US3564465A - Circuit-interrupter construction and operating-mechanism therefor with particular application to single-phase reclosers - Google Patents

Circuit-interrupter construction and operating-mechanism therefor with particular application to single-phase reclosers Download PDF

Info

Publication number
US3564465A
US3564465A US770490A US3564465DA US3564465A US 3564465 A US3564465 A US 3564465A US 770490 A US770490 A US 770490A US 3564465D A US3564465D A US 3564465DA US 3564465 A US3564465 A US 3564465A
Authority
US
United States
Prior art keywords
closing
operating
circuit
interrupter
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US770490A
Other languages
English (en)
Inventor
Ian J Harvey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3564465A publication Critical patent/US3564465A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/46Driving mechanisms, i.e. for transmitting driving force to the contacts using rod or lever linkage, e.g. toggle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/24Means for preventing discharge to non-current-carrying parts, e.g. using corona ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H75/00Protective overload circuit-breaking switches in which excess current opens the contacts by automatic release of mechanical energy stored by previous operation of power reset mechanism
    • H01H75/02Details
    • H01H75/04Reset mechanisms for automatically reclosing a limited number of times
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/027Integrated apparatus for measuring current or voltage

Definitions

  • An insulating main operating lever provides additional insulation between the grounded quick-opening and quickclosing operating mechanism structure and the live elongated conducting operating rod, which eifects the movement of the movable contact within the vacuum-type circuit interrupter.
  • Oil-filled reclosers have so far been dominant in use. Oil-filled equipment is both heavy and requires regular servicing for it to retain its original efiiciency. Also, the fire and explosion hazard is always present in the event of a malfunction of the equipment.
  • One of the features of the present invention is the use of a load-current-carrying member as the actual operating rod for an electric circuit interrupter. Such an arrangement is preferably used in order to optimize the size of the equipment, while still retaining the required electrical characteristics.
  • the thershold of electrical flashover is also lowered when localized areas of high electrical stress occur in a dielectric field. Spacing of conductors in a recloser or switch design is, therefore, of the utmost importance.
  • the present invention has, an a further aspect, the utilization of a combined conductor-operating rod, which serves to place the elongated conductor in the optimum position, thus minimizing the electro-static field stresses.
  • the present invention is, in part, particularly concerned with devices using an in-line bushing arrangement with the interrupter contained in one bushmg.
  • a grounded-centrally-disposed operating mechanism housing having oppositely-extending hollow bushing structures, within one of which is provided a vacuum-type interrupter element.
  • a longitudinallyextending operating and contact rod extends through both hollow bushings, and has an operating lever connection with a grounded operating mechanism disposed adjacent the lower end of the central grounded housmg.
  • the grounded operating mechanism has a closing spring and an opening spring with a motor-operated cam arrangement for storing energy in both springs.
  • a manually operating crank-arm is provided for manual closing.
  • a closing toggle arrangement is utilized in conjunction with a latching lever, the latter being releasably held by a trip lever responsive to the overload current or fault current conditions passing through the interrupter.
  • a blocking mechanism is provided to prevent the manual closing of the device, when it is already in the closed-circuit position.
  • Still a further object of the present invention is the provision of an improved quick-opening and quick-closing operating mechanism, which may be either manually or motor-operated, and is of a simplified-type and of reduced cost.
  • Another object of the present invention is the provision of an insulating operating lever providing the spacing desired between the grounded operating mechanism and the longitudinally-extending operating and contact rod.
  • Still a further object of the preset invention is the provision of an interference device to prevent manual closing of the circuit interrupter, when it is already in the closed-circuit position.
  • Another object is to provide an improved single-style of recloser which may be used at any location on the distribution circuit where the full-load current does not exceed the maximum continuous rating. Also by a simple adjustment of a tap setting, different minimum current pickups may be selected depending upon the operating requirements. A simple static device may be used to achieve this end.
  • Another object is to provide an improved circuit reclosure in which the grounded mechanism housing and the bushings, together with the interrupter element, may be removed from the tray supporting the operating mechanism, integrator, time-current device, counter, and position indicator so that ready accessibility for maintenance may be achieved.
