US3561175A - Frost proof shallow footings or piers and method therefor - Google Patents
Frost proof shallow footings or piers and method therefor Download PDFInfo
- Publication number
- US3561175A US3561175A US807592A US3561175DA US3561175A US 3561175 A US3561175 A US 3561175A US 807592 A US807592 A US 807592A US 3561175D A US3561175D A US 3561175DA US 3561175 A US3561175 A US 3561175A
- Authority
- US
- United States
- Prior art keywords
- footing
- frost
- pier
- construction
- building
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title abstract description 8
- 230000008014 freezing Effects 0.000 abstract description 27
- 238000007710 freezing Methods 0.000 abstract description 27
- 238000009413 insulation Methods 0.000 abstract description 18
- 238000010276 construction Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 20
- 239000002689 soil Substances 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 11
- 239000002984 plastic foam Substances 0.000 description 6
- 238000009435 building construction Methods 0.000 description 5
- 239000004794 expanded polystyrene Substances 0.000 description 5
- 238000009412 basement excavation Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000006261 foam material Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009436 residential construction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001550 time effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D31/00—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
- E02D31/10—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure
- E02D31/14—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against soil pressure or hydraulic pressure against frost heaves in soil
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/01—Flat foundations
- E02D27/02—Flat foundations without substantial excavation
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/0007—Base structures; Cellars
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
Definitions
- This invention relates generally to buildings and building foundations and, more particularly, relates to novel procedures for economically constructing buildings and building foundations having shallow footings or piers which are above the normal frost line and yet provide full frost barriers. It is applicable to locales having frost penetrable soil and a surface exposed to an alfresco environment experiencing below freezing temperatures.
- Present methods of construction generally require that frost penetrable soil be excavated for a foundation, footl ing, pier, etc. to be constructed, that good drainage be accommodated and/or that the depth of the base of the structure be placed below the frost depth. Allthese factors remove the possibility of frost heave by removing the source of water or the possibility of a freezing temperature.
- our invention eliminates the freezing temperature at the foundation level by keeping the ground heat in, thus creating a frost-free zone below the footing or pier and thereby allowing the base to be raised essentially back to the grade level, provided suificient bearing strength is available.
- Still another object of the present invention is the provision of a novel footing or pier construction for buildings wherein an insulating layer, preferably of expanded plastic, retains the heat in the soil below such footings or piers and prevents the soil from freezing and heaving.
- FIG. 1 is a cross section view in elevation of a typical building construction showing in part the slab floor, bearing wall and concrete footing extending down to the frost depth line.
- FIG. 2 is a cross section view in elevation showing the same building construction, but with a shallow frost proof footing utilizing the present invention on a heated buildmg.
- FIG. 3 is a cross section view in elevation of a slab floor in combination with a shallow frost proof footing d utilizing the present invention in an unheated building.
- FIG. 4 is a cross section view in elevation of yet another building construction utilizing the present invention.
- FIG. 5 is a chart showing the thermal performance of a concrete footing that has been insulated in accordance with the present invention.
- FIG. 1 shows the conventional construction wherein slab 1 is attached to bearing wall 3 which extended downward to footing 4. Footing 4 is down to the frost depth level for the particular climate, the frost depth level being shown by the arrowed line starting at grade level 2.
- the foundation is designed to place the footing below the known frost depth for the geographic area in which the structure is located. This depth is well known and set by local code authorities. The intent is to prevent heaving of the soil under the footing which would in turn damage the structure.
- FIG. 2 wherein the construction shown utilizes the present invention, slab 5 is supported by hearing wall 7 and footing 8.
- the frost depth line is shown as extending downward from grade 6.
- footing 8 extends only just below the slab 5 but the ground below footing 8 remains unfrozen due to positioning of insulation layers 9 extending horizontally away from the exterior of the building and also vertically along the exterior of bearing wall 7 just above footing 8.
- the construction shown in FIG. 2 is for that of a heated building whereby the heat loss to the ground through slab 5 is retained and freezing and heaving is prevented.
- insulation is used in place of the masonry that would be required from grade level to the footing.
- 'FIG. 2 graphically illustrates how the frost depth and freezing line are altered away from the footing by keeping the soil below the insulation and below the heated structure above freezing.
- FIG. 2 The type of construction shown in FIG. 2 is effective as long as the building is heated. However, if the building were abandoned throughout a winter season the frost line would penetrate below the footing through the interior of the building, thus causing frost damage.
