US3552282A - Continuous forms envelope converter system - Google Patents

Continuous forms envelope converter system Download PDF

Info

Publication number
US3552282A
US3552282A US751467A US3552282DA US3552282A US 3552282 A US3552282 A US 3552282A US 751467 A US751467 A US 751467A US 3552282D A US3552282D A US 3552282DA US 3552282 A US3552282 A US 3552282A
Authority
US
United States
Prior art keywords
top sheet
strip
envelope
lines
side flaps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US751467A
Inventor
Paul O Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BALTIMORE BUSINESS FORMS Inc
Original Assignee
BALTIMORE BUSINESS FORMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BALTIMORE BUSINESS FORMS Inc filed Critical BALTIMORE BUSINESS FORMS Inc
Application granted granted Critical
Publication of US3552282A publication Critical patent/US3552282A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/12Folding articles or webs with application of pressure to define or form crease lines
    • B65H45/28Folding in combination with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43MBUREAU ACCESSORIES NOT OTHERWISE PROVIDED FOR
    • B43M5/00Devices for closing envelopes
    • B43M5/04Devices for closing envelopes automatic
    • B43M5/045Devices for closing envelopes automatic using heat-sensitive adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D27/00Envelopes or like essentially-rectangular containers for postal or other purposes having no structural provision for thickness of contents
    • B65D27/12Closures
    • B65D27/14Closures using adhesive applied to integral parts, e.g. flaps
    • B65D27/18Closures using adhesive applied to integral parts, e.g. flaps using heat-activatable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H45/00Folding thin material
    • B65H45/12Folding articles or webs with application of pressure to define or form crease lines
    • B65H45/14Buckling folders
    • B65H45/142Pocket-type folders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2150/00Flexible containers made from sheets or blanks, e.g. from flattened tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2160/00Shape of flexible containers
    • B31B2160/10Shape of flexible containers rectangular and flat, i.e. without structural provision for thickness of contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2160/00Shape of flexible containers
    • B31B2160/10Shape of flexible containers rectangular and flat, i.e. without structural provision for thickness of contents
    • B31B2160/102Shape of flexible containers rectangular and flat, i.e. without structural provision for thickness of contents obtained from essentially rectangular sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • B65H2701/1916Envelopes and articles of mail