  • FIG. 1 is a fragmentary side elevational view of a single-phase vacuum-type recloser embodying the principles of the present invention, and shown mounted upon an upstanding wooden support pole;
  • FIG. 2 is a plan sectional view taken substantially along the line II--II of FIG. 1 looking in the direction of the arrows, and indicating a top plan view of the circuit-interrupting structure of FIG. 1;
  • FIG. 3 is a longitudinal enlarged sectional view taken through the circuit-interrupting housing and bushing structures, with the contact structure being illustrated in the closed-circuit position, and the mechanism and integrator structure being eliminated for purposes of clarity, the view being taken along the line III-III of FIG. 4;
  • FIG. 4 is a top plan view of the housing and bushing structure of FIG. 3 taken along the line IV1V of FIG. 3;
  • FIG. 5 is an enlarged side elevational view of the quick-opening and quick-closing mechanism structure utilized in the improved recloser-type interrupter of the present invention, the mechanism parts being indicated in the open tripped position;
  • FIG. 6 is an end elevational view of the mechanism structure of FIG. 5 taken substantially along the line VIVI of FIG. 5, looking in the direction of the arrows;
  • FIG. 7 is a view generally similar to that of FIG. 5, but illustrating the position of the several component parts of the operating mechanism in the closed-circuit position of the interrupter;
  • FIG. 8 is a fragmentary plan sectional view taken substantially along the line VIIIVIII of FIG. 5;
  • FIG. 9 is a side elevational view of the mechanism structure in relation to the tripping device and integrator structure
  • FIG. 10 is a top plan view of the mechanism structure of FIG. 9 taken along the line X-X thereof;
  • FIG. 11 is a side elevational view of the mechanism structure of FIGS. 9 and 10, but viewed from the side looking in the direction of the arrow XIXI of FIG. 10;
  • FIG. 12 is a vertical sectional detailed view of the bifurcated insulating main operatnig lever of the mechanism taken along the line XIIXII of FIG. 14;
  • FIG. 13 is an end elevational view of the bifurcated insulating main operating lever of FIG. 12;
  • FIG. 14 is a top plan view of the same main operating lever
  • FIG. 15 is a top plan view of the integrator structure of FIG. 16;
  • FIG. 16 is a side elevational view of the integrator roller assembly showing the general construction thereof
  • FIG. 17 is a side view of the integrator toothed gear wheel
  • FIG. 18 is an end elevational view of the reclosure of FIG. 3 taken along the line XVIIIXVIII of FIG. 3 looking in the direction of the arrows;
  • FIG. 19 is a block diagrammatic view of the static control circuit for the reclosure.
  • FIG. 20 is a fragmentary inverted plan view of the mechanism housing looking upwardly from the ground to observe the position indicator and counter openings provided in the bottom of the housing.
  • the reference numeral 1 generally designates a circuit-interrupter structure, which, in the particular application illustrated, is of the single-phase distribution-type involving a reclosing-type mechanism 2. As shown in FIGS.
  • the line L extends through a terminal structure 3, and interiorly of a hollow insulating tubular bushing structure 4, through the grounded mechanism housing 5, and through an interrupting structure 6 disposed interiorly within the oppositely-extending hollow bushing structure 7 to the other line terminal 8, and thence to the other line L
  • a channelshaped vertically-extending metallic support plate 9 transversely of which is secured, as by welding at 10, a tubular metallic supporting structure 11, to the lower side 11a of which is welded a supporting metal plate 12.
  • the supporting metallic plate 12 has four mounting holes provided therethrough, through which extend mounting bolts 13, which are secured to the upper metallic cover structure 5a of the single-phase reclosing-type circuit inter rupter 1.
  • the upright wooden supporting pole 16 may, for example, extend upwardly for a distance say, for example, of 25 feet, and the circuit L L is controlling a distribution circuit (not shown) as well understood by those skilled in the art.
  • FIGS. 3 and 4 generally illustrate the interior of the circuit interrupter 1 with the details of the operating mechanism 2 being omitted for purposes of clarity.
  • a pair of insulating hollow bushing structures 4, 7, which are clamped, as by clamps 4a, 7a, to the opposite ends 5b, 5c of a generally rectangularly-shaped grounded metal mechanism housing 5.
  • a reciprocally-movable conducting operating rod 18 Extending longitudinally through the interior of the hollow bushing structures 4, 7, and also, of course, interiorly through the grounded mechanism housing 5, is a reciprocally-movable conducting operating rod 18 having a movable sliding contact 19 disposed at its left-hand end, which makes contacting engagement with a plurality of circumferentially-disposed contact fingers 20, biased radially inwardly by a tension, or garter spring 21.
  • the right-hand end of the longitudinally-movable conducting operating rod structure 18 is attached at 22 to the movable contact 23 of a vacuum-type circuit interrupter element 6, which is, as shown in FIG. 3, disposed interiorly of the right-hand hollow bushing structure 7.