- insulation '14 is placed symmetrically inside along slab 10 and outside along bearing wall -12 and extending horizontally outward, thereby protecting the footing 13 from freezing temperatures because of the insulative qualities of insulation 14 regardless if the building is heated or not.
- the frost depth shown extending downward from grade 11 does not impinge upon the footing as shown by the freezing lines.
- FIG. 4 A variation of the previously shown construction is that of FIG. 4, wherein the insulation 19 is layed horizontally underneath the footing 18 thereby acting as a bearing surface for the footing while it provides a continuous layer of insulation below and beside the footing to protect the soil underneath it from freezing regardless of the occupancy of the building. Insulation 19 extends symmetrically under slab 15 and outwardly to the exterior. As indicated, the insulation 19 must have a load carrying capability as well as insulative capability in order to carry bearing wall 17 and footing '18. The frost depth extending from grade 16 downward along with the freezing lines again shows that the ground underneath the footing will not freeze and no heaving of the construction will occur.
- the data in FIG. 5 was obtained by testing an experimental construction similar to one shown in FIG. 4 in that the insulation was laid horizontally underneath the construction, thereby acting as a bearing surface while it provided a continuous layer of insulation below the footing to protect the soil underneath it from freezing.
- the insulation comprised a 1% inch layer thick expanded polystyrene produced by The Dow Chemical Company under the trademark Styrofoam.
- a thermocouple was placed in the construction just above the insulating layer and another was placed in the soil just beneath the insulating layer.
- the chart of the temperatures 'taken from these two thermocouples illustrates the ability of the plastic foam to prevent the occurrence of freezing temperatures in the frost susceptible subgrades.
- a building was erected in a locale where the frost line is 3 /2 feet below the ground and where the climate was rated at 750-1000 degree-days.
- a shallow trench was dug and the concrete footing was placed so that the top of it was just below ground level.
- Expanded polystyrene boards 1% inches thick was then placed horizontally in the ground just above the concrete footing so that they formed a horizontal border on either side of the footing for a distance of 18 inches.
- insulating barrier itself, it should be understood that other expanded plastic materials having similar qualities of insulation, heat capacity, imperviousness to vapor transmission, compressability, strength and thermal conductivity as expanded polystyrene can also be used in constructions of the present invention.
- One of such other possible layer materials can be closed cell expanded urethane, for example.
- the present invention is especially effective in a cold climate which takes in most of the northern United States, the presence of a frost susceptible soil which is randomly distributed throughout a large area of the United States and the use of slab construction which is a high percentage of all the construction in the United States.
- Slab construction is utilized in approximately 16 percent of all residential structures and about 33 percent of non-residential structures.
- appendages to residential construction such as carports, garages and patios are beneficially served by the present invention as although these do not normally receive insulation for comfort, nevertheless in the climates discussed above, they require foundations down to the frost line.
- the present invention should be comprehended in all of its alternative embodiments and should not be limited by the specific embodiments heretofore described.
- the material used in the building construction although depicted herein to be concrete, may be of any material useful in such construction.
- a shallow footing or pier construction for a building comprising footings or piers, walls, and a foundation, such construction providing a frost-free zone below said footing or pier, said frost-free zone comprising generally frost penetrable material having a surface exposed to an alfresco environment experiencing below freezing temperatures, the footing or pier located above the normal frost line for the particular locale of said frost penetrable materials, said construction comprising said footing or pier and a substantially water impermeable thermally insulating plastic foam barrier material, said barrier material extending substantially horizontally under and beyond the peripheral extent of said footing or pier from the side thereof exposed to exterior cold.
- plastic foam barrier material is expanded polystyrene.
- a shallow footing or pier construction for a building comprising footings or piers, walls, and a foundation, such construction providing a frost-free zone comprising generally frost penetrable material having a surface exposed to an alfresco environment experiencing below freezing temperatures, the footing or pier located above the normal frost line for the particular locale of said frost penetrable material, said construction comprising said footing or pier and a substantially water impermeable thermally insulating plastic foam barrier material, said barrier material extending outwardly substantially from a juncture above the bottom of said footing or pier on the side exposed to exterior cold and substantially vertically upward from the juncture of said horizontally emplaced material with said exterior side up to grade, whereby said frost line is altered away from said footing or pier by creating said frost-free zone in said generally frost penetrable material below said footing or pier.
- a method of making a shallow frost-free footing or pier for buildings exposed to an alfresco environment experiencing below freezing temperatures comprising the steps of making a relatively shallow excavation in the soil Where the footing or pier is to be placed, said footing or pier located above the normal frost line for the particular locale, placing the footing or pier in said excavation, placing sheets of high thermal insulating plastic foam barrier material substantially horizontally of said footing or pier on the side exposed to exterior cold at a juncture above the bottom of said footing or pier and substantially vertically upward from said juncture, and completing filling of said excavation.
