US3559751A - Percussion device - Google Patents

Percussion device Download PDF

Info

Publication number
US3559751A
US3559751A US791741*A US3559751DA US3559751A US 3559751 A US3559751 A US 3559751A US 3559751D A US3559751D A US 3559751DA US 3559751 A US3559751 A US 3559751A
Authority
US
United States
Prior art keywords
piston
inner cylinder
crank
cylinder
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US791741*A
Inventor
Sakuji Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3559751A publication Critical patent/US3559751A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/12Means for driving the impulse member comprising a crank mechanism
    • B25D11/125Means for driving the impulse member comprising a crank mechanism with a fluid cushion between the crank drive and the striking body
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • E02D7/06Power-driven drivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0073Arrangements for damping of the reaction force
    • B25D2217/0076Arrangements for damping of the reaction force by use of counterweights
    • B25D2217/0088Arrangements for damping of the reaction force by use of counterweights being mechanically-driven

Definitions

  • Juten ABSTRACT A lightweight percussion device operating from a motor driven crank which reciprocates a hollow inner cylinder closed at both ends and slidably mounted in an outer cylinder with a piston having a rod extending through one end of the inner cylinder and slidably mounted in the inner cylinder; a set of ports are provided adjacent each end of the inner cylinder and spaced from the adjacent end of the inner cylinder and one set of ports spaced from the other ports a distance in the order of the throw of the crank with the ports communicating with the atmosphere so that rotation of the crank causes reciprocation of the inner cylinder and the confined gas between the end of the piston and the adjacent end of the inner movable cylinder causes the piston to reciprocate while the piston is cushioned at each end of its movements and the rod projecting from the piston serves to produce a hammering action on a gad or other tool.
  • the present Invention relates to a machine for chipping operations. such as the crushing of concrete blocks and rocks, the driving of piles and nails and the removal of fins and shells from the face of cast metal and the outer hull plate of a ship or any other operation that is generally conducted by percussion forces.
  • Air hammers actuated by compressed air have been used for this purpose but have required large air compressors and long pipes leading to the air hammer.
  • An object of the present invention is to provide a percussion device which overcomes the difficulties of the prior an air hammers.
  • Another object of the present invention is to provide a percussion device operating from a small rotatory motivepower.
  • a further object is to provide a percussion device of light weight which is efficient in use reducing the cost of performing useful work.
  • FIG. 1 is a longitudinal sectional view taken transverse to the crank axis
  • FIG. 2 is a longitudinal section of the device with the section taken substantially parallel with the crank axis and with part broken away to show the structure of the crank discs;
  • FIG. 3 diagrammatically illustrates the cycles of operation.
  • the percussion device includes a casing 6 having a handle 6a at the upper end thereof with pinion gears l rotatably mounted in suitable bearings and driving disc gears 2 mounted in suitable bearings with the disc gears including counterweights 3 having window openings 4 adjacent the crank pin 5 extending between the disc gears.
  • the pinion gears l are driven from a shaft 7A suitably mounted in a bearing 7 and which shaft 7A is driven from a suitable source of rotary power such as an electric motor or an internal combustion engme.
  • an outer cylinder which includes an outer sleeve 8 and an inner sleeve 8A spaced from the outer sleeve by spacing sleeves 8B and 8C adjacent each end leaving an open space 17 between the outer sleeve 8 and the inner sleeve 8A of the outer cylinder.
  • an inner cylinder 9 closed at one end by a removable threaded closure 10 and closed at the other end by end wall 11 a which end wall 1 1 has an opening through which a rod reciprocates with the rod 15 fixed to or being a part of piston 14 slidably mounted within the bore of the inner cylinder 9 and such inner cylinder is reciprocated from the crank pin 5 by means of the connecting rod 12.
  • the ends of the inner cylinder have a larger diameter than the intermediate portion thereby leaving an open space 13 between the periphery of the intermediate portion of the inner cylinder and the sleeve 8A of the outer cylinder.
  • Ports 16 in the periphery of the inner cylinder adjacent the end 11 provide for air to enter the space between the bottom of the piston 14 and the lower end wall 11 while similar ports 16' adjacent the end 10 provide for the passage of air into the space between the upper end of the piston 14 and the closed end 10 and also provide for communication with atmospheric air through the space 13 and through the ports 11c to the space 17 between the sleeves 8A and 8, other ports 11a and 11b are provided adjacent the tope and bottom of the sleeve 8A and suitable openings, not shown, are provided to the exterior so that the inner cylinder 9 can move freely.
  • An end bushing 18 is secured to the lower end of the outer cylinder by any suitable means and has a bore therethrough which receives the head of a tool such as a gad 19 which is held in operative relation in the bushing 18 by a U-shaped plate 20 which embraces the gad 19 below a stop flange 19A which abuts a boss on the bushing 18 when the gad is in proper position so that the head of the gad will be struck by the had hammering hammering rod 15 of the piston.