  • the stationary contact 25 of the vacuum-type circuit-interrupter element 6 is fixedly connected to the terminal structure 8, which is clamped within an aperture 26 provided at the right-hand extremity of the right-hand hollow bushing structure 7.
  • the inner end of the bushing structure 4 extends inwardly into the grounded housing structure 5 and improves the electrical insulation and dielectric conditions adjacent the hot or live conducting contact rod 18.
  • the conducting operating rod 18 is insulated by a tube 18a of suitable insulating material, the two pieces being solidly mechanically connected together.
  • the rod assembly 18 is positioned along the axis of the two hollow bushings 4, 7, and this achieves optimum spacing from the grounded metal housing 5 thus reducing electrical stress to a minimum. In this way, the radio interference, normally associated with high-voltage conductors, is eliminated over the range up to maximum design voltage of the device.
  • the insulating sleeve portion 4b extending inwardly from the brushing structure 4, an increase in the striking distance to ground is achieved.
  • a current transformer CT1 (FIG. 3) is utilized, surrounding the inwardly-extending sleeve portion 4b and clamped into position, as at 29. This, of course, permits a measurement of the amperage value of current passing through the circuit interrupter 1 and senses any fault or overload conditions.
  • the right-hand hollow bushing structure 7 also has an inwardly-extending sleeve portion 7b surrounding the reciprocally and longitudinally-movable conducting operating contact rod 18.
  • a grounded operating mechanism generally designated by the reference numeral 2, and comprising a grounded portion, which is insulated from the live, or hot conductor rod 18 by the intermediary of a bifurcated insulating main operating lever 31, more clearly shown in FIGS. 12-14 of the drawings.
  • the main insulating operating lever 31 may, for example, be made of a suitable arc-resisting insulating material, such as that set forth in US. Pat. 2,768,264, issused Oct. 23, 1956, and assigned to the Rostone Corporation of Lafayette, Ind.
  • the conducting operating rod 18 carries its own insulating sleeve 18a, as mentioned hereinbefore.
  • the operating lever 31 is non-conducting simply to stand off the high-voltage conductor assembly 18 from the grounded mechanism 2. If it were conducting, it would be at ground potential directly adjacent to the high-voltage conductor 18, and high electrical stresses would result. This would give rise to increased radio interference and would reduce the value of voltage impulse withstand.
  • the vacuum-type circuit-interrupting element 6 is disposed generally intermediate the ends of the hollow bushing structure 7, and has the movable contact operating rod 18 thereof guided by a movable guide-sleeve structure 32, which is attached to the operating rod insulation 18a and moves therewith. It provides additional insulation, and serves as a guide for reciprocal movement of the conducing operating rod 18.
  • a contact-compression spring 33 which has one end 33a thereof bearing against a ring 34 afiixed to, and movable with the contact operating rod 18.
  • the other end 33b of the contact compression spring 33 seats against a movable sleeve 35, which is secured to the furcations 31a of the bifurcated main insulating operating lever 31, as heretofore described.
  • the main operating lever 31 is pivotally mounted upon a sationary pivot pin 36.
  • the right-hand end 31b of the main operating lever 31 is pivotally connected, as at 38, to a closing toggle linkage 40 comprising a pair of toggle links 40a, 40b, pivotally connected by a knee pin 400.
  • the toggle link 40b has an L-shaped configuration for convenience of alignment with a knee-pin located at 40c and also providing a pivot connection as 40d to a main closing link hereinafter described.
  • the lower end of the toggle link 40b is pivotally connected, as at 42, to a rotatably mounted latching lever, generally designated by the reference numeral 43, and pivotally mounted on a stationary pivot pin 44. It will be observed that in the reset position of the latch lever 43 that a tripping latch 46 latches a roller 43a pivotally mounted between the spaced side-plate portions 43b, 430 of the latching lever, the latter assuming the form of a channel-shaped member.
  • An opening spring means 48 in this particular instance comprising a pair of tension springs 49, '50, are pivotally mounted to the pivot pin 38, and also to a stationary pivot pin 51 mounted through the side walls 2a, 2b of the mechanism frame, as more clearly illustrated in FIG. 6 of the drawings.
  • a pair of rollers 52 are pivotally mounted on the knee pin 40c and bear against a fixed stop 54.
  • a main driving link 56 is pivotally mounted to a bell-crank-shaped actuating lever 57, as at the pivot pin 58, and additionally pivotally connected to the leg portion 40e of toggle link 40b at the pivot connection 40d.
  • a rotatably-mounted cam 60 is preferably motordriven, and bears against a driving roller 61 extending between the two bell-crank-shaped actuating levers 57a, 57b, which are pivotally mounted on a stationary pivot pin 62.
