange from the space between the shield and the tube sheet, in order to minimize the temperature differences on the body flange without providing internal insula' 1011;
  • the primary advantage of the invention is that leakage problems due to differential thermal expansion of the tube sheet in shell and tube heat exchangers are prevented. Another advantage is that the apparatus is relatively simple to fabricate and install. A further'advantage is that temperature differences between the shell and head or channel are effectively prevented.
  • Another object is to provide an improved shell and tube heat exchanger.
  • a further object is to provide a shell and a tube heat exchanger in which a portion of the input tube side fluid is bypassed and utilized to minimize temperature differentials in the tube sheet.
  • An additional object is to prevent differential thermal expansion of members in a shell and tube heat exchanger.
  • Still another object is to contact the tube outlet side of the tube sheet of a shell and tube heat exchanger with a portion of the inlet fluid to prevent differential thermal expansion and leakage.
  • FIG. 1 is a sectional elevation view of one embodiment of the invention, as applied to a U-tube heat exchanger
  • FIG. 3 is an enlarged view of a portion of the apparatus of FIG. 1, showing structural details
  • FIG. 3 is a sectional elevation view of FIG. 2, taken on section 3-3,
  • FIG. 4 is a sectional elevation view of an alternative embodiment of the invention, as applied to one conventional type of shell and tube heat exchanger,
  • FIG. 5 is an enlarged view of a portion of the apparatus of FIG. 4, showing structural details
  • FIG. 6 is a sectional elevation view of FIG. 5, taken on section 6-6, and
  • FIG. 7 is a sectional elevation view of another alternative embodiment of the invention.
  • stream 1 is typically the cold tail gas from a high pressure nitric acid process, however stream 1 may in practice consist of any cold fluid which is to be heated, or any hot fluid which is to be cooled.
  • stream 1 will be described as a cold nitric acid process tail gas.
  • the cold gas stream 1 passes via nozzle 2 into the channel 3, which consists of a heat exchanger head.
  • An internal insulation layer 4 is provided over the entire inner surface of channel 3, and a partition 5 divides the channel 3 into a lower cold gas inlet section and an upper heated gas outlet section.
  • the cold gas flows from the lower section of channel 3 below partition 5 into the inlet section 6 of heat exchange U-tube which are mounted in tube sheet 7.
  • One tube is shown in the FIG.
  • the tube sheet 7 is mounted between channel 3 and the heat exchanger shell or body 8.
  • the resulting cooled gas stream is removed from shell 8 via lower nozzle 11 as stream 12, which is now passed to further heat exchange or process usage.
  • the heat exchanger U-tube is defined by the straight inlet section 6, the curved or semicircular return section 13, and the straight outlet section 14.
  • a tapered ferrule 15 is lightly rolled into the outlet end of tube 14, and the ferrule 15 is mounted on the baffle or shield 16 which extends upwards from partition 5 adjacent to and spaced from the tube sheet 7.
  • the baffle 16 is generally disposed substantially parallel with the tube sheet 7. The heated tail gas flowing through tube section 14 passes through ferrule 15 and is discharged into the upper heated gas outlet section of channel 3 beyond baffle 16, so that the heated tail gas does not contact or heat the tube sheet 7.
  • one or a series of openings 17 is provided in the section of the partition 5 between tube sheet 7 and shield 16.
  • a portion of the cold inlet gas stream 1 flows from the lower cold gas inlet section of channel 3 through the opening 17, and thereafter the cold gas portion flows upwards between tube sheet 7 and shield 16, thus serving to cool the tube sheet 7 and maintain tube sheet 7 at a substantially uniform temperature.
  • the cold gas portion next flows, around the upper end of shield 16, which is spaced from channel 3, and the cold gas portion then joins the main heated gas stream in the upper heated gas outlet portion of channel 3.
  • the heated tail gas is removed from channel 3 via nozzle 18 as stream 19, which is not at high pressure and elevated temperature and is suitable for passage to expansion and power recovery in a suitable gas turbine, expander or the like.
  • FIG. 2 a modified version of a portion of the structure of FIG. 1 is shown in enlarged sectional detail.
  • the ferrule 15 extends between shield 16 and tube sheet 7 and into tube section 14, and only the portion of ferrule 15 within tube 14 is tapered.
  • Ferrule 15 is joined to shield 16 by outer continuous weld 20, and tube 14 is joined to tube sheet 7 by outer continuous-weld 21.
  • the welds 20 and 21 provide a sealing effect against gas flow at the respective joints.
  • the tapered portion of ferrule 15 is centrally oriented within and spaced from tube 14 by the provision of a plurality of projecting shoulders or nubs 22, which are staggered about the inner periphery of tube 14, or the outer periphery of ferrule 15, so as to permit a portion of the cold gas flowing between shield 16 and tube 7 to flow into tube 14 through the annular passage between ferrule 15 and tube 14, and thereby provide a further cooling effect with respect to tube sheet 7.
  • Tube 14 may be rolled onto tube sheet 7 by the provision of spaced ridges 23.
  • FIG. 3 is a sectional view of FIG. 2, and shows the central ferrule 15, the tube 14 and the weld 21 in concentric coaxial alignment. The four spacers or nubs 22 extending inwards from tube 14 to contact with ferrule 15 are also shown.
  • Cold tail gas stream 24 flows via nozzle 25 into the lower cold gas inlet section of channel 26, which is divided into a lower section and an upper heated gas outlet section by partition 27.
  • the lower section of channel 26 is not provided with an internal layer of insulation.
  • the cold gas flows from the lower section of channel 26 into the plurality of tubes 28, the inlet ends of tubes 28 being mounted in tube sheet 29.
  • the gas outlet ends of the linear tubes 28 are mounted in tube sheet 30, which is provided with a floating head 31 for gas return to the plurality of linear tubes 32, with the tubes 28 and 32 being generally parallel and disposed within heat exchange shell 33 provided with head 34.
  • a hot fluid stream 35 which is typically a hot nitric acid process gas stream similar to stream 9 described supra, is passed via nozzle 36 into shell 33, and stream 35 flows upwards between tube sheet 29 and central baffle or partition 37 and external to tubes 28 and 32, thus heating the cold tail gas within tubes 28 and 32.
