US3552848A - Xerographic plate - Google Patents
Xerographic plate Download PDFInfo
- Publication number
- US3552848A US3552848A US714135A US3552848DA US3552848A US 3552848 A US3552848 A US 3552848A US 714135 A US714135 A US 714135A US 3552848D A US3552848D A US 3552848DA US 3552848 A US3552848 A US 3552848A
- Authority
- US
- United States
- Prior art keywords
- drum
- xerographic
- plate
- layer
- selenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 36
- 239000011669 selenium Substances 0.000 abstract description 31
- 229910052711 selenium Inorganic materials 0.000 abstract description 31
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 abstract description 30
- 239000000758 substrate Substances 0.000 abstract description 20
- 229910052804 chromium Inorganic materials 0.000 abstract description 19
- 239000011651 chromium Substances 0.000 abstract description 19
- 238000003384 imaging method Methods 0.000 abstract description 3
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 20
- 239000002245 particle Substances 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 10
- 239000011324 bead Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 5
- 230000005670 electromagnetic radiation Effects 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 125000003748 selenium group Chemical group *[Se]* 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
- G03G5/142—Inert intermediate layers
- G03G5/144—Inert intermediate layers comprising inorganic material
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/28—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which projection is obtained by line scanning
- G03G15/30—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which projection is obtained by line scanning in which projection is formed on a drum
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/10—Bases for charge-receiving or other layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/10—Bases for charge-receiving or other layers
- G03G5/102—Bases for charge-receiving or other layers consisting of or comprising metals
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/14—Inert intermediate or cover layers for charge-receiving layers
Definitions
- a xerographic apparatus having a photosensitive member in the form of a xerographic drum, said drum having a conductive substrate, a thin layer of chromium contained on said substrate, and a layer of photoconductive insulating amorphous selenium covering the central portion of said chromium coated drum leaving the two peripheral edges of said drum coated only with a chromium layer, means for forming a latent electrostatic image on the photoconductive insulating layer, developer means including a developer housing for developing said latent electrostatic image, means adapted to form a contact seal between a portion of said developer housing and a portion of the chromium coated edges of the xerographic drum, and means to move said xerographic drum with respect to said imaging and developer means.
- This invention relates in general to xerography and in particular to an improved xerographic plate; and this application is a division of application Ser. No. 311,476, filed Sept. 25, 1963 (now abandoned).
- an electrostatic latent image is formed on a photoconductive insulating layer and is developed through the deposition thereon of finely divided electroscopic material.
- the image may be fixed in place or transferred to a sheet of copy paper where it is permanently fixed.
- the photoconductive insulating layer which is referred to in the art as a plate regardless of its shape or flexibility, is first charged to sensitize it and is then exposed to a light image or other pattern of activating electromagnetic radiation which serves to dissipate the charge in radiation struck areas, thus forming a charge pattern which conforms to the electromagnetic radiation pattern which impinges upon the plate.
- This charge pattern is then developed or made visible by the chargewise deposition on the plate of an electroscopic or electrostatically attract-able, finely divided, colored material which is referred to in the art as toner.
- the apparatus could be redesigned to prevent wear so that different materials might be employed in the fabrication of the xerographic drums to reduce wear on the drums and facilitate the refurbishing operation, it has generally been found that these changes cannot be made because of great losses in system efiiciency which result from them.
- the material employed as the substrate for the xerographic plate has been found to have critical effects on the electrical properties and consequently upon the xerographic operability of the xerographic plate.
- Another object of this invention is to define a xerographic plate which is capable of being easily refurbished without significant changes in its final dimensions and without loss in its xerographic image forming capabilities.
- a still further object of this invention is to define a novel xerographic plate which is much less subject to wear in commercially available xerographic equipment.
- FIG. 1 is a side cross sectional view of a reusable plate type xerographic copying apparatus.
- FIG. 2 is a partially cut away isometric view of the xerographic plate and developing elements of the apparatus illustrated in FIG. 1.
- FIG. 3 is a sectional view of the improved xerographic plate according to this invention extending to the end of the xerographic drum as seen in FIG. 2.
- FIG. 1 there is illustrated an exemplary type of automatic, continuous, xerographic copier of a type now in wide commercial use utilizing a cylindrical plate generally designated 11 made up of a grounded substrate layer 12, an interfacial barrier layer 13 and a photoconductive insulating layer 14.
- a cylindrical plate generally designated 11 made up of a grounded substrate layer 12, an interfacial barrier layer 13 and a photoconductive insulating layer 14.
- the plate 11 is illustrated in the form of a rigid cylinder it may take many other shapes including that of a flat plate, a polygon, or an ellipse, or the like and may be flexible as well as rigid. Thus, for example, it might take the form of a flexible endless belt.