  • a motordriven mechanism, 63' for example, will effect a raising of the roller bearing 61, which, in turn, will effect a clock wise rotation of the pair of actuating bell-crank levers 57a, 57b to thereby tension a closing spring 65, in this particular instance comprising a heavy tension spring mounted at one end to a fixed stop 66, and at the other end to a moving pivot 67 connected between the bellcrank levers 57a, 57b.
  • TRAY ASSEMBLY (27) The construction of the housing and mechanism as sembly were designed specifically for ease of assembly and maintenance. All control and operating means are mounted on a simple tray assembly. Once the leads from the current transformer have been disconnected and the bolts joining the sleeve 35 to operating lever 31 have been removed, then the housing 5 may. be unbolted from the tray assembly 27 and removed completely. Ac cess to all operating portions of the mechanism 2 is then immediately available. Reference may be made to FIG. 10 in this connection.
  • a manually-operable crank means 69 having a lost-motion connection with the hub of toggle link 71 (FIG. 8), may be utilized to effect a straightening of the closing toggle linkage 40, comprising a pair of links 70, 71 pivotally connected at a knee pin 72. This will cause a similar tensioning of the closing spring 65 and a similar closing operation of the interrupter 6 with a snap action.
  • an overtravel compression spring 73 is provided between a pin 74 riding in a slot 75 provided in the main driving link 56. This will provide a desirable overtravel, as caused by an excessive clockwise rotation of the actuating arms 57a, 57b, even'though the other component parts of the mechanism 2 'contactingly engage fixed stops. Thus, a certain flexibility at the end of the closing operation is achieved by the compression spring 73.
  • the mechanism 2 includes an interference means 88 for preventing a manual closing'operation of the mechanism 2, when the latter has already been closed, say by the motor '63.
  • a pivotally-mounted latch 88 is pivotally mounted upon a stationary pin 88a, and has the latched portion 88b thereof engaging a pin 90, which extends through the lower ends of the pair of spaced bell-cran-k-shaped actuating levers 57a, 57b.
  • the latch 88 will prevent straightening. of the closing toggle, comprising the toggle links 70, 71, by the manual means 69.
  • the manual closing means comprises a manually-perable lever '69 extending through the side wall of the mechanism housing and having an externally disposed hook portion 6911, which may be engaged by a suitable switch stick (not shown), as well known by those skilled in the art.
  • the manual closing means 69 has a pin 69b, which engages a slot 71a extending transversely through the shaft portion 71b to which the lower toggle link 71 is fixedly secured.
  • the clockwise rotation of the tripping latch 46 is provided either manually, or automatically in response to the value of current passing through the interrupter, as sensed by the current transformer CT 1.
  • a solenoid 77 is employed to raise a plunger 78 and thereby effect rotation of a tripping arm 79 (FIG. 11), which, in turn, will effect clockwise rotation of the tripping lever 46- to thereby release the latch lever 43, and thereby permit collapse of the main closing toggle 40. This will effect an opening operation.
  • manual tripping may be achieved by a manual trip lever 81, which is more clearly shown in FIG.
  • the switch used to open the motor circuit is automatically reset when the recloser is returned to the closed position.
  • an integrator assembly is utilized, generally designated by the reference numeral 84, and shown more clearly in FIGS. 10 and 15 of the drawings.
  • successive opening operations will engage a toothed wheel 84 (FIG. 17), which when successively rotated, will, through suitable switches 86-89, effect an energization of the closing motor 63 to effect through the linkage successive closing operations.
  • a lockout condition is achieved upon a predetermined number of openings and closing operations, all as counted by the integrator assembly 84. Since the integrator assembly 84 is rather conventional, and operates in a manner similar to those of the 'prior art, it has not been described in detail.
  • the static control on the SPV recloser provides the time v. current characteristic and trip signal only.
  • the primary of the current-to-voltage transformer is connected to the bushing current transformer CT1.
  • the secondary voltage is fed through a full wavebridge to the trip timing circuit.
  • the voltage applied to the trip tinuing circuit is proportional to the magnitude of the fault current passing through the reclosure.
  • the trip timing circuit feeds a signal to a DC. amplifier, which is, in turn, connected to the trip circuit.
  • the trip circuit consistsof a silicon control rectifier to which a capacitor is connected.
  • the capacitor is kept charged by rectified VAC fed through dropping resistors.
  • the SCR Upon receiving a signal of the proper magnitude from the DC. amplifier, the SCR allows the capacitor to discharge through the trip coil 101, thus tripping the recloser.
  • Each static control has included as standard equipment two distinct time curves. Usually one is fact or instantaneous, and the other an inverse time delay. (Replace ment plug in printed circuit boards are available with a variety of curves.) Switching from fast trip to time delay is accomplished by a switch mounted external to the static control on the integrator. The curves remain consistent within an accuracy of plus or minus 5% throughout the temperature range 30 C. to +70 C.
