US3557661A - Fluid motor - Google Patents

Fluid motor Download PDF

Info

Publication number
US3557661A
US3557661A US853309A US3557661DA US3557661A US 3557661 A US3557661 A US 3557661A US 853309 A US853309 A US 853309A US 3557661D A US3557661D A US 3557661DA US 3557661 A US3557661 A US 3557661A
Authority
US
United States
Prior art keywords
piston
cylinder
cam
cylinders
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US853309A
Other languages
English (en)
Inventor
Elias Orshansky Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
URS SYSTEMS CORP
Original Assignee
URS SYSTEMS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by URS SYSTEMS CORP filed Critical URS SYSTEMS CORP
Application granted granted Critical
Publication of US3557661A publication Critical patent/US3557661A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0015Disposition of motor in, or adjacent to, traction wheel the motor being hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B5/00Reciprocating-piston machines or engines with cylinder axes arranged substantially tangentially to a circle centred on main shaft axis
    • F01B5/003Reciprocating-piston machines or engines with cylinder axes arranged substantially tangentially to a circle centred on main shaft axis the connection of the pistons with an actuated or actuating element being at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0403Details, component parts specially adapted of such engines
    • F03C1/0428Supporting and guiding means for the pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/047Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the outer ends of the cylinders
    • F03C1/0474Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the outer ends of the cylinders with two or more radial piston/cylinder units in series
    • F03C1/0476Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the outer ends of the cylinders with two or more radial piston/cylinder units in series directly located side by side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle

Definitions

  • a stationary body has two sets of cylinders, each I cylinder in a first set being paired to a cylinder in the second set.
  • Each cylinder is open at one end and has an actuation chamber at the other end and, in between the ends, a valving recess in between an inlet recess and an outlet recess.
  • An inlet passage leads to each inlet recess and an outlet passage leads to each outlet recess.
  • Each of the paired cylinders has its valving recess connected to the actuation chamber of the other cylinder of the pair, so that each piston serves as a valve for its paired piston.
  • a rotatable housing has two internal circumferential cam rings.
  • a link is associated with each piston and pivotally mounted to the body, each link having 1) a pistonengaging roller mounted thereon in contact with the outer end of its associated piston and (2) a cam roller mounted thereon and in engagement with one of the cam rings.
  • This invention relates to an improved hydraulic cam motor.
  • Hydraulic pumps and motors have commonly been subject to problems traceable to their valves and pistons and their associated activating mechanisms.
  • Rotating valves in particular, have been subject to leakage, and to damage from unwanted particles in the hydraulic fluid, which have tended to abrade, score, or bind the valves
  • Pistons have frequently been subjected to relatively large side loads; the resulting poor lubrication and losses in horsepower have led to severe limitations in useful piston force and speed. Fluid flow through these units has been inherently nonuniform, resulting in pressure or speed fluctuation, or both; such fluctuations usually being undesirable.
  • the present invention effectively solves these difficulties and at the same time introduces other improvements, all of which produce niuchgreater efficiency.
  • the invention enables the production of powerful and reliable wheel motors capable of large loads and high horsepowers. It also makes it possible to calculate a cam profile that provides constant torque and speed for a given input.
  • FIG. 1 is a view in side elevation and partly in section of a vehicle wheel and a wheel motor embodying the principles of the present invention.
  • FIG. 2 is a view in elevation partly broken away and shown in section of the wheel motor of FIG. 1, and along the line 2-2 in FIG. 3.
  • FIG. 3 is a view in section taken along the line 33 inFIGS. 2 and 5.
  • FIG. 4 is a view in section taken along a line 4-4 in FIGS. 2 and 5.
  • FIG. 5 is a view in section taken along the line 5-5 in FIG. 3.
  • FIG. 6 is a top plan view of one of the roller cam-link assemblies.
  • FIG. 7 is a partially exploded fragmentary view in perspective and partly in section of one cam-link roller assembly along with its associated cam track.
  • a cam motor 10 of this invention is shown in FIG. 1, in use as a wheel motor, with one side fastened to a vehicle frame 11 by bolts 12 and nuts, and to its other side is mounted a conventional wheel and rim 13 which carries a tire 14.
  • the wheel 13 may be fastened to the cam motor 10 by studs 15 and nuts.
  • the motor of this invention can, of course, be used to drive a shaft instead of being used as a wheel motor.
  • the lines 16 and 17 are connected to a pump 19 which supplies the hydraulic pressure; the pump 19 is bidirectional, so that it may supply pressure through the line 16 for rotation of the motor 10 in a first direction, or the direction of flow may be reversed to supply pressure through the line 17, for rotation of the motor 10 in the opposite direction.
  • Whichever line 16 or 17 supplies the fluid to the motor 10 the opposite line 17 or 16 returns the fluid to the pump 19.
  • the drain line 18 is used to return such fluid as leaks past the pistons into a sump tank, for use by the pump 19.
  • the wheel motor 10 acts to support the wheel 13 on the frame 11,- the motors bearings 20 and 21 (See FIG. 5) carrying the vehicle weight.
  • the motor 10 is part of the complete wheel; in fact, the tire 14 might be mounted directly on the motor 10, but for ease of interchangeability the use of a conventional wheel rim l3'may be preferable.
  • FIGS. 2 to 5 show the cam motor 10 alone, without the wheel 13.
  • FIG. 2 shows in a partial breakaway, two of the eight pistons, one from each of two sets, to illustrate the fact that one set of pistons is valved by the other set, and vice versa, a very important feature of the invention, explained below.
  • FIG. 3 shows one set of four pistons and their linkage, which transmits power to the cam ring
  • FIG. 4 shows the other set of four pistons. Two pistons of each set are shown in FIG. 5, in the planes of lines 3-3 and 4-4, each set having a corresponding cam which appears in full view in FIGS. 3 and 4, respectively.
  • the motor 10 has a housing made up of end members 22, 22a, and 23 and a central annular member 24, which form a rotating outer housing, sup ported by bearings 20 and 21 on a stationary cylinder block25 and a stationary outer hub 26.
  • a hub cap 27 protects the bearings 21, while an inner hub 28 is provided radially within the housing member 220 and the cylinder block 25.
  • the hubs 26 and 28 are fastened to the block 25.
  • the inner hub 28, cylinder block 25, and .outerhub 26 form a stationary assembly that is bolted together by cap screws 29 and 29a and is bolted and to the vehicle frame 11 by the studs 12.
  • Suitable nonrotative O-rings or oil seals are provided between the block 25 and the hubs 26 and 28, so that (as shown in FIG. 5) these three members function as a single stationary assembly 30 in the assembled motor 10.
  • the rotatable housing members 22, 22a, 23, and 24, and the hub cap 27 form a single rotatable assembly 31 held together by bolts 32, 32a, and 33.
  • Tightly fitting dowels 33a and 33b may be provided for transmitting torque between a cam ring 76 in the member 24 and the covers 22 and 23.
  • the bearings 20 and 21 lie between the stationary assembly 30 and the rotating assembly 3], or, more specifically, the bearing 20 is between the block 25 and the end housing member 22a and is protected by rotary oil seal 34 between the end housing member 22a and the inner hub 28, while the bearing 2] lies between the outer hub 26 and the end housing member 23 and is protected by the hub cap 27.