- the xerographic plate 11 is first charged to sensitize it. This is accomplished with a charging unit 16 connected to a source of high potential 17.
- the charging unit 16 contains one or more wire filaments which are connected to the potential source and operate on the corona discharge technique as described in U.S. Pats. 2,588,699 to Carlson and 2,777,957 to Walkup.
- this technique consists of spacing a filament slightly from the surface of the xerographic plate having its conductive base grounded and applying a high potential to the filament so that a corona discharge occurs between the filament and the plate, thereby serving to deposit charge on the plate surface to raise its level of potential with respect to ground.
- Other charging techniques known in the xerographic art such as induction charging as described, for example, in U.S. Pat. 2,833,930 to Walkup may also be employed for the purpose of sensitizing the xerographic plate.
- the cylindrical xerographic plate is generally rotated at a uniform velocity in a direction indicated by the arrow in FIG. 1 so that after portions of the drum periphery pass beneath the charging unit 16 and have been uniformly charged, they come beneath a projector 18 or other means for exposing the charged plate to the image to be reproduced.
- This exposure step serves to dissipate charge in surface areas of the cylindrical xerographic plate which are exposed to light from the image exposure resulting in a residual charge pattern on the xerographic plate 11 corresponding to the original image to be reproduced.
- the drum surface moves past a developing unit generally designated 19.
- the illustrated developing unit is of the cascade type which includes an outer container or cover 21 with a trough at its bottom containing a supply of developing material 22.
- the developing material is picked up from the bottom of the container 21 and dumped or cascaded over the drum surface by a number of buckets 23 on an endless driven conveyor belt 24.
- This development technique which is more fully described in U.S. Pat. 2,618,- 552 to Wise and 2,618,551 to Walkup utilizes a two element developing mixture including finely divided, colored, marking particles or as it is known in the art, toner and grossly larger carrier beads.
- the carrier beads serve both to deagglomerate the toner particles and to charge the toner by virtue of the rubbing together of the carrier and toner in the apparatus and their relative positions of the toner and carrier materials in the triboelectric series.
- the carrier beads with toner particles clinging to them are cascaded over the drum surface, the electrostatic fields from the charge pattern on the drum pull toner particles off the carrier beads serving to develop the residual charge pattern making up the image.
- the carrier beads, along with any toner particles not used to develop the image then fall back into the bottom of container 21.
- the toner and carrier materials are selected so that the charge triboelectrically imparted to them is opposite in polarity to the residual charge pattern on the xerographic plate 11.
- the xerographic plate fabricated according to this invention may be used in xerographic copying apparatus employing development systems other than the illustrated cascade system, although it is of particular value when employed in conjunction with a cascade development system or other systems employing friction seals because of its resistance to wear and erosion caused by the developer seals as will be more fully explained in connection with FIG. 2.
- magnetic brush development as described in US. Pat. 3,015,305 to Hall, skid development as described in U.S. Pat. 2,895,847 to Mayo, or powder cloud development as described in U.S. Pat.
- 2,918,910 to Carlson may be substituted along with any one of the number of other development techniques well known in the art for the cascade development unit 19 illustrated and described above.
- the plate hearing this developed powder image moves around until it comes into contact with a copy web 26 which is pressed up against the drum surface by two idle rollers 27 so that the web moves at the same speed as the periphery of the drum.
- a transfer unit 28 is placed behind the web and spaced slightly from it between the rollers 27. This unit is similar in nature to the plate charging mechanism 16, 17 and also operates on the corona discharge principle.
- the transfer unit is connected to a source of high potential 29 of the same polarity as that employed in the charging device so that it deposits charge on the back of web 26 which is of the same polarity as the charge on the xerographic plate and is opposite in polarity to the toner particles utilized in developing the drum.
- a source of high potential 29 of the same polarity as that employed in the charging device so that it deposits charge on the back of web 26 which is of the same polarity as the charge on the xerographic plate and is opposite in polarity to the toner particles utilized in developing the drum.
- this corona discharge to the back of the web 26 serves to transfer the developed toner particle image from the surface of the drum to the web 26. It should be noted at this point that may other transfer techniques may be utilized with this invention.
- a roller connected to a source of high potential opposite in polarity to the toner particles may be placed immediately behind the copy web or the copy web may itself be adhesive to the toner particles.
- the web moves beneath a fixing unit 31 which serves to fuse or permanently fix the toner image to the web.
- a resistance heating type fixer is illustrated for use with a toner including a resinous component; however other techniques known in the xerographic arts may also be utilized including the subjection of the toner particle image to a solvent vapor or the spraying over the toner image with an adhesive overcoating. After fixing the web is rewound on a coil 32 for later use.
- the xerographic plate 11 must have certain electrical properties.
- the xerographic plate must be capable of holding charge from the time when it is sensitized by the corona generating unit 16, at least until the time when it is developed by the cascade developing unit 19.