  • the hot gas next flows above baffle 37 and downwards between baffle 37 and tube sheet 30, and external to tubes 32 and 28, thus further heating the cold gas within tubes 32 and 28.
  • the resulting cooled gas is removed from shell 33 via nozzle 38 as stream 39, which is passed to process usage.
  • the heated tail gas flowing from tubes 32 next flows through ferrules 40, which are mounted in baffle or shield 41 and extend into tubes 32.
  • the baffle 41 extends upwards from partition 27 and is generally substantially parallel with tube sheet. 29, and is spaced from tube sheet 29.
  • one or a plurality of openings 42 is provided in partition 27, in the section of partition 27 between baffle 41 and tube sheet 29. A portion of the cold gas flows from the lower inlet section of channel 26 through opening 42 and upwards between baffle 41 and tube sheet 29, and external to the ferrules 40, thus cooling the upper portion of the tube sheet 29 and maintaining element 29 at a substantially uniform temperature.
  • the cold gas portion next flows upwards and around the upper end of baffle 41, and joins the main stream of warmed gas discharged into the upper outlet section of channel 26 via ferrules 40.
  • the upper warmed gas outlet section of channel or head 26 is provided with an internal layer of insulation 43.
  • the warmed tail gas is removed from the upper section of channel 26 via nozzle 44 as stream 45, which is now passed to a suitable gas turbine, expander or the like.
  • FIG. 5 is an enlarged view of a portion of the apparatus FIG. 4, and shows an embodiment of the invention in which ferrule 4 is spaced from the tube 32 and within tube 32 by the provision of outer linear wires or rods on the outer surface of ferrule 40.
  • the ferrule 40 is attached to baffle 41 by outer seal weld 46, and the tube 32 is rolled into tube sheet 29 by ridges 47 and attached to tube sheet 29 by outer seal weld 48.
  • the longitudinal or linear wires 49 are attached to the outer surface of the portion of ferrule 40 within tube 32, and wires 49 are usually parallel to the axis of ferrule 40.
  • Elements 49 may consist of bars or rods in practice, and one or a plurality of elements 49 may be provided in suitable instances.
  • the inward flow of cold gas between ferrule 40 and tube 32 further serves to maintain the tube sheet 29 at a substantially uniform temperature, by cooling the end of tube 32 which is in contact with tube sheet 29.
  • FIG. 6 is a sectional view of FIG. 5, taken on section 6-6, and shows the concentric and coaxial arrangement of ferrule 40, tube 32 and weld 48, as well as three spacer wires 49 disposed between ferrule 40 and tube 32.
  • Cold gas stream 50 flows via nozzle 51 into the lower cold gas inlet section of the channel or head 52, which is divided by partition 53 into a lower inlet section and an upper warmed gas outlet section.
  • the cold gas flows from the lower section of channels 52 into tubes 54 which are mounted in tube sheets 55, which is mounted between head or channel 52 and shell 56.
  • a hot fluid is circulated in shell 56 external to tubes 54 and return tubes 57, which receive warmed gas from the discharge end of tubes 54 by suitable gas return means, not shown.
  • the tubes 57 discharge the warmed gas into ferrules 58, which are mounted in baffle 59.
  • the baffle 59 is spaced adjacent to and usually substantially parallel with tube sheet 55, and baffle 59 is disposed in the upper warmed gas outlet section of channel 52.
  • One or a plurality of openings 60 is progas outlet section of channel 52 from the upper end of baffle 59, and flange 61 is disposed adjacent to channel 52, so that the cold gas portion discharged upwards from between baffle 59 and tube sheet 55 is diverted laterally and adjacent to channel 52 by flange 61.
  • the portion of channel 52 adjacent to and connected with the upper portions of tube sheet 55 and shell 56 is also cooled by the cold gas portion admitted via opening 60.
  • the warmed gas discharged from ferrules 58 into the upper warmed gas outlet section of channel 52 combines adjacent to the terminus of flange 61 with the cold gas portion employed for cooling, and the warmed gas is then removed from the upper section of channel 52 via nozzle 62 as stream 63.
  • the invention is generally applicable to any type of shell and tube heat exchanger, and to the indirect heat exchange between any two fluids, either of which may be gaseous or liquid, and either of which may be warmed or cooled.
  • the streams 1, 24 or 50 may be a hot fluid which is to be cooled in the heat exchanger apparatus, in which case the improvement of the present invention will serve to maintain the respective tube sheet 7, 29 or 55 at a substantially uniform elevated temperature.
  • the portions'of this ferrules within the tubes will generally be spaced from the 'tube walls as described supra, in order to allow for inwards flow of a cold gas portion in the annular passage between the ferrule and the tube end as described supra.
  • the ferrules may alternatively be lightly rolled into the tubes, as shown in FIG. 1, in which case such gas flow would be restricted.
  • the heat exchanger may be operated in practice in a vertical, horizontal or inclined position, depending on process conditions, and the apparatus of the present invention is generally applicable to any process or facility requiring indirect heat exchange between a cold fluid and a hot fluid. In instances when one of the fluids is a gas or vapor, partial or total condensation of this fluid to the liquid state may occur in the apparatus.
  • one of the fluids is a liquid
  • partial or total vaporization of this fluid to the gaseous or vapor state may occur in the apparatus.
  • the apparatus is also applicable to instances when one or both of the fluids is a-gas-liquid mixture, such as a gas stream containing entrained liquid droplets.