- an additional step includes placing sheets of high thermal insulating plastic UNITED STATES PATENTS 2,050,798 8/1936 Kothe 52-169 2,743,602 5/1956 Dunn 52169 2,968,130 1/1961 Bascom 52169 3,250,188 5/1966 Leonards 52408 3,135,097 6/1964 Scheinberg 52-294 OTHER REFERENCES American Builder, March 1956, pp. 144145.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Paleontology (AREA)
- General Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Acoustics & Sound (AREA)
- Building Environments (AREA)
- Foundations (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80759269A | 1969-03-17 | 1969-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3561175A true US3561175A (en) | 1971-02-09 |
Family
ID=25196739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US807592A Expired - Lifetime US3561175A (en) | 1969-03-17 | 1969-03-17 | Frost proof shallow footings or piers and method therefor |
Country Status (5)
Country | Link |
---|---|
US (1) | US3561175A (de) |
BE (1) | BE747398A (de) |
DE (1) | DE2011525A1 (de) |
FR (1) | FR2034985B1 (de) |
NL (1) | NL7003092A (de) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3667237A (en) * | 1970-08-05 | 1972-06-06 | Upjohn Co | Novel constructions and methods |
US3688457A (en) * | 1970-03-16 | 1972-09-05 | Stanley A Sherno | Building foundation with frost deflector |
US3774956A (en) * | 1971-11-22 | 1973-11-27 | R Barlow | Parallel attachable, two story expandable, trailable building structures |
US3956859A (en) * | 1973-05-29 | 1976-05-18 | A. B. Grona & Company Kb | Foundation of a heated building without a cellar |
US4065893A (en) * | 1976-01-16 | 1978-01-03 | Epes Archie C | Composite foundation framing assembly |
US4265062A (en) * | 1979-02-02 | 1981-05-05 | Klibofske Virgil L | Foundation covering |
US4335548A (en) * | 1980-04-30 | 1982-06-22 | Millcraft Housing Corp. | Insulating skirt |
WO1986000101A1 (en) * | 1984-06-11 | 1986-01-03 | Patton Edward J | Insulated concrete form |
US4640648A (en) * | 1983-03-10 | 1987-02-03 | Eurosteel S.A. | Industrial floor and construction method |
WO1988001666A1 (en) * | 1986-08-25 | 1988-03-10 | Filip Lundberg | Foundation and floor component and a foundation structure containing such components |
US4903446A (en) * | 1988-04-26 | 1990-02-27 | Wesley Staples | Prestressed plastic foam structural member |
WO1990008862A1 (en) * | 1989-02-01 | 1990-08-09 | Ib Villy Wolff | A method of erecting the outer walls of a building, and a building |
US5232309A (en) * | 1990-11-26 | 1993-08-03 | Poentynen Esko | Method and equipment for maintaining ice-free locks |
US6067765A (en) * | 1997-02-21 | 2000-05-30 | Msx, Inc. | Insulated layer of concrete |
US6125597A (en) * | 1997-02-07 | 2000-10-03 | Hoffman; Keith M. | Concrete skirting for manufactured homes |
US6131350A (en) * | 1998-09-03 | 2000-10-17 | Sanders; Mark E. | Building foundation using pre-cast concrete elements |
US6318700B1 (en) | 1996-06-21 | 2001-11-20 | Brent Cliff | Anti-frost concrete mould |
US6477811B1 (en) * | 1998-08-11 | 2002-11-12 | Jung Woong Choi | Damp-proof basement and method of construction |
US6935083B2 (en) | 2002-07-11 | 2005-08-30 | C. Michael Chezum | Skirting for manufactured and modular homes |
US20050229516A1 (en) * | 2004-04-15 | 2005-10-20 | Angelo Riccio | Precast wall section and method of making walls from same |
US20050252107A1 (en) * | 2004-04-12 | 2005-11-17 | Linse Robert P | Footing for factory built structure support system |
US20050252105A1 (en) * | 2004-04-12 | 2005-11-17 | Linse Robert P | Support and skirting system for factory built structures |
US20050252106A1 (en) * | 2004-04-12 | 2005-11-17 | Linse Robert P | Support system for factory built structures |
US20060000168A1 (en) * | 2004-07-03 | 2006-01-05 | Compton Robert T | System for forming and insulating concrete slab edges |