- the xerographic plate must have low charge dark decay.
- the plate must be capable of dissipating charge relatively rapidly upon exposure to the light or other activating electromagnetic radiation to which it is sensitive so that non-image areas of the plate will not contain developable residual charge when the plate passes beneath the developing unit 19.
- xerographic plates in commercial use today generally employ a substrate such as aluminum bearing a thin interfacial barrier layer such as aluminum oxide between the luminum and selenium layers.
- a thin interfacial barrier layer such as aluminum oxide between the luminum and selenium layers.
- the interfacial barrier layer is of such a nature as to allow charge dissipation from the plate upon exposure of the charged plate to activating electromagnetic radiation.
- FIG. 2 there is illustrated in isometric, a portion of the FIG. 1 apparatus including the cylindrical xerographic drum 11 and the cascade developing unit 19.
- the conductive drum substrate 12 and the interface layer 13 extend out beyond the photoconductive insulating layer 14 and the end seals 34 of the developer housing 21 make sliding contact with the end portion of the drum.
- Seals of the type shown in FIG. 2 are provided at both ends of the drum although only one seal is shown in FIG. 2. Since the lower portion or collecting lip on the trough of the developer housing 21 is below the point where residual developing material falls ofl?
- end seals 34 are usually fabricated of some foam material such as foamed polyurethane or other materials capable of forming a good seal with the surface of the drum substrate, carrier beads and/or toner particles sometimes become lodged between these end seals and the surface of the drum and in past instances when the drum and interface layer were formed of aluminum and aluminum oxide respectively, these particles have caused significant scoring of the drum surface as the drum rtates with these developing materials between it and the end seals. Since these carrier beads generally take the form of coated glass, this scoring of the drums is frequently severe enough to impair the effectiveness of the seal over long periods of drum use.
- foam material such as foamed polyurethane or other materials capable of forming a good seal with the surface of the drum substrate
- carrier beads and/or toner particles sometimes become lodged between these end seals and the surface of the drum and in past instances when the drum and interface layer were formed of aluminum and aluminum oxide respectively, these particles have caused significant scoring of the drum surface as the drum rtates with these developing materials between it and the end seals. Since these
- the cylindrical substrate is a precision made component which is machined specifically for mounting in the xerographic copying apparatus, large savings can be made if the selenium photoconductive insulating layer can be stripped from the drum and a new coating of amorphous selenium can be reapplied to the drum surface rendering it ready for reuse in thousands of additional cycles of machine operation.
- Several disadvantages have been found when it was attempted to refurbish the commercially utilized aluminum based xerographic drums for more than a few times.
- the bond between the evaporated amorphous selenium photoconductive insulating layer and the substrate and interface layers of aluminum and aluminum oxide was found to be so good that removal of the selenium could only be readily accomplished by machining the drums on a lathe and even in those occasional instances where the selenium can be removed by other techniques, machining of the drum blank is required to remove grooves, pits, and the like caused by scoring of the ends of the drum by developer caught between the end seals and the drum surface. Since the diameter of the drum blank is reduced by a certain finite amount during each machining operation, aluminum drums could be refurbished on average only about twice before the drum blanks became unacceptably out of tolerance requirements for use in the machine.
- the drum must then be cleaned to remove any irregular surface oxides as by dipping it in a nitric acid solution whereupon a new and highly uniform layer of aluminum oxide is then formed on the drum surface by heating over an extended period or by any one of a number of various chemical treatments.
- This prior art type aluminum drum blank is then ready for recoating with amorphous selenium which constitutes the final step in the refurbishing process.
- this xerographic plate consists of a supporting or substrate layer 36 which is preferably at least one or two orders of magnitude more conductive than amorphous selenium layer 38 and may advantageously be formed of a conductive metal or alloy such as steel.
- a thin but uniform layer of chrome 37 overlies the substrate below selenium layer 38 which covers only the center of the chrome layer.
- this chrome layer acts as an excellent xerographic plate interface.
- the chromium layer should preferably be at least thick enough to impart hardness to the surface of the drum blank and thereby prevent abrasion or erosion of the ends of the drum when they come into contact with the developer seals and trapped carrier beads in the developer seals during operation of the xerographic apparatus which employs the drum.
- chrome layers on the order of from about .0005 to about .001 inch are required.
- thinner layers of chrome which do not range up into the hard chrome coating region may be employed to satisfy the electrical requirements of the interfacial layer.
- the chrome may be deposited by any of the known chrome surface coating techniques such as, for example, electroplating. If electroplating is em ployed, nickel or copper undercoating may be used to provide good adhesion between the chromium and its steel substrate and to facilitate the electroplating. When electroplating is utilized to apply the chromium layer in thicknesses in the hard chromium range the plating operation should be followed by heat treatment at about from 300 to about 500 F. for from about 1 to 5 hours to outgas the chromium layer and prevent hydrogen embrittlement which might otherwise result from the electrolytic coating process.