  • hydraulic fluid such as oil from the pump 19 and the conduit 17 enters the motor 10 through a passage 35 in the inner hub 28 and flows into a space 36, which lies between the hub 28 and the block 25. Thence, the fluid flows through a ferrule 37 and a passage 38 in the cylinder block 25 and into a space 39 between the outer hub 26 and the block 25.
  • a return passage 40 in the block 25 leads from a space 41 between the hub 26 and the block 25, via a ferrule 42 to a space 43 between the inner hub 28 and the block 25 to a passage 44 in the hub 28 that is connected to the return line 16 to the pump 19.
  • the flow direction may be reversed for reversing the wheel's direction of rotation.
  • This motor 10 is characterized by four important features; first, the same part functions both as a valve and a piston: a first series of valve-and-piston members 50, 50a, 50b, and 5c cooperates with a second series of valve-and-piston members 60, 60a, 60b, and 60, each piston 50, etc., acting as a valve for an adjacent piston 60, etc and vice versa; second, the pistons 50, 60, transmit their force through respective antifriction rollers 70, without placing any side load on themselves; third, the piston force is finally transmitted to the rotating member 24 by means of rollers 75 or and fourth, the force is transmitted to a multilobe cam 76 or 86 comprising respective surfaces of the member 24, and the number of lobes may be varied to increase or decrease the rpm. or speed and inversely to decrease or increase the torque of the motor 10 at a given input of fluid. The number of lobes in each cam 76 or 86 should always be the product of two and an odd number.
  • the space 39 is connected by means of passages 45, 45a, 45b, 450, to respective annular channels 51, 51a, 51b, 510, respectively.
  • the channel 51 is a recess from a bore or cylinder 52 in which the valve-piston member 50 reciprocates; spaced away from the channel 51 toward the other end of the bore 52 is an annular channel 53 that is connected to a drilled passage 54,
  • each bore 51 and 53 In between'the channels 51 and 53 is another annular channel 55 recessed from the bore 52 and joined to a drilled passage 56 shown only in FIG. 2. At the inner end of each bore 52 is an annular channel 57 that is connected to a drilled passage 58, also shown only in FIG. 2. A spring 59 urges thepiston 50 outwardly of the bore52.
  • valve-piston member 60 is similarly provided with annular channels 61, 63, 65, and 67 corresponding to the channels 51, 53, 55, and 57.
  • a passage 46 connects the annular channel 61 to the space 43
  • a passage 64 connects the channel 63 to the space 36.
  • the passage 56 connects the channel 55 to the channel 67
  • the passage 58 connects the channel 57 to the channel 65.
  • a spring 66 urges the valve-piston member 60 outwardly.
  • Each piston 50 is urged by its spring 59 against a roller 70, which is supported rotatably on a shaft 71 mounted in a swing link 72, (See FIGS. 2, 6, and 7).
  • This link 72 is pivoted on needle bearings 73 around a pin 79 that is supported on a cylinder block extension 74 and carries a rotatably bearinged cam roller 75, which rides on a cam surface 76 formed on the interior surface of the central housing member 24.
  • the spring 66 urges each piston 60 toward a roller 80 supported by a shaft 81 on a swing link 82; the link 82 is pivoted on needle bearings 89 around a pin 87 that is supported on a cylinder block extension 84 and carries a roller 85 that rides on a cam surface 86, also formed on the interior surface of the central housing member 24.
  • the piston 50 FIGS. 2 and 3
  • the piston 50 When the oil pressure is supplied to the piston 50 (FIGS. 2 and 3) through the passage 58, the piston 50 is moved outwardly and exerts a force on the roller 70, and when oil pressure is applied to the piston 60 (FIGS. 2 and 4) through the passage 56, the piston 60 is moved outwardly and exerts an actuation force on the roller 80.
  • rollers 70 and 80 The purpose of the rollers 70 and 80 is to make it possible for the swing links 72, 82 to reciprocate without placing a side load on the pistons 50, 60. Since the links 72, 82 are each pivoted on needle bearings 73, 89, they swing up and down and transmit their force through the cam roller 75, 85 to the cam ring 76 or 86, all without producing side load on the pistons 50, 60.
  • the phases of the various pistons 50 and60 are disposed in such a manner that at least two of them are acting at any given moment, so that rotation is continuous.
  • the eight pistons 50 and 60 act as four pairs, and the resultant force on the cams 76 and 86 balances the loads on the bearings 20 and 21. Therefofe, there is no theoretical load on the bearings 20 and 21, which are used mainly to support the weight of the vehicle. However, four pistons would produce a rough type of pumping and a considerable degree of fluctuation of torque if it were not for the fact that the cam tracks 76, 86 are meticulously calculated to provide each piston 50, 60 with such a motion that the sum total of all of these motions results in a constant flow and in constant torque acting upon the tracks 76, 86.
  • the calculation is based on the fact that since two pairs of pistons are discharging at any one time, substantially constant discharge can be obtained by having the sum of the rates of change of displacement of the pistons that are discharging remain substantially constant. It is also desirable to limit the accelerating forces on the swing links 72,82 to reduce the spring pressure.
  • each cam track 76, 86 is calculated and spaced to give a phase relation that enables this to be carried out.
  • each cam track 76, 86 has 6 cycles, so that 60 on the track 76 or 86 corresponds to 360 (one complete cycle) for each piston 50 or 60.
  • the tracks 76, 86 are out of phase, corresponding to 90 of piston cycle.
  • the piston 500 is also under pressure supplied to it through the passage 58, which is connected to the high pressure via the channel 61 associated with the piston 60 and the passage 46. Consequently, the spaces 39 and 36 to which the passage 46 is connected (See FIG. 5) is under high pressure, and the spaces 41 and 43 are under low pressure.