  • a tool such as a gad 19 which is held in operative relation in the bushing 18 by a U-shaped plate 20 which embraces the gad 19 below a stop flange 19A which abuts a boss on the bushing 18 when the gad is in proper position so that the head of the gad will be struck by the had hammering hammering rod 15 of the piston.
  • the U-shaped plate 20 is held in gad retaining position by springs 21 reacting against lugs 21A through which the bolts 21B pass with the springs 21 surrounding the bolts 21B and being adjustable by means of the nuts 21C it being apparent that the arrangement provides for insertion and removal of the gad 19 when desired.
  • crank pin is shown in its lowered position and the inner cylinder in its lowered position with hammer rod 15 engaging the head of the gad 19 with the piston shown in its upper position leaving a space d and in this position the ports 16 provide communication to the space d as shown in FIG. 1 and the upper end of the piston is closely adjacent the top 10 of the inner cylinder 9 with a clearance y.
  • crank pin moves to the position 11 thereby moving the inner cylinder 9 upwardly a distance d so that the upper space communicates through the ports 16' to the atmosphere while the gas between the bottom of the piston 14 and the closure 11 is reduced to the distance y thereby compressing the gas and exerting a force on the piston 14 which raises the piston upwardly as the crank 5 moves to position Ill and the inertia of j the piston causes the piston to continue to move upwardly while the crank 5 moves to the position lV thereby compressing the gas in the upper end to an amount y and the high pressure of such gas causes the piston 14 to move downwardly as the crank 5 moves to its bottom dead center position whereby the piston 14 is caused to move so that the hammer rod 15 contacts the head of the gad l9 producing the hammering effect and the steps are repeated so that a hammering blow occurs upon each revolution of the crank 5; illustrations V and VI are similar to illustrations 1 and ll showing that the cycles are repeated.
  • the force on the crank pin is substantially cushioned by the confined air under pressure at both ends of the piston l4 and both ends of the inner cylinder 9 so that there is no danger of impact of the piston against the ends 10 and l l of the inner cylinder 9.
  • the ports 16 and 16 provide for the entrance of air into the end spaces d while the air pressure in the end spaces y increases to provide the necessary cushioning and the necessary driving force for the piston 14.
  • the air is provided from the atmosphere and the arrangement of the ports is such as to minimize mechanical losses an minimize interference with the operation of the percussion device.
  • the inner cylinder 9 is of very lightweight since it does not directly impact the gad l9 and therefore the forces on the crank pin and the bearings is kept to a minimum while the piston 14 which does strike the gad 19 through the hammer rod 15 can be made heavy and the kinetic energy produced by the downward movement of the piston produces the hammering action on the gad and therefore the piston can be made very heavy without directly affecting the cylinder 19 and the bearings and the compressed air gradually produces the buffer effect and prevents the piston from striking the ends 10 and 11 of the lightweight cylinder 9.
  • the window holes or openings 4 in the counterbalancing weights 3 provide for mitigating the shock that the rebound gives to the operator when the gad 19 receives its hammering stroke and the arrangement of the window holes with respect to the crank are shown in the illustrations I through VI of FIG. 3 and it has been found that the weight of the percussion device of the present invention can be reduced to approximately 20 kilograms whereas the weights of the well known compressed air type of air hammer must be as heavy as 40 to 50 kilograms and this saving in weight with the increased efficiency of the present invention provides for smooth and effective operation with a minimum of effort.
  • the percussion device of the present invention may be operated by a motor of 2 or 3 horsepower and even though the entire weight is only 20 kg. it can penetrate through a concrete block of 30 cm. thick in 5 seconds.
  • a percussion device comprising an outer cylinder, a crank mounted on said outer cylinder, a small rotary motor power means to rotate said crank, an inner hollow cylinder having closed ends slidably mounted in said outer cylinder and operatively connected to said crank whereby when said crank rotates said inner cylinder reciprocates, a piston mounted for reciprocation in said inner cylinder, a rod extending from said piston through an end wall of said inner cylinder, said inner cylinder having ports spaced from the ends whereby rotation of said crank causes reciprocation of said inner cylinder and thereby reciprocation of said piston by the force of compressed gas confined in the alternately closed ends of the hollow inner cylinder, the rod of said piston being adapted to impact a tool producing a hammering action on the tool, the crank radius being approximately the same as the distance from the end of the inner cylinder to the adjacent ports, the inner cylinder having a reduced outside diameter intermediate the ends and the ports are located in this reduced diameter portion, and the length of the piston is substantially equal to the distance between one end and the ports adjacent the other end of
  • outer cylinder includes an outer and inner sleeve with clearance between the sleeves and are provided intermediate and at both ends in the inner sleeve to the ambient air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