- electroplating is utilized to apply the chromium layer in thicknesses in the hard chromium range the plating operation should be followed by heat treatment at about from 300 to about 500 F. for from about 1 to 5 hours to outgas the chromium layer and prevent hydrogen embrittlement which might otherwise result from the electrolytic coating process.
- a layer of amorphous selenium is applied to the chromium to serve as the photoconductive insulating layer of the plate.
- This layer will generally range in thickness from about 10 to about 200 microns depending upon its mode of operation, the type of activating electromagnetic radiation to which it is exposed and similar factors.
- the chrome interface drum described in connection with FIG. 3 above may be refurbished by a method which is both fast and simple as compared to the refurbishing method of the prior art type drum.
- refurbishing may be carried out a great number of times without degradation of the drum blank since it need not be turned down on a lathe.
- this refurbishing process involves merely stripping the exhausted selenium from the chrome plated drum by bringing a strong adhesive tape into contact with the selenium surface and then pulling the adhesive tape away from the drum to demove the selenium followed by a recoating of a fresh layer of selenium onto the chrome surface.
- the selenium may be removed by a jet spray process which involves causing a very high pressure spray of water to impinge on the selenium. It has been found that the chrome to selenium bond is not strong enough to withstand these types of removal processes; however, it is sufficiently strong so that the selenium stays on the chrome base without flaking off or otherwise being removed during operation in the xerographic copying apparatus described. Tests to 20,000 cycles and more of drum operation in this type of copying device have failed to disclose one instance of selenium-chrome bond failure.
- Any residual small feathers of selenium which may be left by the stripping process can be removed by a hot sodium sulfite bath.
- a xerographic apparatus comprising a photosensitive member in the form of a cylindrical drum, said drum having a conductive substrate coated with a thin uniform layer of chromium on the outer surface of said substrate, a photoconductive insulating layer of amorphous selenium covering the major portion of said chromium layer leaving the two peripheral edges of said drum coated only with chromium, means for forming a latent electrostatic image on the photoconductive insulating surface of said drum, developer means including a developer housing to develop said latent electrostatic image, said developer housing including a contact seal, with said seal being in sliding contact with said chromium coated edges, and means to move said xerographic drum with respect to said imaging and developer means.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Photoreceptors In Electrophotography (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31147663A | 1963-09-25 | 1963-09-25 | |
US71413567A | 1967-11-20 | 1967-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3552848A true US3552848A (en) | 1971-01-05 |
Family
ID=26977902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US714135A Expired - Lifetime US3552848A (en) | 1963-09-25 | 1967-11-20 | Xerographic plate |
Country Status (2)
Country | Link |
---|---|
US (1) | US3552848A (is") |
NL (1) | NL6411125A (is") |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3709603A (en) * | 1969-11-07 | 1973-01-09 | Katsuragawa Denki Kk | Electrophotographic copying machine |
US4516849A (en) * | 1982-04-04 | 1985-05-14 | Mita Industrial Co., Ltd. | Cleaning device for an electrostatic photographic copying machine |
US4616919A (en) * | 1985-09-05 | 1986-10-14 | International Business Machines Corporation | Non-contact developer seal |
US5470271A (en) * | 1992-01-02 | 1995-11-28 | Xerox Corporation | Flexible belt reclaiming |
WO2001079650A1 (en) * | 2000-04-13 | 2001-10-25 | Weatherford/Lamb, Inc. | Drillable drill bit nozzle |
US20020189863A1 (en) * | 1999-12-22 | 2002-12-19 | Mike Wardley | Drilling bit for drilling while running casing |
US20030141111A1 (en) * | 2000-08-01 | 2003-07-31 | Giancarlo Pia | Drilling method |
US20030164251A1 (en) * | 2000-04-28 | 2003-09-04 | Tulloch Rory Mccrae | Expandable apparatus for drift and reaming borehole |