  • the current to voltage transformer is set up with a number of dilferent taps. Thereby the minimum current required to initiate tripping of the recloser can be selected by proper positioning of the tap screw in the tap-type terminal block.
  • the static control may be as illustrated in a copending patent application of Francis T. Thompson, S.N. 708,898, filed Feb. 28, 1968, and assigned to the same assignee as this application. Additional background material is presented in US. patent application filed Aug. 5, 1968, SN. 757,186 by Nathaniel D. Tenenbaum, now Pat. No. 3,596,417, and likewise assigned to the assignee of the present application.
  • tubular bushings 4, 7 having extending sleeve portions 4b, 7b, a diminution of the electrical stress about the conducting operating rod 18 has been achieved to minimize the chance of radio interference.
  • the housing 5 together with the bushings 4, 7 may be removed from the tray 111 supporting the mechanism 2, integrator, counter and position indicator, and thereby ready visible access to the mechanism obtained.
  • the circuit recloser 1 is completely self-contained, and does not need any control wiring extending down to ground potential.
  • a step-down transformer CT2 has its primary connections between the source terminal and the grounded case 5. The secondary of the step-down transformer CT2 provides energy for the motor circuit to energize the motor for automatic closing operations of the interrupter.
  • the use of the static control with adjustable tap settings provides a desirable arrangement in which the recloser 1 may be removed to a different distribution circuit, and by a mere resetting the tap screw in connection with the static control device may be applied for different current ratings in different distribution circuits.
  • this involved a different series coil for prior-art types of reclosers.
  • only a different setting of the tap terminal is needed.
  • a quick-closing quick-opening operating mechanism for a circuit breaker including, in combination, a movable main operating member (31), means defining a closing toggle (40) including a pivotally connected pair of closing toggle links (40a, 40b) pivotally connected at a knee pin (400), said closing toggle being pivotally connected adjacent one end of the main movable operating member, means defining an opening spring tending to effect collapse of said closing toggle and thereby opening motion of the main operating member, a rotatable releasable latch lever pivotally connected adjacent the end of one of the closing toggle links, a tripping lever for releasably latching the releasable latch lever, a closing spring, and link means utilizing the tension of said closing spring to continuously maintain said closing toggle in an underset state in the closed position of the operating mechanism.
  • a quick-opening, quick-closing operating mechanism for a circuit interrupter including, in combination, a rotatably-mounted main operating lever, collapsible closing toggle means connected adjacent one end of the rotatablymounted main operating lever, opening spring means biasing the collapsible closing toggle means to a collapsed open position, said closing toggle means including a first toggle link pivotally connected to the main operating lever and a second toggle link pivotally connected to a pivotally-mounted releasable latch lever, closing spring means biasing a main driving link connected adjacent the knee pin of the closing toggle to effect straightening of the closing toggle, a tripping latch for releasably holding the latch lever, and driving means for first tensioning said closing spring means and then suddenly releasing said closing spring means to efieet a quick-straightening of the closing toggle, whereby a quick closing of the associated circuit interrupter may be obtained.
  • the driving means includes a rotatable member carrying a cam follower and a rotatable cam with an abrupt drop-off cam surface portion engages said cam follower.
  • a qucik-closing, quick-opening operating mechanism for a circuit breaker including, in combination, a movable main operating member (31) means defining a closing toggle (40) including a pivotally connected pair of closing toggle links (40a, 40b) pivotally connected at a knee pin (400), said closing toggle being pivotally connected adjacent one end of the main movable operating member, means defining an opening spring tending to effect collapse of said closing toggle and thereby opening motion of the main operating member, a rotatable releasable latch lever pivotally connected adjacent the end of one of the closing toggle links, a tripping lever for releasably latching the releasable latch lever, a releasable rotatable closing actuating lever (57) for simultaneously tensioning a closing spring and being connected adjacent the knee pin for resetting the rotatable releasable latch lever to a reset position.
  • the interference means includes a rotatable catch linked to the main movable operating member.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)
US770490A 1968-10-25 1968-10-25 Circuit-interrupter construction and operating-mechanism therefor with particular application to single-phase reclosers Expired - Lifetime US3564465A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77049068A 1968-10-25 1968-10-25
US8828770A 1970-11-10 1970-11-10