A lightweight percussion device operating from a motor driven crank which reciprocates a hollow inner cylinder closed at both ends and slidably mounted in an outer cylinder with a piston having a rod extending through one end of the inner cylinder and slidably mounted in the inner cylinder; a set of ports are provided adjacent each end of the inner cylinder and spaced from the adjacent end of the inner cylinder and one set of ports spaced from the other ports a distance in the order of the throw of the crank with the ports communicating with the atmosphere so that rotation of the crank causes reciprocation of the inner cylinder and the confined gas between the end of the piston and the adjacent end of the inner movable cylinder causes the piston to reciprocate while the piston is cushioned at each end of its movements and the rod projecting from the piston serves to produce a hammering action on a gad or other tool.

Description

United States Patent [72] Inventor Sakuji Yamada I 1-5. S-Chome. Kitanagasdori.1kutaku.
Kobe. Japan [21] Appl. No 791,741 [22] Filed Jan. 16. 1969 [45] Patented Feb. 2, 1971 [54] PERCUSSION DEVICE 3 Claims, 3 Drawing Figs. 7
[52] U.S.Cl 173/116, 173/1 18 [51] 1nt.Cl ..B25d1l/12 [50] Field of Search 173/116. 1 18 [56] References Cited UNITED STATES PATENTS 1,191,948 7/1916 Coates 173/118X 2,239,090 4/1941 Everett 173/1 16X Primary Examiner-Emest R. Purser Attorney-Milford A. Juten ABSTRACT: A lightweight percussion device operating from a motor driven crank which reciprocates a hollow inner cylinder closed at both ends and slidably mounted in an outer cylinder with a piston having a rod extending through one end of the inner cylinder and slidably mounted in the inner cylinder; a set of ports are provided adjacent each end of the inner cylinder and spaced from the adjacent end of the inner cylinder and one set of ports spaced from the other ports a distance in the order of the throw of the crank with the ports communicating with the atmosphere so that rotation of the crank causes reciprocation of the inner cylinder and the confined gas between the end of the piston and the adjacent end of the inner movable cylinder causes the piston to reciprocate while the piston is cushioned at each end of its movements and the rod projecting from the piston serves to produce a hammering action on a gad or other tool.
PATENTED FEB 2 |97| SHEET 1 [IF 2 INVENTOR. Sokuji Yomodo W W PATENTED rm 2m: 7
SHEET 2 0F 2' INVENTOR. Sokuji Yamoda' PERCUSSION mzvrcrz The present Invention relates to a machine for chipping operations. such as the crushing of concrete blocks and rocks, the driving of piles and nails and the removal of fins and shells from the face of cast metal and the outer hull plate of a ship or any other operation that is generally conducted by percussion forces.
Air hammers actuated by compressed air have been used for this purpose but have required large air compressors and long pipes leading to the air hammer.
Other systems have used the explosive forces of ignited gases and some have used a vacuum system with a small hole in the piston which used the vacuum to raise the piston until the vacuum chamber was filled with air and the piston caused to strike a gad or other suitable tool. These various systems required complicated mechanisms and were difficult to maintain and were cumbersome in use and the prior air hammers have been excessively heavy requiring substantial effort to maintain the air hammers in position of use.
An object of the present invention is to provide a percussion device which overcomes the difficulties of the prior an air hammers.
Another object of the present invention is to provide a percussion device operating from a small rotatory motivepower.
A further object is to provide a percussion device of light weight which is efficient in use reducing the cost of performing useful work.
Other and further objects will be apparent as the description proceeds and upon reference to the accompanying drawings; wherein:
FIG. 1 is a longitudinal sectional view taken transverse to the crank axis;
FIG. 2 is a longitudinal section of the device with the section taken substantially parallel with the crank axis and with part broken away to show the structure of the crank discs;
FIG. 3 diagrammatically illustrates the cycles of operation.
The percussion device includes a casing 6 having a handle 6a at the upper end thereof with pinion gears l rotatably mounted in suitable bearings and driving disc gears 2 mounted in suitable bearings with the disc gears including counterweights 3 having window openings 4 adjacent the crank pin 5 extending between the disc gears. The pinion gears l are driven from a shaft 7A suitably mounted in a bearing 7 and which shaft 7A is driven from a suitable source of rotary power such as an electric motor or an internal combustion engme.