  • This motor 10 possesses many advantages.
  • One advantage is that the valving is accomplished by the spool section of each piston 50, 60 when it acts as a valve for the next piston 60, 50. This is extremely desirable, because there is more trouble in hydraulic pumps and motors from rotating valves moving at rapid velocity than from any other single source of trouble, and the piston-type valve of this invention is not only more efficient but is very much more resistant to dirt, is not as likely to abrade or score, and is not as likely to bind as is a pintle type rotatingvalve.
  • the passages for valving can be made relatively large and the oil velocities low, and this also contributes to improved efficiency.
  • This motor thereare only eight major part types in this motor, so that it is simple and inexpensive to make and maintain.
  • the motor bearings are vused to support the weight of the vehicle.
  • the dimensions of the motor are small and it fits within the confines of a conventional duotire 'wheel or'large width tire. I o
  • a fluid motor including in combination: e
  • a stationary body having first and second sets of cylinders, T each cylinder in said first set being paired to a cylinder in said second set, each cylinder being open at one end and having an actuation chamber at the other end and having, inbetween the ends, a valving recess in between an inlet recess and an outlet recess, said body'having inlet passage means leading to each said inlet recess and outlet passage means leading to each said outlet recess, each of the paired cylinders having its valving recess connected to the actuation chamber of the other cylinder of the pair;
  • each piston serves as a valve for its paired piston;
  • a rotatable housing rotatably mounted on said body
  • first and second internalcircumferential cam rings mounted in said housing; l means for transmitting the outwardmovement of each piston of said first set to saidfirst cam ring; and.
  • each link associated with each piston and, pivotally mounted to said body, each link having a piston-engaging roller mounted thereon and in contact with the outer end of its associated said piston, each link also having a cam roller mounted thereon and two internal circumferential cam secured thereto, the first said cam ring being in contact with the cam rollers for said first set ofpisto'ns, the second said cam ringbeing in contact with the cam rollers for said second set of pistons.
  • each set of cylinders consists of four cylinders located 90 apart and with the axis of each at right angles to theaxes of the two adjacent cylinders,
  • each pair of paired cylinders having their axes parallel to each other. and with their pistons facing in opposite directions.
  • each cam has six lobes evenly spaced therearound.
  • each cam is shaped to provide constant torque and constantfluid flow rate during uniform rotational velocity of said rotating assembly.
  • the fluid motor of claim 1 having:
  • a fluid motor including in combination:
  • a stationary body having, first and second sets of cylinders therein, said sets lying with the axes of each set in a plane and the planes of the two sets parallel to each other, each cylinder insaid first set being paired'to a cylinder in said second set, each cylinder being open at one end and having an actuation chamber at the other end and having, recessed into said body, first, second; and third annular recesses, around and communicating with the cylinder and spaced apart axially and sequentially from said actuation chamber toward said open end, said body having passage means providing fluid inlet means for each said first recess and fluid outlet means for each said third recess, the second recess of each cylinder in said first set being connected by a passage in said body to the actuation chamber of its paired cylinder in said second set, the actuation cylinder of the same cylinder in said first set being connected by a passage in said body to the second recess of the same paired cylinder in said second set;
  • each piston in each said cylinder so that there are first and second sets of pistons corresponding to the first and second sets of cylinders, each piston having an inner end facingsaid actuation chamber and an outer end having a recessed portion in between its ends serving, with the unrecessed remainder of said piston, as a valve to connect and disconnect said second recess to each of said first and third recesses, depending on the axial position of said piston in its cylinder, so that-each cylinder and piston in said first set serves as a valve for its paired cylinder and piston in the second set and is valved by that same paired cylinder and piston;
  • each link having a piston-engaging roller mounted thereon and in contact with the outer end of its associated said piston, each linkalso having a cam roller mounted thereon;
  • rotatable housing rotatably mounted on said body and having two internal circumferential cam rings, the first said cam ring being in contact with the cam rollers for said first set of pistons, the second s'aid cam ring being in contact with the cam rollers for said second set of pistons.
  • each set of cylinders is arranged so that their axes are tangent to a single circle made up of diametrically opposite pairs of cylinders and said cams are patterned so that the pistons in each said diametrically opposite pair are in the same phase with each other.
  • each said cam has a number of lobes equal to twice an odd number.
  • each set of cylinders consists of four cylinders located apart and with the axis of each at right angles to the axes of the two adjacent cylinders, each pair of paired cylinders having their axes parallel to each other and with their pistons facing in opposite directions.
  • each cam has six lobes evenly spaced therearound.
  • each cam is shaped to provide constant torque and constant fluid flow rate during uniform rotational velocity of said rotating assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Motor Power Transmission Devices (AREA)
US853309A 1969-08-27 1969-08-27 Fluid motor Expired - Lifetime US3557661A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85330969A 1969-08-27 1969-08-27