  • An apparatus for exchanging heat' between a first fluid and a second fluid by indirect heat exchange which comprises a heat exchanger shell, a tube sheet extending across one end of said shell, a channel disposed about the outer side of said to the fluid inlet end of said outlet tube, means to pass said first fluid into said inlet chamber, whereby a first portion of said first fluid flows through said inlet tube, said fluid transfer means and said outlet tube, a shield disposed in said fluid outlet chamber, said shield being substantially parallel with and spaced from the portion of said tube sheet adjacent to said fluid outlet chamber, a ferrule, said ferrule being mounted in said shield and extending from said shield into said fluid outlet tube and spaced from the inner tube wall, whereby the first plortion of said first fluid discharged from said outlet tube ows through said ferrule and into said fluid outlet chamber,
  • a flange is provided on the outer edge of said shield, said flange extending into said tube sheet and connected to said shell, a partition in said channel, said partition extending to said'tube sheet and dividing said channel into a fluid inlet chamber and a fluid outlet chamber, at least one fluid inlet tube, said inlet tube extending into said shell from the portion of said tube sheet adjacent to said fluid inlet chamber, at least one fluid outlet tube, said outlet tube extending from said shell to an opening in the portion of said tube sheet adjacent to said fluid outlet chamber, means to transfer fluid from the discharge end of said fluid inlet tube fluid outlet chamber, whereby said second portion of said first fluid is directed parallel to said channel adjacent to the outer joint between said channel and said shell.
  • said apparatus of claim 1 in which said first fluid is a 12.
  • said gas is the cold tail gas from a nitric acid production process
  • said second fluid is a hot gas stream generated by the catalytic combustion of ammonia vapor with air to form a nitrogen oxides-rich gas stream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A baffle is provided adjacent to the outlet side of the tube sheet of a multiple tube pass heat exchanger. A portion of the input fluid is passed between the baffle and the tube sheet, rather than through the tubes, so that the tube sheet is maintained at a substantially uniform temperature. Ferrules pass the outlet gas portions from the tubes to the outlet chamber of the channel.

Description

United States Patent 4 4 3 3 H H 5 5 6 6 Sm m Mm m wTn u SMMM mPm CT mAuNe u nmm a a E m RELF U1 N6 6 N N 9 0 6 0 6 4 1 m R m w m m r B T d m h .m R .m m m h mm 9 M n 1 Jn m a M km w 393 DMLERZM m o m d v Wm .m AF H UN 7 UN.
[45 Patented Mar. 9, 1971 Primary ExaminerAlbert W. Davis, Jr. Atwrney.l. L. Chaboty HEATEXCHANQER ABSTRACT: A baffle is provided adjacent to the outlet side of 12 C 7 Drawing Flgsthe tube sheet of a multiple tube pass heat exchanger. A p0r- [52] US. 165/134, tion ofthe input fluid is passed between the baffle and the tube 165/158, 165/176 sheet, rather than throu [51] [50] FieldofSearch............................................
chamber of the channel.
PAIENTED MAR 9 l97l 568,764
sum 1 or 3 DANIEL J. NEWMAN LOUIS A. KLEIN RICHARD T. BRITT INVENTORS AGENT PATENTED m DANIEL J. NE LOUIS A. KLEIN RICHARD T BR! TT INVENTORS AGENT PATENTED MAR SIS?! sum 3 or DANIEL J. NEWMAN LOUIS A. KLEIN RICHARD 'l'. BRI'TT INVENTORS,
BY 0. 7K (7 a ENT HEAT sxcnnnonn BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates to shell and tube heat exchangers, for indirect heat exchange between fluid streams, one of which is passed through the tubes while the other circulates through the shell of the unit external to the tubes. A typical application is the preheating of the tail gas from a high pressure nitric acid process, prior to passing the tail gas through an expander-for power recovery, by passing the cold tail gas through the tubes of a heat exchanger. The tail gas is heated by heat exchange with a hot process gas stream formed by the catalytic oxidation of ammonia vapor with air to form nitrogen oxides, for subsequent conversion to nitric acid.
2. Description of the Prior Art Apparatus for fluid heat exchange involving the provision of thermal shields or the like for the formation of stagnant regions of reduced fluid flow is shown "in U.S. Pat. Nos.
1,651,875; 2,203,357; 2,252,069; 3,132,691 and 3,279,532. The provision of heat exchange between the tail gas produced by a nitric acid process and the hot effluent gas stream formed by catalytic ammoniaoxidation is described in U.S. Pat. application No. 409,507 filed Nov. 6, 1964 and now U.S. Pat. No. 3,467,492, granted Sept. 16, 1969.
In multiple pass heat exchangers heating or cooling at fluid through a large temperature range, great difficulty is experienced in maintaining a suitable seal between the tube sheet and the shell side fluid due to the differences in expansion resulting from the different temperatures at the inlet and the outlet tubes. For a typical shell and tube heat exchanger design, the tube sheet temperature tends to approach the temperature of the tubes in the pierced section since, unless boiling or condensing occurs on the shell side, heat transfer coefflcients inside the tubes will be higher than on the relatively stagnant shell side face of the tube sheet, and heat transfer surface areas contacting the tube side fluid inside the tube sheet is normally substantially greater than that contacting the shell side fluid on its face. In a multiple pass unit therefore, the tube sheet tends to have substantially different temperatures at the sections where the tube side fluid is respectively admitted and removed. When these temperatures are substantially different, the thermal expansion of each part will be correspondingly different, resulting in different forces being exerted at the opposite sides of the joint between the tube sheet and shell. Such differing stresses will lead to a relative loosening of part of the gasket seal at these points, or cracking of a welded seal when provided, requiring at least the tightening of the bolts after each heating or cooling of the unit, and ultimately requiring replacement of the gasket after a few cycles.
SUMMARY OF THE INVENTION In the present invention, the difference in temperatures between, for example, the top and bottom of the tube sheet is minimized by providing a baffle and tube ferrules on the downstream half of the tube sheet so as to permit some inlet fluid to bypass to the outlet fluid side, thus making the latter half of the tube sheet temperature more nearly approach that of the inlet half. Internal insulation can also be provided in the channel to minimize differences between top and bottom temperature, or these differences relative to the new uniform tube sheet temperature could become a problem.
The ferrules provided should be tapered or be a nonheat conductive material, not only to facilitate assembly but also to insure against their contacting the tube wall, which could permit transfer of heat from the tube side fluid to the tube sheet. Alternatively, spacers could be provided on each ferrule, to permit some of the inlet gas to directly cool the tube wall before mixing with the outlet gas, thus further reducing temperature variations on the tube sheet.