Publications (1)

Publication Number Publication Date
US3564465A true US3564465A (en) 1971-02-16

Family

ID=26778511

Family Applications (2)

Application Number Title Priority Date Filing Date
US770490A Expired - Lifetime US3564465A (en) 1968-10-25 1968-10-25 Circuit-interrupter construction and operating-mechanism therefor with particular application to single-phase reclosers
US00088287A Expired - Lifetime US3727019A (en) 1968-10-25 1970-11-10 Vacuum-type circuit interrupter with grounded metallic housing and removable operating mechanism tray

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00088287A Expired - Lifetime US3727019A (en) 1968-10-25 1970-11-10 Vacuum-type circuit interrupter with grounded metallic housing and removable operating mechanism tray

Country Status (4)

Country Link
US (2) US3564465A (enrdf_load_stackoverflow)
BE (1) BE740652A (enrdf_load_stackoverflow)
FR (1) FR2021597A1 (enrdf_load_stackoverflow)
GB (1) GB1288592A (enrdf_load_stackoverflow)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071809A1 (en) * 2007-09-17 2009-03-19 Areva T&D Sa Combined circuit breaker and disconnector for an alternator with actuation by an assembly of a main shaft and secondaries shafts
WO2015157349A1 (en) * 2014-04-11 2015-10-15 S&C Electric Company Circuit interrupters with masses in contact spring assemblies
US11791120B2 (en) 2021-05-21 2023-10-17 G&W Electric Company Status indicator for switchgear