US20030173073A1 (en) * | 2000-04-17 | 2003-09-18 | Weatherford/Lamb, Inc. | Top drive casing system |
US20030217865A1 (en) * | 2002-03-16 | 2003-11-27 | Simpson Neil Andrew Abercrombie | Bore lining and drilling |
US20040069500A1 (en) * | 2001-05-17 | 2004-04-15 | Haugen David M. | Apparatus and methods for tubular makeup interlock |
US20040108142A1 (en) * | 1994-10-14 | 2004-06-10 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040112646A1 (en) * | 1994-10-14 | 2004-06-17 | Vail William Banning | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040118613A1 (en) * | 1994-10-14 | 2004-06-24 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040129456A1 (en) * | 1994-10-14 | 2004-07-08 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040140128A1 (en) * | 1994-10-14 | 2004-07-22 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040173357A1 (en) * | 1998-08-24 | 2004-09-09 | Weatherford/Lamb, Inc. | Apparatus for connecting tublars using a top drive |
US20040194965A1 (en) * | 1998-12-24 | 2004-10-07 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US20040216892A1 (en) * | 2003-03-05 | 2004-11-04 | Giroux Richard L | Drilling with casing latch |
US20040216924A1 (en) * | 2003-03-05 | 2004-11-04 | Bernd-Georg Pietras | Casing running and drilling system |
US20040216925A1 (en) * | 1998-12-22 | 2004-11-04 | Weatherford/Lamb, Inc. | Method and apparatus for drilling and lining a wellbore |
US20040221997A1 (en) * | 1999-02-25 | 2004-11-11 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US20040226751A1 (en) * | 2003-02-27 | 2004-11-18 | Mckay David | Drill shoe |
US20040244992A1 (en) * | 2003-03-05 | 2004-12-09 | Carter Thurman B. | Full bore lined wellbores |
US20040245020A1 (en) * | 2000-04-13 | 2004-12-09 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US20040251055A1 (en) * | 2002-07-29 | 2004-12-16 | Weatherford/Lamb, Inc. | Adjustable rotating guides for spider or elevator |
US20040251025A1 (en) * | 2003-01-30 | 2004-12-16 | Giroux Richard L. | Single-direction cementing plug |
US20040251050A1 (en) * | 1997-09-02 | 2004-12-16 | Weatherford/Lamb, Inc. | Method and apparatus for drilling with casing |
US20040262013A1 (en) * | 2002-10-11 | 2004-12-30 | Weatherford/Lamb, Inc. | Wired casing |
US20050000691A1 (en) * | 2000-04-17 | 2005-01-06 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
US20050000696A1 (en) * | 2003-04-04 | 2005-01-06 | Mcdaniel Gary | Method and apparatus for handling wellbore tubulars |
US20050121232A1 (en) * | 1998-12-22 | 2005-06-09 | Weatherford/Lamb, Inc. | Downhole filter |
US20050194188A1 (en) * | 2003-10-03 | 2005-09-08 | Glaser Mark C. | Method of drilling and completing multiple wellbores inside a single caisson |
US20050205250A1 (en) * | 2002-10-11 | 2005-09-22 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling with casing |
US20050217858A1 (en) * | 2002-12-13 | 2005-10-06 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
US20050269105A1 (en) * | 1998-07-22 | 2005-12-08 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US20060011353A1 (en) * | 1998-12-24 | 2006-01-19 | Weatherford/Lamb, Inc. | Apparatus and methods for facilitating the connection of tubulars using a top drive |
US20060032638A1 (en) * | 2004-07-30 | 2006-02-16 | Giroux Richard L | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
US7013997B2 (en) | 1994-10-14 | 2006-03-21 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7036610B1 (en) | 1994-10-14 | 2006-05-02 | Weatherford / Lamb, Inc. | Apparatus and method for completing oil and gas wells |
US20060124306A1 (en) * | 2000-01-19 | 2006-06-15 | Vail William B Iii | Installation of one-way valve after removal of retrievable drill bit to complete oil and gas wells |
US20060196695A1 (en) * | 2002-12-13 | 2006-09-07 | Giroux Richard L | Deep water drilling with casing |
US7131505B2 (en) | 2002-12-30 | 2006-11-07 | Weatherford/Lamb, Inc. | Drilling with concentric strings of casing |
US7219744B2 (en) | 1998-08-24 | 2007-05-22 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US7228901B2 (en) | 1994-10-14 | 2007-06-12 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7284617B2 (en) | 2004-05-20 | 2007-10-23 | Weatherford/Lamb, Inc. | Casing running head |
US20070261850A1 (en) * | 2006-05-12 | 2007-11-15 | Giroux Richard L | Stage cementing methods used in casing while drilling |
US20070267221A1 (en) * | 2006-05-22 | 2007-11-22 | Giroux Richard L | Methods and apparatus for drilling with casing |