The baffle or shield is supported and spaced from the outlet half of the tube sheet on ferrules rolled lightly into each outlet tube. Holesprovided in the channel partition plate permit the bypassing of sufficient inlet fluid to flow behind the shield and ferrules, and generally between the shield and the tube sheet, to hold the entire sheet at close to the inlet fluid temperature. When the tube sheet is held to a more nearly constant temperature by the shield, the external leakage problem may be transferred to some extent to the channel flange joint. In order to further obviate such transfer of the temperature differential and leakage problem, internal insulation may be provided in at least the top half of the head in order to further minimize temperature differences. In an alternative embodiment, the outer edge of the shield is flanged in order to direct sufficient cooler fluid across the body flange from the space between the shield and the tube sheet, in order to minimize the temperature differences on the body flange without providing internal insula' 1011;
The primary advantage of the invention is that leakage problems due to differential thermal expansion of the tube sheet in shell and tube heat exchangers are prevented. Another advantage is that the apparatus is relatively simple to fabricate and install. A further'advantage is that temperature differences between the shell and head or channel are effectively prevented.
It is an object of the present invention to provide an im' provement in fluid heat exchangers.
Another object is to provide an improved shell and tube heat exchanger.
A further object is to provide a shell and a tube heat exchanger in which a portion of the input tube side fluid is bypassed and utilized to minimize temperature differentials in the tube sheet.
An additional object is to prevent differential thermal expansion of members in a shell and tube heat exchanger.
Still another object is to contact the tube outlet side of the tube sheet of a shell and tube heat exchanger with a portion of the inlet fluid to prevent differential thermal expansion and leakage.
These and other objects and advantages of the present invention will become evident from the description which follows.
EMBODIMENTS Referring now to the drawings, FIG. 1 is a sectional elevation view of one embodiment of the invention, as applied to a U-tube heat exchanger,
FIG. 3 is an enlarged view of a portion of the apparatus of FIG. 1, showing structural details,
FIG. 3 is a sectional elevation view of FIG. 2, taken on section 3-3,
FIG. 4 is a sectional elevation view of an alternative embodiment of the invention, as applied to one conventional type of shell and tube heat exchanger,
FIG. 5 is an enlarged view of a portion of the apparatus of FIG. 4, showing structural details,
FIG. 6 is a sectional elevation view of FIG. 5, taken on section 6-6, and
FIG. 7 is a sectional elevation view of another alternative embodiment of the invention.
Referring now to FIG. 1, stream 1 is typically the cold tail gas from a high pressure nitric acid process, however stream 1 may in practice consist of any cold fluid which is to be heated, or any hot fluid which is to be cooled. For purposes of clarity, stream 1 will be described as a cold nitric acid process tail gas. The cold gas stream 1 passes via nozzle 2 into the channel 3, which consists of a heat exchanger head. An internal insulation layer 4 is provided over the entire inner surface of channel 3, and a partition 5 divides the channel 3 into a lower cold gas inlet section and an upper heated gas outlet section. The cold gas flows from the lower section of channel 3 below partition 5 into the inlet section 6 of heat exchange U-tube which are mounted in tube sheet 7. One tube is shown in the FIG. The tube sheet 7 is mounted between channel 3 and the heat exchanger shell or body 8. A hot fluid stream 9, which in the case of a nitric acid production facility may consist of the hot gas mixture formed by catalytic ammonia oxidation to nitrogen oxides, is passed via nozzle into shell 8, and stream 9 flows downwards external to the heat exchanger U-tube and thereby becomes cooled by indirect heat exchange with the cold tail gas flowing within the U-tube. The resulting cooled gas stream is removed from shell 8 via lower nozzle 11 as stream 12, which is now passed to further heat exchange or process usage.
The heat exchanger U-tube is defined by the straight inlet section 6, the curved or semicircular return section 13, and the straight outlet section 14. A tapered ferrule 15 is lightly rolled into the outlet end of tube 14, and the ferrule 15 is mounted on the baffle or shield 16 which extends upwards from partition 5 adjacent to and spaced from the tube sheet 7. The baffle 16 is generally disposed substantially parallel with the tube sheet 7. The heated tail gas flowing through tube section 14 passes through ferrule 15 and is discharged into the upper heated gas outlet section of channel 3 beyond baffle 16, so that the heated tail gas does not contact or heat the tube sheet 7.
In accordance with the present invention, one or a series of openings 17 is provided in the section of the partition 5 between tube sheet 7 and shield 16. A portion of the cold inlet gas stream 1 flows from the lower cold gas inlet section of channel 3 through the opening 17, and thereafter the cold gas portion flows upwards between tube sheet 7 and shield 16, thus serving to cool the tube sheet 7 and maintain tube sheet 7 at a substantially uniform temperature. The cold gas portion next flows, around the upper end of shield 16, which is spaced from channel 3, and the cold gas portion then joins the main heated gas stream in the upper heated gas outlet portion of channel 3. The heated tail gas is removed from channel 3 via nozzle 18 as stream 19, which is not at high pressure and elevated temperature and is suitable for passage to expansion and power recovery in a suitable gas turbine, expander or the like.
Referring now to FIG. 2, a modified version of a portion of the structure of FIG. 1 is shown in enlarged sectional detail. The ferrule 15 extends between shield 16 and tube sheet 7 and into tube section 14, and only the portion of ferrule 15 within tube 14 is tapered. Ferrule 15 is joined to shield 16 by outer continuous weld 20, and tube 14 is joined to tube sheet 7 by outer continuous-weld 21. The welds 20 and 21 provide a sealing effect against gas flow at the respective joints. The tapered portion of ferrule 15 is centrally oriented within and spaced from tube 14 by the provision of a plurality of projecting shoulders or nubs 22, which are staggered about the inner periphery of tube 14, or the outer periphery of ferrule 15, so as to permit a portion of the cold gas flowing between shield 16 and tube 7 to flow into tube 14 through the annular passage between ferrule 15 and tube 14, and thereby provide a further cooling effect with respect to tube sheet 7. Tube 14 may be rolled onto tube sheet 7 by the provision of spaced ridges 23.