Mounted on the gear casing 6 is an outer cylinder which includes an outer sleeve 8 and an inner sleeve 8A spaced from the outer sleeve by spacing sleeves 8B and 8C adjacent each end leaving an open space 17 between the outer sleeve 8 and the inner sleeve 8A of the outer cylinder.
Slidably mounted in the inner sleeve 8A is an inner cylinder 9 closed at one end by a removable threaded closure 10 and closed at the other end by end wall 11 a which end wall 1 1 has an opening through which a rod reciprocates with the rod 15 fixed to or being a part of piston 14 slidably mounted within the bore of the inner cylinder 9 and such inner cylinder is reciprocated from the crank pin 5 by means of the connecting rod 12. The ends of the inner cylinder have a larger diameter than the intermediate portion thereby leaving an open space 13 between the periphery of the intermediate portion of the inner cylinder and the sleeve 8A of the outer cylinder. Ports 16 in the periphery of the inner cylinder adjacent the end 11 provide for air to enter the space between the bottom of the piston 14 and the lower end wall 11 while similar ports 16' adjacent the end 10 provide for the passage of air into the space between the upper end of the piston 14 and the closed end 10 and also provide for communication with atmospheric air through the space 13 and through the ports 11c to the space 17 between the sleeves 8A and 8, other ports 11a and 11b are provided adjacent the tope and bottom of the sleeve 8A and suitable openings, not shown, are provided to the exterior so that the inner cylinder 9 can move freely.
An end bushing 18 is secured to the lower end of the outer cylinder by any suitable means and has a bore therethrough which receives the head of a tool such as a gad 19 which is held in operative relation in the bushing 18 by a U-shaped plate 20 which embraces the gad 19 below a stop flange 19A which abuts a boss on the bushing 18 when the gad is in proper position so that the head of the gad will be struck by the had hammering hammering rod 15 of the piston. The U-shaped plate 20 is held in gad retaining position by springs 21 reacting against lugs 21A through which the bolts 21B pass with the springs 21 surrounding the bolts 21B and being adjustable by means of the nuts 21C it being apparent that the arrangement provides for insertion and removal of the gad 19 when desired.
Referring to the diagrammatic illustrations in FIG. 3 and beginning with the diagram l the crank pin is shown in its lowered position and the inner cylinder in its lowered position with hammer rod 15 engaging the head of the gad 19 with the piston shown in its upper position leaving a space d and in this position the ports 16 provide communication to the space d as shown in FIG. 1 and the upper end of the piston is closely adjacent the top 10 of the inner cylinder 9 with a clearance y.
Assuming the direction of rotation shown by the arrow the crank pin moves to the position 11 thereby moving the inner cylinder 9 upwardly a distance d so that the upper space communicates through the ports 16' to the atmosphere while the gas between the bottom of the piston 14 and the closure 11 is reduced to the distance y thereby compressing the gas and exerting a force on the piston 14 which raises the piston upwardly as the crank 5 moves to position Ill and the inertia of j the piston causes the piston to continue to move upwardly while the crank 5 moves to the position lV thereby compressing the gas in the upper end to an amount y and the high pressure of such gas causes the piston 14 to move downwardly as the crank 5 moves to its bottom dead center position whereby the piston 14 is caused to move so that the hammer rod 15 contacts the head of the gad l9 producing the hammering effect and the steps are repeated so that a hammering blow occurs upon each revolution of the crank 5; illustrations V and VI are similar to illustrations 1 and ll showing that the cycles are repeated.
It will be noted that the force on the crank pin is substantially cushioned by the confined air under pressure at both ends of the piston l4 and both ends of the inner cylinder 9 so that there is no danger of impact of the piston against the ends 10 and l l of the inner cylinder 9. It will also be noted that the ports 16 and 16 provide for the entrance of air into the end spaces d while the air pressure in the end spaces y increases to provide the necessary cushioning and the necessary driving force for the piston 14. The air is provided from the atmosphere and the arrangement of the ports is such as to minimize mechanical losses an minimize interference with the operation of the percussion device.
The inner cylinder 9 is of very lightweight since it does not directly impact the gad l9 and therefore the forces on the crank pin and the bearings is kept to a minimum while the piston 14 which does strike the gad 19 through the hammer rod 15 can be made heavy and the kinetic energy produced by the downward movement of the piston produces the hammering action on the gad and therefore the piston can be made very heavy without directly affecting the cylinder 19 and the bearings and the compressed air gradually produces the buffer effect and prevents the piston from striking the ends 10 and 11 of the lightweight cylinder 9.