US7509722B2 (en) | 1997-09-02 | 2009-03-31 | Weatherford/Lamb, Inc. | Positioning and spinning device |
US7617866B2 (en) | 1998-08-24 | 2009-11-17 | Weatherford/Lamb, Inc. | Methods and apparatus for connecting tubulars using a top drive |
US7650944B1 (en) | 2003-07-11 | 2010-01-26 | Weatherford/Lamb, Inc. | Vessel for well intervention |
US7730965B2 (en) | 2002-12-13 | 2010-06-08 | Weatherford/Lamb, Inc. | Retractable joint and cementing shoe for use in completing a wellbore |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
CN109623672A (zh) * | 2018-11-29 | 2019-04-16 | 天津瑞驰船舶机械有限公司 | 油桶翻新预处理流水线及其运行方法 |
-
1964
- 1964-09-24 NL NL6411125A patent/NL6411125A/xx unknown
-
1967
- 1967-11-20 US US714135A patent/US3552848A/en not_active Expired - Lifetime
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3709603A (en) * | 1969-11-07 | 1973-01-09 | Katsuragawa Denki Kk | Electrophotographic copying machine |
US4516849A (en) * | 1982-04-04 | 1985-05-14 | Mita Industrial Co., Ltd. | Cleaning device for an electrostatic photographic copying machine |
US4616919A (en) * | 1985-09-05 | 1986-10-14 | International Business Machines Corporation | Non-contact developer seal |
US5470271A (en) * | 1992-01-02 | 1995-11-28 | Xerox Corporation | Flexible belt reclaiming |
US20040112646A1 (en) * | 1994-10-14 | 2004-06-17 | Vail William Banning | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040118613A1 (en) * | 1994-10-14 | 2004-06-24 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20060201711A1 (en) * | 1994-10-14 | 2006-09-14 | Vail William B Iii | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7108084B2 (en) | 1994-10-14 | 2006-09-19 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7040420B2 (en) | 1994-10-14 | 2006-05-09 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7036610B1 (en) | 1994-10-14 | 2006-05-02 | Weatherford / Lamb, Inc. | Apparatus and method for completing oil and gas wells |
US7228901B2 (en) | 1994-10-14 | 2007-06-12 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040108142A1 (en) * | 1994-10-14 | 2004-06-10 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7234542B2 (en) | 1994-10-14 | 2007-06-26 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20060185906A1 (en) * | 1994-10-14 | 2006-08-24 | Vail William B Iii | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040124015A1 (en) * | 1994-10-14 | 2004-07-01 | Vail William Banning | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040129456A1 (en) * | 1994-10-14 | 2004-07-08 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US20040140128A1 (en) * | 1994-10-14 | 2004-07-22 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7013997B2 (en) | 1994-10-14 | 2006-03-21 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7165634B2 (en) | 1994-10-14 | 2007-01-23 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7100710B2 (en) | 1994-10-14 | 2006-09-05 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7147068B2 (en) | 1994-10-14 | 2006-12-12 | Weatherford / Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7140445B2 (en) | 1997-09-02 | 2006-11-28 | Weatherford/Lamb, Inc. | Method and apparatus for drilling with casing |
US20040251050A1 (en) * | 1997-09-02 | 2004-12-16 | Weatherford/Lamb, Inc. | Method and apparatus for drilling with casing |
US7509722B2 (en) | 1997-09-02 | 2009-03-31 | Weatherford/Lamb, Inc. | Positioning and spinning device |
US20050269105A1 (en) * | 1998-07-22 | 2005-12-08 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US7137454B2 (en) | 1998-07-22 | 2006-11-21 | Weatherford/Lamb, Inc. | Apparatus for facilitating the connection of tubulars using a top drive |
US7090021B2 (en) | 1998-08-24 | 2006-08-15 | Bernd-Georg Pietras | Apparatus for connecting tublars using a top drive |
US7219744B2 (en) | 1998-08-24 | 2007-05-22 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
US7617866B2 (en) | 1998-08-24 | 2009-11-17 | Weatherford/Lamb, Inc. | Methods and apparatus for connecting tubulars using a top drive |
US20040173357A1 (en) * | 1998-08-24 | 2004-09-09 | Weatherford/Lamb, Inc. | Apparatus for connecting tublars using a top drive |
US20050121232A1 (en) * | 1998-12-22 | 2005-06-09 | Weatherford/Lamb, Inc. | Downhole filter |
US7117957B2 (en) | 1998-12-22 | 2006-10-10 | Weatherford/Lamb, Inc. | Methods for drilling and lining a wellbore |
US20040216925A1 (en) * | 1998-12-22 | 2004-11-04 | Weatherford/Lamb, Inc. | Method and apparatus for drilling and lining a wellbore |