FIG. 3 is a sectional view of FIG. 2, and shows the central ferrule 15, the tube 14 and the weld 21 in concentric coaxial alignment. The four spacers or nubs 22 extending inwards from tube 14 to contact with ferrule 15 are also shown.
Referring now to FIG. 4, an alternative embodiment of the invention is illustrated in sectional elevation view. Cold tail gas stream 24 flows via nozzle 25 into the lower cold gas inlet section of channel 26, which is divided into a lower section and an upper heated gas outlet section by partition 27. The lower section of channel 26 is not provided with an internal layer of insulation. The cold gas flows from the lower section of channel 26 into the plurality of tubes 28, the inlet ends of tubes 28 being mounted in tube sheet 29. The gas outlet ends of the linear tubes 28 are mounted in tube sheet 30, which is provided with a floating head 31 for gas return to the plurality of linear tubes 32, with the tubes 28 and 32 being generally parallel and disposed within heat exchange shell 33 provided with head 34.
A hot fluid stream 35, which is typically a hot nitric acid process gas stream similar to stream 9 described supra, is passed via nozzle 36 into shell 33, and stream 35 flows upwards between tube sheet 29 and central baffle or partition 37 and external to tubes 28 and 32, thus heating the cold tail gas within tubes 28 and 32. The hot gas next flows above baffle 37 and downwards between baffle 37 and tube sheet 30, and external to tubes 32 and 28, thus further heating the cold gas within tubes 32 and 28. The resulting cooled gas is removed from shell 33 via nozzle 38 as stream 39, which is passed to process usage.
The heated tail gas flowing from tubes 32 next flows through ferrules 40, which are mounted in baffle or shield 41 and extend into tubes 32. The baffle 41 extends upwards from partition 27 and is generally substantially parallel with tube sheet. 29, and is spaced from tube sheet 29. In accordance with the present invention, one or a plurality of openings 42 is provided in partition 27, in the section of partition 27 between baffle 41 and tube sheet 29. A portion of the cold gas flows from the lower inlet section of channel 26 through opening 42 and upwards between baffle 41 and tube sheet 29, and external to the ferrules 40, thus cooling the upper portion of the tube sheet 29 and maintaining element 29 at a substantially uniform temperature. The cold gas portion next flows upwards and around the upper end of baffle 41, and joins the main stream of warmed gas discharged into the upper outlet section of channel 26 via ferrules 40. The upper warmed gas outlet section of channel or head 26 is provided with an internal layer of insulation 43. The warmed tail gas is removed from the upper section of channel 26 via nozzle 44 as stream 45, which is now passed to a suitable gas turbine, expander or the like.
FIG. 5 is an enlarged view of a portion of the apparatus FIG. 4, and shows an embodiment of the invention in which ferrule 4 is spaced from the tube 32 and within tube 32 by the provision of outer linear wires or rods on the outer surface of ferrule 40. The ferrule 40 is attached to baffle 41 by outer seal weld 46, and the tube 32 is rolled into tube sheet 29 by ridges 47 and attached to tube sheet 29 by outer seal weld 48. The longitudinal or linear wires 49 are attached to the outer surface of the portion of ferrule 40 within tube 32, and wires 49 are usually parallel to the axis of ferrule 40. Elements 49 may consist of bars or rods in practice, and one or a plurality of elements 49 may be provided in suitable instances. A portion of the cold gas stream, which is flowing upwards between baffle 41 and tube sheet 29, flows into tubes 32 via the annular passage between ferrule 40 and tube 32 maintained by the spacer wires 49. The inward flow of cold gas between ferrule 40 and tube 32 further serves to maintain the tube sheet 29 at a substantially uniform temperature, by cooling the end of tube 32 which is in contact with tube sheet 29.
FIG. 6 is a sectional view of FIG. 5, taken on section 6-6, and shows the concentric and coaxial arrangement of ferrule 40, tube 32 and weld 48, as well as three spacer wires 49 disposed between ferrule 40 and tube 32. I
Referring now to FIG. 7, an alternative embodiment of the invention is shown, which obviates any need or requirement for the provision of an internal layer of insulation on the inner surface of the channel. Cold gas stream 50 flows via nozzle 51 into the lower cold gas inlet section of the channel or head 52, which is divided by partition 53 into a lower inlet section and an upper warmed gas outlet section. The cold gas flows from the lower section of channels 52 into tubes 54 which are mounted in tube sheets 55, which is mounted between head or channel 52 and shell 56. A hot fluid is circulated in shell 56 external to tubes 54 and return tubes 57, which receive warmed gas from the discharge end of tubes 54 by suitable gas return means, not shown. The tubes 57 discharge the warmed gas into ferrules 58, which are mounted in baffle 59. In accordance with the present invention, the baffle 59 is spaced adjacent to and usually substantially parallel with tube sheet 55, and baffle 59 is disposed in the upper warmed gas outlet section of channel 52. One or a plurality of openings 60 is progas outlet section of channel 52 from the upper end of baffle 59, and flange 61 is disposed adjacent to channel 52, so that the cold gas portion discharged upwards from between baffle 59 and tube sheet 55 is diverted laterally and adjacent to channel 52 by flange 61. Thus, the portion of channel 52 adjacent to and connected with the upper portions of tube sheet 55 and shell 56 is also cooled by the cold gas portion admitted via opening 60. The warmed gas discharged from ferrules 58 into the upper warmed gas outlet section of channel 52 combines adjacent to the terminus of flange 61 with the cold gas portion employed for cooling, and the warmed gas is then removed from the upper section of channel 52 via nozzle 62 as stream 63.