It has been found by experiments that when the space d between the lower surface of the piston 14 as shown in FIG. 3-1 is arranged so that the inner surface of the bottom of inner cylinder 9 is approximately the same as the radius from the axis 0 to the crank pin 5 and the ports 16 are in proper position to admit air that the device works well and similarly when the ports 16 are arranged a similar distance from the upper end of the cylinder 9 the combination with this arrangement has been found very satisfactory.
If it is attempted to get a very long stroke of the piston 14 in the inner cylinder the operation has not been entirely satisfactory and consequently the arrangement of the ports and the length of the cylinder 9 with respect to the length of the piston 14 is adjusted to obtain the desired operation so that a hammering action occurs for each rotation of the crank pin 5,
The window holes or openings 4 in the counterbalancing weights 3 provide for mitigating the shock that the rebound gives to the operator when the gad 19 receives its hammering stroke and the arrangement of the window holes with respect to the crank are shown in the illustrations I through VI of FIG. 3 and it has been found that the weight of the percussion device of the present invention can be reduced to approximately 20 kilograms whereas the weights of the well known compressed air type of air hammer must be as heavy as 40 to 50 kilograms and this saving in weight with the increased efficiency of the present invention provides for smooth and effective operation with a minimum of effort.
In the ordinary air hammer pressures of approximately 7 atmospheres are used while with the present invention the pressure in the end y of the cylinder 9 can be 20 to 25 atmospheres or higher and therefore the force on the piston can be very great.
Since the piston 14 is fitted in the cylinder 9 for free movement there is no danger of one-sided abrasion on the sliding surface of the cylinder 9 or the piston 14 resulting in less wear and even though some wear does occur the present invention can be used for a long period of time without requiring expensive maintenance.
Since the air pressure reacts on the piston 14, the impact shock of the piston 14 on the gad is not directly taken by the crank making high speed work possible with a small size motor of small horsepower.
Since the cog wheel discs 2 and the balance wheels 3 supporting the eccentric pin have the window holes 4 the center of gravity of the balance wheels is opposite to the crank pin 5 neutralizing the rebound of the crashing shock against the gad 19 so that crushing work can be performed by a device of extremely light weight.
The percussion device of the present invention may be operated by a motor of 2 or 3 horsepower and even though the entire weight is only 20 kg. it can penetrate through a concrete block of 30 cm. thick in 5 seconds.
It will be apparent that changes may be made within the spirit of the invention as defined by the valid scope of the claims.
I claim:
1. A percussion device comprising an outer cylinder, a crank mounted on said outer cylinder, a small rotary motor power means to rotate said crank, an inner hollow cylinder having closed ends slidably mounted in said outer cylinder and operatively connected to said crank whereby when said crank rotates said inner cylinder reciprocates, a piston mounted for reciprocation in said inner cylinder, a rod extending from said piston through an end wall of said inner cylinder, said inner cylinder having ports spaced from the ends whereby rotation of said crank causes reciprocation of said inner cylinder and thereby reciprocation of said piston by the force of compressed gas confined in the alternately closed ends of the hollow inner cylinder, the rod of said piston being adapted to impact a tool producing a hammering action on the tool, the crank radius being approximately the same as the distance from the end of the inner cylinder to the adjacent ports, the inner cylinder having a reduced outside diameter intermediate the ends and the ports are located in this reduced diameter portion, and the length of the piston is substantially equal to the distance between one end and the ports adjacent the other end of the inner cylinder.
2. The invention according to claim 1 in which the outer cylinder includes an outer and inner sleeve with clearance between the sleeves and are provided intermediate and at both ends in the inner sleeve to the ambient air.
3. The invention according to claim 2 in which the openings in the inner sleeve are located adjacent each end and adjacent the midportion.