US7188687B2 (en) | 1998-12-22 | 2007-03-13 | Weatherford/Lamb, Inc. | Downhole filter |
US20040194965A1 (en) * | 1998-12-24 | 2004-10-07 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US7128161B2 (en) | 1998-12-24 | 2006-10-31 | Weatherford/Lamb, Inc. | Apparatus and methods for facilitating the connection of tubulars using a top drive |
US20060011353A1 (en) * | 1998-12-24 | 2006-01-19 | Weatherford/Lamb, Inc. | Apparatus and methods for facilitating the connection of tubulars using a top drive |
US7213656B2 (en) | 1998-12-24 | 2007-05-08 | Weatherford/Lamb, Inc. | Apparatus and method for facilitating the connection of tubulars using a top drive |
US7311148B2 (en) | 1999-02-25 | 2007-12-25 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US20040221997A1 (en) * | 1999-02-25 | 2004-11-11 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US20020189863A1 (en) * | 1999-12-22 | 2002-12-19 | Mike Wardley | Drilling bit for drilling while running casing |
US7216727B2 (en) | 1999-12-22 | 2007-05-15 | Weatherford/Lamb, Inc. | Drilling bit for drilling while running casing |
US20060124306A1 (en) * | 2000-01-19 | 2006-06-15 | Vail William B Iii | Installation of one-way valve after removal of retrievable drill bit to complete oil and gas wells |
WO2001079650A1 (en) * | 2000-04-13 | 2001-10-25 | Weatherford/Lamb, Inc. | Drillable drill bit nozzle |
US7334650B2 (en) | 2000-04-13 | 2008-02-26 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US20070056774A9 (en) * | 2000-04-13 | 2007-03-15 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US20040245020A1 (en) * | 2000-04-13 | 2004-12-09 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US6848517B2 (en) | 2000-04-13 | 2005-02-01 | Weatherford/Lamb, Inc. | Drillable drill bit nozzle |
US20070119626A9 (en) * | 2000-04-13 | 2007-05-31 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US20030173073A1 (en) * | 2000-04-17 | 2003-09-18 | Weatherford/Lamb, Inc. | Top drive casing system |
US7712523B2 (en) | 2000-04-17 | 2010-05-11 | Weatherford/Lamb, Inc. | Top drive casing system |
US20050000691A1 (en) * | 2000-04-17 | 2005-01-06 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
US7325610B2 (en) | 2000-04-17 | 2008-02-05 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
US20030164251A1 (en) * | 2000-04-28 | 2003-09-04 | Tulloch Rory Mccrae | Expandable apparatus for drift and reaming borehole |
US7100713B2 (en) | 2000-04-28 | 2006-09-05 | Weatherford/Lamb, Inc. | Expandable apparatus for drift and reaming borehole |
US7093675B2 (en) | 2000-08-01 | 2006-08-22 | Weatherford/Lamb, Inc. | Drilling method |
US20030141111A1 (en) * | 2000-08-01 | 2003-07-31 | Giancarlo Pia | Drilling method |
US6938697B2 (en) | 2001-05-17 | 2005-09-06 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US20040069500A1 (en) * | 2001-05-17 | 2004-04-15 | Haugen David M. | Apparatus and methods for tubular makeup interlock |
US20040173358A1 (en) * | 2001-05-17 | 2004-09-09 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US7073598B2 (en) | 2001-05-17 | 2006-07-11 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US20030217865A1 (en) * | 2002-03-16 | 2003-11-27 | Simpson Neil Andrew Abercrombie | Bore lining and drilling |
US7004264B2 (en) | 2002-03-16 | 2006-02-28 | Weatherford/Lamb, Inc. | Bore lining and drilling |
US20040251055A1 (en) * | 2002-07-29 | 2004-12-16 | Weatherford/Lamb, Inc. | Adjustable rotating guides for spider or elevator |
US7303022B2 (en) | 2002-10-11 | 2007-12-04 | Weatherford/Lamb, Inc. | Wired casing |
US7090023B2 (en) | 2002-10-11 | 2006-08-15 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling with casing |
US20040262013A1 (en) * | 2002-10-11 | 2004-12-30 | Weatherford/Lamb, Inc. | Wired casing |
US20050205250A1 (en) * | 2002-10-11 | 2005-09-22 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling with casing |
US7730965B2 (en) | 2002-12-13 | 2010-06-08 | Weatherford/Lamb, Inc. | Retractable joint and cementing shoe for use in completing a wellbore |
US7938201B2 (en) | 2002-12-13 | 2011-05-10 | Weatherford/Lamb, Inc. | Deep water drilling with casing |
US20050217858A1 (en) * | 2002-12-13 | 2005-10-06 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
US20060196695A1 (en) * | 2002-12-13 | 2006-09-07 | Giroux Richard L | Deep water drilling with casing |
US7083005B2 (en) | 2002-12-13 | 2006-08-01 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