Numerous alternatives within the scope of the present invention, besides those mentioned supra,-will occur to those skilled in the art. The invention is generally applicable to any type of shell and tube heat exchanger, and to the indirect heat exchange between any two fluids, either of which may be gaseous or liquid, and either of which may be warmed or cooled. Thus, the streams 1, 24 or 50 may be a hot fluid which is to be cooled in the heat exchanger apparatus, in which case the improvement of the present invention will serve to maintain the respective tube sheet 7, 29 or 55 at a substantially uniform elevated temperature. The portions'of this ferrules within the tubes will generally be spaced from the 'tube walls as described supra, in order to allow for inwards flow of a cold gas portion in the annular passage between the ferrule and the tube end as described supra. However, the ferrules may alternatively be lightly rolled into the tubes, as shown in FIG. 1, in which case such gas flow would be restricted. The heat exchanger may be operated in practice in a vertical, horizontal or inclined position, depending on process conditions, and the apparatus of the present invention is generally applicable to any process or facility requiring indirect heat exchange between a cold fluid and a hot fluid. In instances when one of the fluids is a gas or vapor, partial or total condensation of this fluid to the liquid state may occur in the apparatus. In instances when one of the fluids is a liquid, partial or total vaporization of this fluid to the gaseous or vapor state may occur in the apparatus. The apparatus is also applicable to instances when one or both of the fluids is a-gas-liquid mixture, such as a gas stream containing entrained liquid droplets.
We claim:'
1. An apparatus for exchanging heat' between a first fluid and a second fluid by indirect heat exchange which comprises a heat exchanger shell, a tube sheet extending across one end of said shell, a channel disposed about the outer side of said to the fluid inlet end of said outlet tube, means to pass said first fluid into said inlet chamber, whereby a first portion of said first fluid flows through said inlet tube, said fluid transfer means and said outlet tube, a shield disposed in said fluid outlet chamber, said shield being substantially parallel with and spaced from the portion of said tube sheet adjacent to said fluid outlet chamber, a ferrule, said ferrule being mounted in said shield and extending from said shield into said fluid outlet tube and spaced from the inner tube wall, whereby the first plortion of said first fluid discharged from said outlet tube ows through said ferrule and into said fluid outlet chamber,
at least one opening provided in said partition between said shield and said tube sheet, whereby a second portion of said first fluid flows through said opening and between said shield and said tube sheet, thereby maintaining the temperature level of the portion of said tube'sheet adjacent to said fluid outlet chamber at a temperature level approximately that of the valance of said tube sheet, said secondportion of said first fluid thereafter flowing into said fluid outlet chamber to mix with said first portion of said first fluid discharged from said ferrule, means to remove said first fluid from the fluid outlet chamber of said channel, and means to circulate said second fluid through said shell external to said fluid inlet tube and said fluid outlet tube, whereby heat is exchanged between said second fluid and said first portion of said first fluid flowing through said tubes.
2. The apparatus of claim 1, in which the extension of said ferrule within said fluid outlet tube is tapered.
3. The apparatus of claim 1, in which at least one spacer is provided between said ferrule and said fluid outlet tube, whereby part of said second portion of said first fluid flows between said ferrule and said outlet tube.
4. The apparatus of claim 1, in which internal insulation is provided on the inner surface of the portion of said channel defining said fluid outlet chamber.
5. The apparatus of claim 1, in which internal insulation is provided on the inner surface of all of said channel.
6. The apparatus of claim I, in which a flange is provided on the outer edge of said shield, said flange extending into said tube sheet and connected to said shell, a partition in said channel, said partition extending to said'tube sheet and dividing said channel into a fluid inlet chamber and a fluid outlet chamber, at least one fluid inlet tube, said inlet tube extending into said shell from the portion of said tube sheet adjacent to said fluid inlet chamber, at least one fluid outlet tube, said outlet tube extending from said shell to an opening in the portion of said tube sheet adjacent to said fluid outlet chamber, means to transfer fluid from the discharge end of said fluid inlet tube fluid outlet chamber, whereby said second portion of said first fluid is directed parallel to said channel adjacent to the outer joint between said channel and said shell.
7. The apparatus of claim 1, in which said means to transfer fluid from the discharge end of said fluid inlet tube to the fluid inlet end of said outlet tube is a second channel mounted on the opposed end of said shell.
8. The apparatus of claim 1, in which said means to transfer fluid from the discharge end of said fluid inlet tube to the fluid inlet end of said outlet tube is a curved tube section.
9. The apparatus of claim 8, in which said inlet tube, said curved tube section and said outlet tube define a U-tube for heat exchange.
10. The apparatus of claim 1, in which said first fluid is initially cooler than said second fluid, and said first fluid is heated by indirect heat exchange with said second fluid while flowing through said tubes.
11. The apparatus of claim 1, in which said first fluid is a 12. The apparatus of claim 11, in which said gas is the cold tail gas from a nitric acid production process, and said second fluid is a hot gas stream generated by the catalytic combustion of ammonia vapor with air to form a nitrogen oxides-rich gas stream.

Claims (12)

1. An apparatus for exchanging heat between a first fluid and a second fluid by indirect heat exchange which comprises a heat exchanger shell, a tube sheet extending across one end of said shell, a channel disposed about the outer side of said tube sheet and connected to said shell, a partition in said channel, said partition extending to said tube sheet and dividing said channel into a fluid inlet chamber and a fluid outlet chamber, at least one fluid inlet tube, said inlet tube extending into said shell from the portion of said tube sheet adjacent to said fluid inlet chamber, at least one fluid outlet tube, said outlet tube extending from said shell to an opening in the portion of said tube sheet adjacent to said fluid outlet chamber, means to transfer fluid from the discharge end of said fluid inlet tube to the fluid inlet end of said outlet tube, means to pass said first fluid into said inlet chamber, whereby a first portion of said first fluid flows through said inlet tube, said fluid transfer means and said outlet tube, a shield disposed in said fluid outlet chamber, said shield being substantially parallel with and spaced from the portion of said tube sheet adjacent to said fluid outlet chamber, a ferrule, said ferrule being mounted in said shield and extending from said shield into said fluid outlet tube and spaced from the inner tube wall, whereby the first portion of said first fluid discharged from said outlet tube flows through said ferrule and into said fluid outlet chamber, at least one opening provided in said partition between said shield and said tube sheet, whereby a second portion of said first fluid flows through said opening and between said shield and said tube sheet, thereby maintaining the temperature level of the portion of said tube sheet adjacent to said fluid outlet chamber at a temperature level approximately that of the valance of said tube sheet, said second portion of said first fluid thereafter flowing into said fluid outlet chamber to mix with said first portion of said first fluid discharged from said ferrule, means to remove said first fluid from the fluid outlet chamber of said channel, and means to circulate said second fluid through said shell external to said fluid inlet tube and said fluid outlet tube, whereby heat is exchanged between said second fluid and said first portion of said first fluid flowing through said tubes.