Claims (3)

1. A percussion device comprising an outer cylinder, a crank mounted on said outer cylinder, a small rotary motor power means to rotate said crank, an inner hollow cylinder having closed ends slidably mounted in said outer cylinder and operatively connected to said crank whereby when said crank rotates said inner cylinder reciprocates, a piston mounted for reciprocation in said inner cylinder, a rod extending from said piston through an end wall of said inner cylinder, said inner cylinder having ports spaced from the ends whereby rotation of said crank causes reciprocation of said inner cylinder and thereby reciprocation of said piston by the force of compressed gas confined in the alternately closed ends of the hollow inner cylinder, the rod of said piston being adapted to impact a tool producing a hammering action on the tool, the crank radius being approximately the same as the distance from the end of the inner cylinder to the adjacent ports, the inner cylinder having a reduced outside diameter intermediate the ends and the ports are located in this reduced diameter portion, and the length of the piston is substantially equal to the distance between one end and the ports adjacent the other end of the inner cylinder.
2. The invention according to claim 1 in which the outer cylinder includes an outer and inner sleeve with clearance between the sleeves and are provided intermediate and at both ends in the inner sleeve to the ambient air.
3. The invention according to claim 2 in which the openings in the inner sleeve are located adjacent each end and adjacent the midportion.
US791741*A 1969-01-16 1969-01-16 Percussion device Expired - Lifetime US3559751A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79174169A 1969-01-16 1969-01-16

Publications (1)

Publication Number Publication Date
US3559751A true US3559751A (en) 1971-02-02

Family

ID=25154650

Family Applications (1)

Application Number Title Priority Date Filing Date
US791741*A Expired - Lifetime US3559751A (en) 1969-01-16 1969-01-16 Percussion device

Country Status (1)