US20070068095A1 (en) * | 2005-09-23 | 2007-03-29 | Foundation Works, Inc. | Channel system for factory built structures |
US20100011698A1 (en) * | 2008-07-15 | 2010-01-21 | Richard Fearn | Monopour form |
US20100193981A1 (en) * | 2007-09-21 | 2010-08-05 | Frano Luburic | Apparatus and Methods for Interconnecting Tubular Sections |
US8011158B1 (en) | 2007-04-27 | 2011-09-06 | Sable Developing, Inc. | Footing for support of structure such as building |
US20140182221A1 (en) * | 2013-01-03 | 2014-07-03 | Tony Hicks | Thermal Barrier For Building Foundation Slab |
US20190218741A1 (en) * | 2018-01-12 | 2019-07-18 | Benoit Delorme | Insulated slab-on-grade foundation system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS517914U (de) * | 1974-07-01 | 1976-01-21 | ||
WO2003041611A2 (en) | 2001-11-14 | 2003-05-22 | White Michael R | Apparatus and methods for making intraoperative orthopedic measurements |
FR3001476A1 (fr) * | 2013-01-28 | 2014-08-01 | Andre Jean Marie Pilot | Dispositif d'isolation peripherique d'un batiment |
-
1969
- 1969-03-17 US US807592A patent/US3561175A/en not_active Expired - Lifetime
-
1970
- 1970-03-04 NL NL7003092A patent/NL7003092A/xx unknown
- 1970-03-11 DE DE19702011525 patent/DE2011525A1/de active Pending
- 1970-03-13 FR FR7009048A patent/FR2034985B1/fr not_active Expired
- 1970-03-16 BE BE747398D patent/BE747398A/xx unknown
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3688457A (en) * | 1970-03-16 | 1972-09-05 | Stanley A Sherno | Building foundation with frost deflector |
US3667237A (en) * | 1970-08-05 | 1972-06-06 | Upjohn Co | Novel constructions and methods |
US3774956A (en) * | 1971-11-22 | 1973-11-27 | R Barlow | Parallel attachable, two story expandable, trailable building structures |
US3956859A (en) * | 1973-05-29 | 1976-05-18 | A. B. Grona & Company Kb | Foundation of a heated building without a cellar |
US4065893A (en) * | 1976-01-16 | 1978-01-03 | Epes Archie C | Composite foundation framing assembly |
US4265062A (en) * | 1979-02-02 | 1981-05-05 | Klibofske Virgil L | Foundation covering |
US4335548A (en) * | 1980-04-30 | 1982-06-22 | Millcraft Housing Corp. | Insulating skirt |
US4640648A (en) * | 1983-03-10 | 1987-02-03 | Eurosteel S.A. | Industrial floor and construction method |
WO1986000101A1 (en) * | 1984-06-11 | 1986-01-03 | Patton Edward J | Insulated concrete form |
WO1988001666A1 (en) * | 1986-08-25 | 1988-03-10 | Filip Lundberg | Foundation and floor component and a foundation structure containing such components |
US4903446A (en) * | 1988-04-26 | 1990-02-27 | Wesley Staples | Prestressed plastic foam structural member |
WO1990008862A1 (en) * | 1989-02-01 | 1990-08-09 | Ib Villy Wolff | A method of erecting the outer walls of a building, and a building |
US5233801A (en) * | 1989-02-01 | 1993-08-10 | Wolff Ib V | Method of erecting the outer walls of a building, and a building |
US5232309A (en) * | 1990-11-26 | 1993-08-03 | Poentynen Esko | Method and equipment for maintaining ice-free locks |
US6318700B1 (en) | 1996-06-21 | 2001-11-20 | Brent Cliff | Anti-frost concrete mould |
US6125597A (en) * | 1997-02-07 | 2000-10-03 | Hoffman; Keith M. | Concrete skirting for manufactured homes |
US6067765A (en) * | 1997-02-21 | 2000-05-30 | Msx, Inc. | Insulated layer of concrete |
US6477811B1 (en) * | 1998-08-11 | 2002-11-12 | Jung Woong Choi | Damp-proof basement and method of construction |
US6131350A (en) * | 1998-09-03 | 2000-10-17 | Sanders; Mark E. | Building foundation using pre-cast concrete elements |
US6314693B1 (en) * | 1998-09-03 | 2001-11-13 | Sanders Pre-Cast Concrete Systems. | Building foundation using pre-cast concrete elements |
US6935083B2 (en) | 2002-07-11 | 2005-08-30 | C. Michael Chezum | Skirting for manufactured and modular homes |