2. The apparatus of claim 1, in which the extension of said ferrule within said fluid outlet tube is tapered.
3. The apparatus of claim 1, in which at least one spacer is provided between said ferrule and said fluid outlet tube, whereby part of said second portion of said first fluid flows between said ferrule and said outlet tube.
4. The apparatus of claim 1, in which internal insulation is provided on the inner surface of the portion of said channel defining said fluid outlet chamber.
5. The apparatus of claim 1, in which internal insulation is provided on the inner surface of all of said channel.
6. The apparatus of claim 1, in which a flange is provided on the outer edge of said shield, said flange extending into said fluid outlet chamber, whereby said second portion of said first fluid is directed parallel to said channel adjacent to the outer joint between said channel and said shell.
7. The apparatus of claim 1, in which said means to transfer fluid from the discharge end of said fluid inlet tube to the fluid inlet end of said outlet tube is a second channel mounted on the opposed end of said shell.
8. The apparatus of claim 1, in which said means to transfer fluid from the discharge end of said fluid inlet tube to the fluid inlet end of said outlet tube is a curved tube section.
9. The apparatus of claim 8, in which said inlet tube, said curved tube section and said outlet tube define a U-tube for heat exchange.
10. The apparatus of claim 1, in which said first fluid is initially cooler than said second fluid, and said first fluid is heated by indirect heat exchange with said second fluid while flowing through said tubes.
11. The apparatus of claim 1, in which said first fluid is a gas.
12. The apparatus of claim 11, in which said gas is the cold tail gas from a nitric acid production process, and said second fluid is a hot gas stream generated by the catalytic combustion of ammonia vapor with air to form a nitrogen oxides-rich gas stream.
US855586A 1969-09-05 1969-09-05 Heat exchanger Expired - Lifetime US3568764A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85558669A 1969-09-05 1969-09-05

Publications (1)

Publication Number Publication Date
US3568764A true US3568764A (en) 1971-03-09

Family

ID=25321622

Family Applications (1)

Application Number Title Priority Date Filing Date
US855586A Expired - Lifetime US3568764A (en) 1969-09-05 1969-09-05 Heat exchanger

Country Status (1)

Country Link
US (1) US3568764A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254826A (en) * 1979-09-11 1981-03-10 Pvi Industries Inc. Modular heat exchanger
US4635711A (en) * 1985-02-15 1987-01-13 Harsco Corporation Double wall heat exchanger
US4735263A (en) * 1985-12-23 1988-04-05 Stein Industrie Flow control device for heat exchanger tube
EP0729002A3 (en) * 1995-02-27 1997-12-29 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
US6026804A (en) * 1995-12-28 2000-02-22 H-Tech, Inc. Heater for fluids
US6161613A (en) * 1996-11-21 2000-12-19 Carrier Corporation Low pressure drop heat exchanger
US6365114B1 (en) * 1999-02-10 2002-04-02 Eisenmann Maschinenbau Kg Reactor for performing a catalytic reaction
US7185698B1 (en) * 2004-01-22 2007-03-06 Bernert Jr Robert E Thermal shield for heat exchangers
US20080223561A1 (en) * 2007-01-26 2008-09-18 Hayward Industries, Inc. Heat Exchangers and Headers Therefor
US20080264617A1 (en) * 2007-04-26 2008-10-30 David Martin Heat exchanger
US7971603B2 (en) 2007-01-26 2011-07-05 Hayward Industries, Inc. Header for a heat exchanger
FR2963417A1 (en) * 2010-08-02 2012-02-03 Air Liquide U-SHAPED TUBE VAPORIZER
EP2482020A2 (en) 2011-01-31 2012-08-01 Haldor Topsøe A/S Heat exchanger
US20140090804A1 (en) * 2012-10-03 2014-04-03 Delio SAMZ Heat Exchanger
US20140238649A1 (en) * 2007-07-12 2014-08-28 Heatmatrix Group B.V. Heat exchanger
US20150068716A1 (en) * 2012-05-15 2015-03-12 Behr Gmbh & Co. Kg Exhaust gas heat exchanger
US20150107806A1 (en) * 2012-05-01 2015-04-23 Benteler Automobiltechnik Gmbh Double-walled heat exchanger tube
US20170045309A1 (en) * 2015-08-11 2017-02-16 Hamilton Sundstrand Corporation High temperature flow manifold
US9816767B2 (en) * 2016-01-12 2017-11-14 Hamilton Sundstrand Corporation Tubes and manifolds for heat exchangers
DE102016217765A1 (en) 2016-09-16 2018-03-22 Thyssenkrupp Ag Arrangement and method for the condensation of a hot acid gas mixture
WO2018184737A1 (en) * 2017-04-06 2018-10-11 Linde Aktiengesellschaft Heat exchanger, use of a heat exchanger and method for producing a heat exchanger
US11225807B2 (en) 2018-07-25 2022-01-18 Hayward Industries, Inc. Compact universal gas pool heater and associated methods
US11925900B2 (en) * 2018-03-01 2024-03-12 Casale Sa Process for reducing the content of NOx and N2O from a tail gas of a nitric acid process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001766A (en) * 1955-11-14 1961-09-26 Anaconda Co Heat exchange device for corrosive liquors
FR1378640A (en) * 1963-12-30 1964-11-13 Fluid cooling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001766A (en) * 1955-11-14 1961-09-26 Anaconda Co Heat exchange device for corrosive liquors