Country Link
US (1) US3559751A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014392A (en) * 1973-03-01 1977-03-29 Ross Frederick W Stabilized piston-cylinder impact device
US4099580A (en) * 1977-01-24 1978-07-11 Ross Frederick W Impact device with linear air spring
US4114699A (en) * 1976-01-22 1978-09-19 Licentia Patent-Verwaltungs-Gmbh Pneumatic rotary hammer device
US4290492A (en) * 1979-01-31 1981-09-22 Black & Decker Inc. Idling and air replenishing system for a reciprocating hammer mechanism
US4823886A (en) * 1988-04-29 1989-04-25 Vladimir Pyatov Vacuum-compression type percussion power tool
US4828046A (en) * 1988-04-28 1989-05-09 Vladimir Pyatov Vacuum-compression type percussion power tool with an auxiliary chamber
US4932479A (en) * 1988-05-05 1990-06-12 Vladimir Pyatov Vacuum-compression type percussion power tool with a pumping chamber
US20030083186A1 (en) * 2001-09-17 2003-05-01 Hetcher Jason D. Rotary hammer
US20050016744A1 (en) * 2001-11-09 2005-01-27 Shigeru Miyakawa Engine braker
US20060081387A1 (en) * 2004-10-18 2006-04-20 Reed Teddy R Percussion tool
US7164252B1 (en) 2005-07-29 2007-01-16 Battelle Energy Alliance, Llc Electrically powered hand tool
US20080073096A1 (en) * 2003-07-24 2008-03-27 Wacker Construction Equipment Ag Hollow Piston Hammer Device with Air Equilibration and Idle Openings
EP2213423A1 (en) * 2009-01-30 2010-08-04 HILTI Aktiengesellschaft Pneumatic striking mechanism
US20120152581A1 (en) * 2010-12-18 2012-06-21 Caterpillar Inc. Hammer side buffer
EP2965877A2 (en) 2014-07-08 2016-01-13 Günther Zimmer Method and drive for a device for accelerating a gear train driving on a block
US10814468B2 (en) 2017-10-20 2020-10-27 Milwaukee Electric Tool Corporation Percussion tool
US10926393B2 (en) 2018-01-26 2021-02-23 Milwaukee Electric Tool Corporation Percussion tool
US20230027574A1 (en) * 2021-07-26 2023-01-26 Makita Corporation Striking tool