US20100139978A9 (en) * | 2002-12-13 | 2010-06-10 | Giroux Richard L | Deep water drilling with casing |
US7131505B2 (en) | 2002-12-30 | 2006-11-07 | Weatherford/Lamb, Inc. | Drilling with concentric strings of casing |
US20040251025A1 (en) * | 2003-01-30 | 2004-12-16 | Giroux Richard L. | Single-direction cementing plug |
US7128154B2 (en) | 2003-01-30 | 2006-10-31 | Weatherford/Lamb, Inc. | Single-direction cementing plug |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
US7096982B2 (en) | 2003-02-27 | 2006-08-29 | Weatherford/Lamb, Inc. | Drill shoe |
US20040226751A1 (en) * | 2003-02-27 | 2004-11-18 | Mckay David | Drill shoe |
US20040216892A1 (en) * | 2003-03-05 | 2004-11-04 | Giroux Richard L | Drilling with casing latch |
US20040216924A1 (en) * | 2003-03-05 | 2004-11-04 | Bernd-Georg Pietras | Casing running and drilling system |
US7191840B2 (en) | 2003-03-05 | 2007-03-20 | Weatherford/Lamb, Inc. | Casing running and drilling system |
US7360594B2 (en) | 2003-03-05 | 2008-04-22 | Weatherford/Lamb, Inc. | Drilling with casing latch |
US7413020B2 (en) | 2003-03-05 | 2008-08-19 | Weatherford/Lamb, Inc. | Full bore lined wellbores |
US20040244992A1 (en) * | 2003-03-05 | 2004-12-09 | Carter Thurman B. | Full bore lined wellbores |
US20050000696A1 (en) * | 2003-04-04 | 2005-01-06 | Mcdaniel Gary | Method and apparatus for handling wellbore tubulars |
US7370707B2 (en) | 2003-04-04 | 2008-05-13 | Weatherford/Lamb, Inc. | Method and apparatus for handling wellbore tubulars |
US7650944B1 (en) | 2003-07-11 | 2010-01-26 | Weatherford/Lamb, Inc. | Vessel for well intervention |
US20050194188A1 (en) * | 2003-10-03 | 2005-09-08 | Glaser Mark C. | Method of drilling and completing multiple wellbores inside a single caisson |
US7264067B2 (en) | 2003-10-03 | 2007-09-04 | Weatherford/Lamb, Inc. | Method of drilling and completing multiple wellbores inside a single caisson |
US7284617B2 (en) | 2004-05-20 | 2007-10-23 | Weatherford/Lamb, Inc. | Casing running head |
US7503397B2 (en) | 2004-07-30 | 2009-03-17 | Weatherford/Lamb, Inc. | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
US20060032638A1 (en) * | 2004-07-30 | 2006-02-16 | Giroux Richard L | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
US20070261850A1 (en) * | 2006-05-12 | 2007-11-15 | Giroux Richard L | Stage cementing methods used in casing while drilling |
US7857052B2 (en) | 2006-05-12 | 2010-12-28 | Weatherford/Lamb, Inc. | Stage cementing methods used in casing while drilling |
US20070267221A1 (en) * | 2006-05-22 | 2007-11-22 | Giroux Richard L | Methods and apparatus for drilling with casing |
US8276689B2 (en) | 2006-05-22 | 2012-10-02 | Weatherford/Lamb, Inc. | Methods and apparatus for drilling with casing |
CN109623672A (zh) * | 2018-11-29 | 2019-04-16 | 天津瑞驰船舶机械有限公司 | 油桶翻新预处理流水线及其运行方法 |
CN109623672B (zh) * | 2018-11-29 | 2021-04-06 | 上海丛麟环保科技股份有限公司 | 油桶翻新预处理流水线的运行方法 |
Also Published As
Publication number | Publication date |
---|---|
NL6411125A (is") | 1965-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3552848A (en) | Xerographic plate | |
US2901374A (en) | Development of electrostatic image and apparatus therefor | |
US3634077A (en) | Method and apparatus for removing a residual image in an electrostatic copying system | |
US3620615A (en) | Sheet stripping apparatus | |
US4116555A (en) | Background removal apparatus | |
US4165393A (en) | Magnetic brush developing process for electrostatic images | |
US4876575A (en) | Printing apparatus including apparatus and method for charging and metering toner particles | |
US3412710A (en) | Cleanup electrode | |
US3697160A (en) | Continuous imaging apparatus | |
US3739748A (en) | Donor for touchdown development | |
US4147541A (en) | Electrostatic imaging member with acid lubricant | |
US3011473A (en) | Xerographic apparatus | |
US3920329A (en) | Background removal apparatus | |
US3719481A (en) | Electrostatographic imaging process | |
US3818864A (en) | Image developing apparatus | |
US4021106A (en) | Apparatus for electrostatic reproduction using plural charges | |
US3662711A (en) | Development apparatus | |
US3719169A (en) | Plural electrode development apparatus | |
JPS58132768A (ja) | 現像装置 | |
US3653891A (en) | Forms overlay technique using tesi | |
US3415224A (en) | Magnetic cascade development apparatus | |
US3515584A (en) | Xeroprinting master | |
US4558943A (en) | Developer roller | |
US3166419A (en) | Image projection | |
US4780743A (en) | Developing device for image forming apparatus |