Publications (1)

Publication Number Publication Date
US3557661A true US3557661A (en) 1971-01-26

Family

ID=25315684

Family Applications (1)

Application Number Title Priority Date Filing Date
US853309A Expired - Lifetime US3557661A (en) 1969-08-27 1969-08-27 Fluid motor

Country Status (5)

Country Link
US (1) US3557661A (enrdf_load_stackoverflow)
JP (1) JPS4836447B1 (enrdf_load_stackoverflow)
DE (1) DE2038965C3 (enrdf_load_stackoverflow)
FR (1) FR2059161A5 (enrdf_load_stackoverflow)
GB (1) GB1287846A (enrdf_load_stackoverflow)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848515A (en) * 1972-12-29 1974-11-19 Ibm Linear hydraulic drive system
EP0541847A1 (de) * 1991-11-14 1993-05-19 Heinz Anger Hydro-Energie
US6065289A (en) * 1998-06-24 2000-05-23 Quiet Revolution Motor Company, L.L.C. Fluid displacement apparatus and method
NL2003466C2 (nl) * 2009-09-10 2011-03-14 Loven Beheer B V Wielophanginrichting, truck, en werkwijze voor het samenstellen van een wielophanginrichting.
US20140219848A1 (en) * 2013-02-04 2014-08-07 Vianney Rabhi Hydraulic motor-pump with fixed or variable displacement
US20160265518A1 (en) * 2015-03-09 2016-09-15 Rabhi Vianney System for coupling a piston for a hydraulic pump motor