US20050252107A1 (en) * | 2004-04-12 | 2005-11-17 | Linse Robert P | Footing for factory built structure support system |
US20050252105A1 (en) * | 2004-04-12 | 2005-11-17 | Linse Robert P | Support and skirting system for factory built structures |
US20050252106A1 (en) * | 2004-04-12 | 2005-11-17 | Linse Robert P | Support system for factory built structures |
US20050229516A1 (en) * | 2004-04-15 | 2005-10-20 | Angelo Riccio | Precast wall section and method of making walls from same |
US20060000168A1 (en) * | 2004-07-03 | 2006-01-05 | Compton Robert T | System for forming and insulating concrete slab edges |
US8011144B2 (en) | 2004-07-03 | 2011-09-06 | Energyedge, Llc | System for forming and insulating concrete slab edges |
US20070068095A1 (en) * | 2005-09-23 | 2007-03-29 | Foundation Works, Inc. | Channel system for factory built structures |
US8011158B1 (en) | 2007-04-27 | 2011-09-06 | Sable Developing, Inc. | Footing for support of structure such as building |
US20100193981A1 (en) * | 2007-09-21 | 2010-08-05 | Frano Luburic | Apparatus and Methods for Interconnecting Tubular Sections |
US20100011698A1 (en) * | 2008-07-15 | 2010-01-21 | Richard Fearn | Monopour form |
US8286398B2 (en) * | 2008-07-15 | 2012-10-16 | Richard Fearn | Monopour form |
US20140182221A1 (en) * | 2013-01-03 | 2014-07-03 | Tony Hicks | Thermal Barrier For Building Foundation Slab |
US20190218741A1 (en) * | 2018-01-12 | 2019-07-18 | Benoit Delorme | Insulated slab-on-grade foundation system |
US10428484B2 (en) * | 2018-01-12 | 2019-10-01 | Innovation Iso-Slab Inc. | Insulated slab-on-grade foundation system |
US20200024819A1 (en) * | 2018-01-12 | 2020-01-23 | Innovation Iso-Slab Inc. | Insulated slab-on-grade foundation system |
US11193251B2 (en) * | 2018-01-12 | 2021-12-07 | Innovation Iso-Slab Inc. | Insulated slab-on-grade foundation system |
Also Published As
Publication number | Publication date |
---|---|
NL7003092A (de) | 1970-09-21 |
FR2034985B1 (de) | 1975-12-26 |
FR2034985A1 (de) | 1970-12-18 |
BE747398A (fr) | 1970-09-16 |
DE2011525A1 (de) | 1970-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3561175A (en) | Frost proof shallow footings or piers and method therefor | |
US5699643A (en) | Floor support for expansive soils | |
US5444950A (en) | Drainage sysatem for building foundations | |
Selby | Tunnelling in soils–ground movements, and damage to buildings in Workington, UK | |
CA1055263A (en) | Method of providing a moisture-proof or moisture-resistant foundation insulation for buildings | |
US3279334A (en) | Method of construction in permafrost regions | |
Sanger | Foundations of structures in cold regions | |
CN207376801U (zh) | 一种地下室 | |
Nixon | Effect of climatic warming on pile creep in permafrost | |
Swinton et al. | Performance of thermal insulation on the exterior of basement walls. | |
RU2440464C1 (ru) | Противопучинный фундамент здания с подвалом | |
Robinsky et al. | Design of insulated foundations | |
Lstiburek | Keeping the Water Out of Basements. | |
CN219099709U (zh) | 一种整体建筑隔振用满铺式支撑垫层 | |
Miller et al. | Pile settlement in saline permafrost: a case history | |
RU2808031C2 (ru) | Фундамент многоэтажного здания, возводимого на пучинистых грунтовых основаниях | |
Barker et al. | Geotechnical engineering in cold regions | |
RU172513U1 (ru) | Конструкция дорожной насыпи | |
CN220686151U (zh) | 一种多重防水结构 | |
RU2780187C1 (ru) | Способ сооружения узла цокольного перекрытия с колонной над холодными и проветриваемыми подпольями | |
Sharma et al. | Codal Provisions for Foundation Design on Soils and Rocks: A Review | |
Rasmussen | Integrated Strip Foundation Systems for Small Residential Buildings | |
RU2270295C2 (ru) | Способ предотвращения деформаций фундаментов, возводимых на многолетнемерзлых грунтах | |
LSTIBUREK | Below-Grade Water Management. | |
JP2616366B2 (ja) | 地下基礎構造 |