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014392A (en) * 1973-03-01 1977-03-29 Ross Frederick W Stabilized piston-cylinder impact device
US4114699A (en) * 1976-01-22 1978-09-19 Licentia Patent-Verwaltungs-Gmbh Pneumatic rotary hammer device
US4099580A (en) * 1977-01-24 1978-07-11 Ross Frederick W Impact device with linear air spring
US4290492A (en) * 1979-01-31 1981-09-22 Black & Decker Inc. Idling and air replenishing system for a reciprocating hammer mechanism
US4828046A (en) * 1988-04-28 1989-05-09 Vladimir Pyatov Vacuum-compression type percussion power tool with an auxiliary chamber
US4823886A (en) * 1988-04-29 1989-04-25 Vladimir Pyatov Vacuum-compression type percussion power tool
US4932479A (en) * 1988-05-05 1990-06-12 Vladimir Pyatov Vacuum-compression type percussion power tool with a pumping chamber
US20060124334A1 (en) * 2001-09-17 2006-06-15 Milwaukee Electric Tool Corporation Rotary hammer including breather port
US20030083186A1 (en) * 2001-09-17 2003-05-01 Hetcher Jason D. Rotary hammer
US7168504B2 (en) 2001-09-17 2007-01-30 Milwaukee Electric Tool Corporation Rotary hammer including breather port
US7032683B2 (en) 2001-09-17 2006-04-25 Milwaukee Electric Tool Corporation Rotary hammer
US20050016744A1 (en) * 2001-11-09 2005-01-27 Shigeru Miyakawa Engine braker
US7124840B2 (en) * 2001-11-09 2006-10-24 Yamada Machinery Industrial Co., Ltd. Engine breaker
US7726414B2 (en) * 2003-07-24 2010-06-01 Wacker Neuson Se Hollow piston hammer device with air equilibration and idle openings
US20080073096A1 (en) * 2003-07-24 2008-03-27 Wacker Construction Equipment Ag Hollow Piston Hammer Device with Air Equilibration and Idle Openings
US7140450B2 (en) 2004-10-18 2006-11-28 Battelle Energy Alliance, Llc Percussion tool
US20060081387A1 (en) * 2004-10-18 2006-04-20 Reed Teddy R Percussion tool
US20070024230A1 (en) * 2005-07-29 2007-02-01 Battelle Energy Alliance, Llc Electrically powered hand tool
US7164252B1 (en) 2005-07-29 2007-01-16 Battelle Energy Alliance, Llc Electrically powered hand tool
EP2213423A1 (en) * 2009-01-30 2010-08-04 HILTI Aktiengesellschaft Pneumatic striking mechanism
US20100224383A1 (en) * 2009-01-30 2010-09-09 Hilti Aktiengesellschaft Pneumatic hammer mechanism
US8616301B2 (en) 2009-01-30 2013-12-31 Hilti Aktiengesellschaft Pneumatic hammer mechanism
US20120152581A1 (en) * 2010-12-18 2012-06-21 Caterpillar Inc. Hammer side buffer
EP2965877A2 (en) 2014-07-08 2016-01-13 Günther Zimmer Method and drive for a device for accelerating a gear train driving on a block
DE102014010014B4 (en) 2014-07-08 2023-08-17 Günther Zimmer Method and drive for a device for accelerating a gear train running on a block
US11633843B2 (en) 2017-10-20 2023-04-25 Milwaukee Electric Tool Corporation Percussion tool
US10814468B2 (en) 2017-10-20 2020-10-27 Milwaukee Electric Tool Corporation Percussion tool
US11059155B2 (en) 2018-01-26 2021-07-13 Milwaukee Electric Tool Corporation Percussion tool
US11141850B2 (en) 2018-01-26 2021-10-12 Milwaukee Electric Tool Corporation Percussion tool
US11203105B2 (en) 2018-01-26 2021-12-21 Milwaukee Electric Tool Corporation Percussion tool
US10926393B2 (en) 2018-01-26 2021-02-23 Milwaukee Electric Tool Corporation Percussion tool
US11759935B2 (en) 2018-01-26 2023-09-19 Milwaukee Electric Tool Corporation Percussion tool
US11865687B2 (en) 2018-01-26 2024-01-09 Milwaukee Electric Tool Corporation Percussion tool
US20230027574A1 (en) * 2021-07-26 2023-01-26 Makita Corporation Striking tool

Similar Documents

Publication Publication Date Title
US3559751A (en) Percussion device
KR920004683B1 (en) Rotary impacting apparatus
ES398394A1 (en) Automatically self-regulating variable-stroke, variable-rate and quiet-operating pile driver method and system
US5752571A (en) Apparatus for generating impacts
US3570608A (en) Hammer mechanism for percussion tools
US4102410A (en) Resilient work-coupled impact device
US3568780A (en) Free-piston-type percussion device with air pump
US3269466A (en) Impact tool
US4828046A (en) Vacuum-compression type percussion power tool with an auxiliary chamber
US2609813A (en) Gas hammer
US2447886A (en) Power hammer
JPH09136272A (en) Engine type breaker
US2067886A (en) Free piston power hammer
US1382821A (en) Power-hammer
US2613662A (en) Rotary driven percussive tool
US3740960A (en) Elastic pressure fluid driven motor
US1508623A (en) Impact or percussive tool of the explosion-motor type
IE37177L (en) Percussion apparatus
RU79826U1 (en) ELECTRIC HAND HAMMER OF SHOCK ACTION
US2020018A (en) Power hammer
SU1060459A1 (en) Percussive machine
US1489312A (en) Power hammer
US1346166A (en) Pneumatic hammer
SU423922A1 (en) HYDROPNEUMATIC SHOCK HAMMER FROM PT 5t anshntog
SU109583A1 (en) Compression-vacuum shock mechanism to jackhammers