FR1378640A (en) * 1963-12-30 1964-11-13 Fluid cooling device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4254826A (en) * 1979-09-11 1981-03-10 Pvi Industries Inc. Modular heat exchanger
US4635711A (en) * 1985-02-15 1987-01-13 Harsco Corporation Double wall heat exchanger
US4735263A (en) * 1985-12-23 1988-04-05 Stein Industrie Flow control device for heat exchanger tube
EP0729002A3 (en) * 1995-02-27 1997-12-29 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
US5806585A (en) * 1995-02-27 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
EP1106952A3 (en) * 1995-02-27 2001-07-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
US6026804A (en) * 1995-12-28 2000-02-22 H-Tech, Inc. Heater for fluids
US6161613A (en) * 1996-11-21 2000-12-19 Carrier Corporation Low pressure drop heat exchanger
AU733794B2 (en) * 1996-11-21 2001-05-24 Carrier Corporation Low pressure drop heat exchanger
US6365114B1 (en) * 1999-02-10 2002-04-02 Eisenmann Maschinenbau Kg Reactor for performing a catalytic reaction
US7185698B1 (en) * 2004-01-22 2007-03-06 Bernert Jr Robert E Thermal shield for heat exchangers
US20080223561A1 (en) * 2007-01-26 2008-09-18 Hayward Industries, Inc. Heat Exchangers and Headers Therefor
US7971603B2 (en) 2007-01-26 2011-07-05 Hayward Industries, Inc. Header for a heat exchanger
US20110209851A1 (en) * 2007-01-26 2011-09-01 Vance Elliot Willis Header for a Heat Exchanger
US9353998B2 (en) 2007-01-26 2016-05-31 Hayward Industries, Inc. Header for a heat exchanger
US20080264617A1 (en) * 2007-04-26 2008-10-30 David Martin Heat exchanger
US20140238649A1 (en) * 2007-07-12 2014-08-28 Heatmatrix Group B.V. Heat exchanger
FR2963417A1 (en) * 2010-08-02 2012-02-03 Air Liquide U-SHAPED TUBE VAPORIZER
WO2012016915A1 (en) * 2010-08-02 2012-02-09 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude U-tube vaporizer
US9109795B2 (en) 2010-08-02 2015-08-18 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude U-tube vaporizer
CN103052861A (en) * 2010-08-02 2013-04-17 乔治洛德方法研究和开发液化空气有限公司 U-tube vaporizer
CN103052861B (en) * 2010-08-02 2016-04-13 乔治洛德方法研究和开发液化空气有限公司 U-tube vaporizer
CN102620580A (en) * 2011-01-31 2012-08-01 赫多特普索化工设备公司 Heat exchanger
US10767942B2 (en) 2011-01-31 2020-09-08 Haldor Topsoe A/S Heat exchanger
CN102620580B (en) * 2011-01-31 2016-12-14 赫多特普索化工设备公司 Heat exchanger
RU2599889C2 (en) * 2011-01-31 2016-10-20 Хальдор Топсеэ А/С Heat exchanger with u-shaped tubes, method of heat exchange between heat carrier and coolant and use of heat exchanger with u-shaped tubes
EP2482020A2 (en) 2011-01-31 2012-08-01 Haldor Topsøe A/S Heat exchanger
US9897387B2 (en) * 2012-05-01 2018-02-20 Benteler Automobiltechnik Gmbh Heat exchanger with double-walled tubes
US20150107806A1 (en) * 2012-05-01 2015-04-23 Benteler Automobiltechnik Gmbh Double-walled heat exchanger tube
US20150068716A1 (en) * 2012-05-15 2015-03-12 Behr Gmbh & Co. Kg Exhaust gas heat exchanger
US9791214B2 (en) * 2012-05-15 2017-10-17 Mahle International Gmbh Exhaust gas heat exchanger
US20140090804A1 (en) * 2012-10-03 2014-04-03 Delio SAMZ Heat Exchanger
US20170045309A1 (en) * 2015-08-11 2017-02-16 Hamilton Sundstrand Corporation High temperature flow manifold
US9816767B2 (en) * 2016-01-12 2017-11-14 Hamilton Sundstrand Corporation Tubes and manifolds for heat exchangers
DE102016217765A1 (en) 2016-09-16 2018-03-22 Thyssenkrupp Ag Arrangement and method for the condensation of a hot acid gas mixture
WO2018184737A1 (en) * 2017-04-06 2018-10-11 Linde Aktiengesellschaft Heat exchanger, use of a heat exchanger and method for producing a heat exchanger
US11925900B2 (en) * 2018-03-01 2024-03-12 Casale Sa Process for reducing the content of NOx and N2O from a tail gas of a nitric acid process
US11225807B2 (en) 2018-07-25 2022-01-18 Hayward Industries, Inc. Compact universal gas pool heater and associated methods
US11649650B2 (en) 2018-07-25 2023-05-16 Hayward Industries, Inc. Compact universal gas pool heater and associated methods

Similar Documents

Publication Publication Date Title
US3568764A (en) Heat exchanger
US5425415A (en) Vertical heat exchanger
US4377132A (en) Synthesis gas cooler and waste heat boiler
US4336770A (en) Waste heat boiler
US4401153A (en) Heat exchanger incorporating nitriding-resistant material
US3483920A (en) Heat exchangers
RU2011942C1 (en) Tubular heat exchanger
US4330034A (en) Two-pass heat exchanger
US4249593A (en) Heat exchanger with leak detecting double wall tubes
JPH03502422A (en) bundle tubular reactor
GB1208376A (en) Improvements in or relating to gas-cooling devices
US2729433A (en) Heat exchanger with removable tube banks
US3033534A (en) Toroidal heat exchangers
US4770239A (en) Heat exchanger
US3180408A (en) Heat exchanger apparatus
JPS5841440B2 (en) Tube group heat exchanger
US3306351A (en) Heat exchanger for cooling cracked gases by multiple media
US3706301A (en) Integral economizer for u-tube generator
US3166122A (en) Plate type heat exchangers with pairs of spaced plates and corrugated inserts
GB2095389A (en) Shell and tube exchanger
US4010797A (en) Heat exchanger
US4852644A (en) Tubular heat exchanger
US4867234A (en) Heat exchanger
NZ243797A (en) Opposed bayonet heat exchanger with spaced baffles: baffles formed by
US4276928A (en) Superheater inlet/outlet header