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784774A (en) * 1972-08-21 1974-01-08 Ite Imperial Corp Vacuum circuit breaker current transfer and actuation
JP2549170B2 (ja) * 1989-04-24 1996-10-30 株式会社日立製作所 柱上用開閉器
US5175403A (en) * 1991-08-22 1992-12-29 Cooper Power Systems, Inc. Recloser means for reclosing interrupted high voltage electric circuit means
US6300585B1 (en) * 1999-04-08 2001-10-09 S&C Electric Company Operation counter for a circuit interrupter
US6965088B2 (en) * 2003-12-12 2005-11-15 Utility Solutions, Inc. Interrupting apparatus having operations counter and methods of forming and using same
US7534976B2 (en) * 2006-06-26 2009-05-19 Fci Americas Technology, Inc. Vacuum recloser
US7943871B2 (en) * 2008-01-09 2011-05-17 Hubbell Incorporated Rotational stabilizer
US8973519B2 (en) * 2011-08-12 2015-03-10 Thomas & Betts International, Inc. Recloser position indicator
CN103219191B (zh) * 2013-04-22 2015-04-01 许昌永新电气股份有限公司 高压电器开关分合传动装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3096210A (en) * 1959-04-17 1963-07-02 Cabot Corp Insulated conductors and method of making same
US3114815A (en) * 1959-11-18 1963-12-17 Westinghouse Electric Corp Fluid-blast circuit interrupter with improved current-transformer housing means
US3209101A (en) * 1963-01-08 1965-09-28 Allis Chalmers Mfg Co Motor and spring operated vacuum switch
US3291948A (en) * 1964-08-06 1966-12-13 Westinghouse Electric Corp Orifice structure for compressed gas-circuit interrupter
US3352988A (en) * 1965-04-09 1967-11-14 Allis Chalmers Mfg Co Means for mounting and electrically interconnecting circuit interrupting devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071809A1 (en) * 2007-09-17 2009-03-19 Areva T&D Sa Combined circuit breaker and disconnector for an alternator with actuation by an assembly of a main shaft and secondaries shafts
US7915548B2 (en) * 2007-09-17 2011-03-29 Areva T&D Sa Combined circuit breaker and disconnector for an alternator with actuation by an assembly of a main shaft and secondaries shafts
WO2015157349A1 (en) * 2014-04-11 2015-10-15 S&C Electric Company Circuit interrupters with masses in contact spring assemblies
US9679708B2 (en) 2014-04-11 2017-06-13 S&C Electric Company Circuit interrupters with masses in contact spring assemblies
US11791120B2 (en) 2021-05-21 2023-10-17 G&W Electric Company Status indicator for switchgear
US12211661B2 (en) 2021-05-21 2025-01-28 G & W Electric Company Status indicator for switchgear

Also Published As

Publication number Publication date
FR2021597A1 (enrdf_load_stackoverflow) 1970-07-24
GB1288592A (enrdf_load_stackoverflow) 1972-09-13
BE740652A (enrdf_load_stackoverflow) 1970-04-01
US3727019A (en) 1973-04-10

Similar Documents

Publication Publication Date Title
US3564465A (en) Circuit-interrupter construction and operating-mechanism therefor with particular application to single-phase reclosers
US2469203A (en) Electric switch
US2491338A (en) Protective switch device
US2334571A (en) Circuit protective switch
US3171004A (en) Mechanism and circuitry for high voltage switching
US3227925A (en) Control for switch means
US2658976A (en) Air circuit interrupter
US2163559A (en) Circuit breaker
US3566061A (en) High voltage switch with enclosed preinsertion resistor
US2163558A (en) Circuit breaker
US3526735A (en) Repeating circuit interrupter
US3027439A (en) High speed electric switch
US2760033A (en) Circuit interrupter
US3077526A (en) Circuit interrupting device
US2838637A (en) Circuit interrupting and isolating means for high voltage circuits
US3139494A (en) Circuit breaker closing mechanism
US2414555A (en) Metal enclosed switchgear
US2933576A (en) Circuit interrupters
US4324961A (en) Distribution transformer having a primary disconnect switch
US2184763A (en) Circuit breaker
US2488601A (en) Sectionalizing circuit breaker
US2549350A (en) Circuit interrupter
US2546008A (en) Series-capacitor protective system
US2311699A (en) Pole type circuit breaker
US3089006A (en) Automatic high speed grounding switch