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916848U (enrdf_load_stackoverflow) * 1972-05-15 1974-02-13
JPS50100726U (enrdf_load_stackoverflow) * 1974-01-19 1975-08-20
JPS50101015U (enrdf_load_stackoverflow) * 1974-01-22 1975-08-21
JPS50117419U (enrdf_load_stackoverflow) * 1974-03-08 1975-09-25
JPS50120028U (enrdf_load_stackoverflow) * 1974-03-15 1975-10-01
JPS5134024U (enrdf_load_stackoverflow) * 1974-09-05 1976-03-12
JPS5131923A (ja) * 1974-09-12 1976-03-18 Hara Seishi Gekishinjiniokerugasukannadosokujiheisokusochi
JPS5135124A (en) * 1974-09-19 1976-03-25 Sadamu Ishii Jishinnyorugasu * matawa nenyu * jijidoheishino anzenben
JPS5139217U (enrdf_load_stackoverflow) * 1974-09-19 1976-03-24
JPS5141723U (enrdf_load_stackoverflow) * 1974-09-24 1976-03-27
JPS5141722U (enrdf_load_stackoverflow) * 1974-09-24 1976-03-27
JPS5142127A (ja) * 1974-10-08 1976-04-09 Senji Tanaka Gasujidoshadanki
JPS5165320U (enrdf_load_stackoverflow) * 1974-11-19 1976-05-22
JPS5165417A (ja) * 1974-12-04 1976-06-07 Takaharu Ando Kanengasukyokyuteishisochi
JPS5194041U (enrdf_load_stackoverflow) * 1975-01-28 1976-07-28
JPS51100923U (enrdf_load_stackoverflow) * 1975-02-13 1976-08-13
JPS51105137U (enrdf_load_stackoverflow) * 1975-02-21 1976-08-23
JPS51142116A (en) * 1975-06-02 1976-12-07 Tsunekichi Shibata Gas stop
JPS529116A (en) * 1975-07-12 1977-01-24 Tohoku Metal Ind Ltd Earthquake detecting breaker device providing raw gas spout preventing means
JPS5323019U (enrdf_load_stackoverflow) * 1976-08-05 1978-02-27
JPS5363620A (en) * 1976-11-19 1978-06-07 Arimoto Masaru Automatic cock closing device
JPS53166719U (enrdf_load_stackoverflow) * 1976-12-20 1978-12-27
JPS5528143U (enrdf_load_stackoverflow) * 1978-08-11 1980-02-23
JPS5712871U (enrdf_load_stackoverflow) * 1980-06-26 1982-01-22
DE3106453C2 (de) * 1981-02-21 1986-02-27 PHB Weserhütte AG, 5000 Köln Hydraulischer Einzelradantrieb für ein schienengebundenes Fahrzeug wie ein Kran o.dgl.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2417894A (en) * 1943-09-23 1947-03-25 Gienn J Wayland Rotary diesel engine
US2498033A (en) * 1937-11-22 1950-02-21 Ernst Hans Gun control mechanism
FR1129145A (fr) * 1955-07-16 1957-01-16 Faucheux Ets Moteur hydraulique
US2889783A (en) * 1955-07-25 1959-06-09 Woydt Eduard Pump or motor having four cylinders arranged in one plane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2498033A (en) * 1937-11-22 1950-02-21 Ernst Hans Gun control mechanism
US2417894A (en) * 1943-09-23 1947-03-25 Gienn J Wayland Rotary diesel engine
FR1129145A (fr) * 1955-07-16 1957-01-16 Faucheux Ets Moteur hydraulique
US2889783A (en) * 1955-07-25 1959-06-09 Woydt Eduard Pump or motor having four cylinders arranged in one plane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848515A (en) * 1972-12-29 1974-11-19 Ibm Linear hydraulic drive system
EP0541847A1 (de) * 1991-11-14 1993-05-19 Heinz Anger Hydro-Energie
US6065289A (en) * 1998-06-24 2000-05-23 Quiet Revolution Motor Company, L.L.C. Fluid displacement apparatus and method
NL2003466C2 (nl) * 2009-09-10 2011-03-14 Loven Beheer B V Wielophanginrichting, truck, en werkwijze voor het samenstellen van een wielophanginrichting.
EP2295275A1 (en) * 2009-09-10 2011-03-16 Loven Beheer B.V. Wheel suspension device, truck, and method for assembling a wheel suspension device
US20140219848A1 (en) * 2013-02-04 2014-08-07 Vianney Rabhi Hydraulic motor-pump with fixed or variable displacement
US9546654B2 (en) * 2013-02-04 2017-01-17 Vianney Rabhi Hydraulic motor-pump with fixed or variable displacement
US20160265518A1 (en) * 2015-03-09 2016-09-15 Rabhi Vianney System for coupling a piston for a hydraulic pump motor

Also Published As

Publication number Publication date
DE2038965C3 (de) 1978-05-03
FR2059161A5 (enrdf_load_stackoverflow) 1971-05-28
DE2038965B2 (de) 1977-08-18
JPS4836447B1 (enrdf_load_stackoverflow) 1973-11-05
DE2038965A1 (de) 1971-03-18
GB1287846A (enrdf_load_stackoverflow) 1972-09-06

Similar Documents

Publication Publication Date Title
US3557661A (en) Fluid motor
US3289542A (en) Hydraulic motor or pump
RU2078942C1 (ru) Сборочный узел двигателя или насоса
EP0015127B1 (en) Fluid motor-pump assembly
US3175510A (en) Variable displacement pump
US3199460A (en) Hydraulic pump or motor
US3435774A (en) Hydraulic pump or motor
US3905727A (en) Gerotor type fluid motor, pump or the like
US5205123A (en) Infinitely variable differential hydrostatic transmission
US1904496A (en) Hydraulic transmission system
US3695146A (en) Hydrostatic motor or pump and hydrostatic transmissions
US5400594A (en) Slipper guide for a hydrostatic transmission
US2492688A (en) Hydraulic power unit
US3796525A (en) Energy translation devices
US3280934A (en) Auto kinetic wheel or fluid motor
US4938024A (en) Hydrostatic continuously variable transmission
US3155047A (en) Power transmission
US3433124A (en) Hydraulic motor
US2111657A (en) Hydraulic pump or motor
US4505185A (en) Through-shaft energy converter transmission
US2993339A (en) Rotary, hydraulic pump and motor transmission
US3884124A (en) Hydraulic device
USRE26519E (en) Variable displacement pump
US3901630A (en) Fluid motor, pump or the like having inner and outer fluid displacement means
US3482525A (en) Rotary pump or motor