Definitions

  • a continuous forms press converts a roll of envelope paper into a continuous envelope form having a plurality of transverse perforated lines dividing the form into envelope blanks, a plurality of transverse score lines defining fold lines on the envelope blanks, longitudinal perforated lines and score lines defining side trim zones and side flaps, lines of sprocket holes along the side margins of the form, and adhesive coatings on a seal flap and adjacent side margins of a top sheet of each blank.
  • the press folds the continuous form into a zigzag folded stack suitable for feeding into a computer printout device or automatic typewriter where the forms are automatically addressed from addresses contained in a tape or punch card memory.
  • the continuous form is again folded into a zigzag stack and fed into a continuous forms envelope converter which includes means for separating the continuous form into separate envelope blanks, means for trimming the side trim zones from the blanks, means for folding over the side flaps, means for folding over a top sheet of each blank over a bottom sheet thereof along a transverse fold line, and means for activating the adhesive coatings adjacent the side margins of the top sheet and securing the side flaps thereto for completing the envelopes.
  • PATENTED JAN 5 l9 SHEET 2 [)F 8 INVENT OR PAUL 0.
  • WILSON ATTORNEY PATENTED'JAN 5m 3552282 sum am 8 INVENT OR PAUL 0.
  • an object of the invention to provide an envelope fonning system which makes use of a continuous envelope form adapted to be fed through automatic computerized printing equipment to be preaddressed therein and which converts the continuous form into standard envelopes.
  • Another object of the invention is the provision of a continuous envelope form specially prepared for feeding through automatic computerized printing equipment and for conversion into standard envelopes.
  • An additional object is the provision of a continuous forms envelope converter for converting a continuous envelope form, which has been preaddressed in computerized printing equipment, into standard preaddressed envelopes.
  • Additional objects include the provision of improved means for separating the envelope blanks, improved means for trimming the blanks of excess material, improved means for folding over the side flaps, improved means for folding'the blank along the main fold line, and improved means for sealing the side flaps.
  • the invention contemplates a system for converting a continuous strip of paper into separate addressed envelopes.
  • the system includes press means for providing perforated lines on the sheet transversely of the sheet to divide the strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first main fold line between a bottom sheet and a top sheet and a second fold line between the top sheet and a seal flap, a pair of longitudinal lines spaced inwardly from the sides of the sheets to provide side margins, the longitudinal lines being score liens adjacent the bottom sheets to provide side flaps integral with the bottom sheets and perforated lines adjacent the top sheets to provide side trim zones, and a row of sprocket holes within each of the side margins.
  • the prcss also includes adhesive coater means for providing adhesive coatings on the seal flap and adjacent to the side margins of the top sheet.
  • the strip is then folded into a continuous zigzag folded stack suitable forfeeding into automatic computerized printing equipment. After the sheet is preaddressed in the automatic printing equipment, it is again folded into a zigzag folded stack and fed into a continuous forms envelope converter.
  • the strip is intermittently fed to bring the transverse perforated lines beneath a cutter knife which is synchronized with the intermittent feed to separate the strip into envelope blanks.
  • the blanks are then conveyed past side trimmers, which remove the side trim zones, and past side flap folders, which are positioned in the path of the side flaps.
  • the side flap folders include wedge means for lifting the side flaps and spring means for folding over and flattening the side flaps.
  • the envelope blanks are then fed into a guide chute wherein the forward edge engages stop means, causing the blank to buckle about the main fold line between the top sheet and the bottom sheet and be engaged by a pair of rollers and which complete the fold.
  • the blank is then conveyed away from the guide chute past heaters which activate the adhesive coatings to seal the side flaps to the top sheet.
  • the completed envelopes are then received in a hopper or deposited on a conveyor which brings them to a station where they are stuffed and sealed.
  • FIG. 1 is a schematic diagram of a continuous forms envelope converter system of the invention
  • FIG. 2 is a partial plan view of a continuous envelope form used in the system of the invention.
  • FIG. 3 is a partial plan view of another embodiment of a continuous envelope form used in the system of the invention.
  • FIG. 4 is a perspective view of a completed envelope of the invention.
  • FIG. 5 is a partial sectional view taken along the line 5-5 of FIG. 4;
  • FIG. 6 is a plan view of a continuous forms envelope converter of the invention.
  • FIG. 7 is a partial schematic side elevation view of the continuous forms envelope converter of FIG. 6;
  • FIG. 8 is a partial perspective view showing a detail of the continuous forms envelope converter of FIG. 6;
  • FIG. 9 is a partial side elevation view, partly in section, of a detail of the continuous forms envelope converter of FIG. 6;
  • FIG. 10 is a partial schematic side elevation view of the continuous forms envelope converter of FIG. 6;
  • Rotary forms press 20 also includes adhesive coater ap the transverse foldover mechanism of the continuous forms l0 envelope converter of FIG. 6;
  • FIG; 16 is an additional schematic diagram illustrating the operation of the transverse foldover mechanism.
  • a continuous forms envelope converter system of the invention includes a rotary forms press 20 which converts a strip 22 of envelope paper stock from a roll 24 into a continuous envelope form 26, of the type shown in'more detail in FIG. 2 or FIG. 3, folded into a continuous zigzag folded stack 28. Since rotaryforms press 20 comprises conventional apparatus, it is not described in detail herein. However, it is to be understood that this press applies score lines to the strip 22, punches sprocket holes therein along both edges, cuts perforations and diagonal cutstherein,
  • continuous envelope form 26" may include transverse perforated line's 30 extending from one side edge 32 to the other side edge 34 of the strip. These perforated lines 30 serve as lines of separation dividing the continuous envelope form into a plurality of individual envelope blanks 36, which will remain integral with the continuous form until separated as explained hereinafter, and are also utilized as the fold lines in zigzag folded stack 28.
  • Strip 26 is provided with a pair of longitudinal lines of weakness 40 and 42 spaced inwardly from side edges 32 and 34, respectively, to establish side margin portions 44 and 46.
  • line 40 comprises alternating perforated lines 48 and score lines 50
  • line 42 comprises corresponding perforated lines 52 and score lines 54. Additional perforated lines 48 and 52.
  • coated areas 85 and 86 will cooperate with side flaps 74 and 76, respectively, for sealing the side flaps to the top sheet 64.
  • FIG. 2 illustrates one embodiment of a continuous envelope form of the invention
  • this form maybe provided in other formats.
  • a second embodiment of a continuous envelope form . is illustrated by continuous form 26' in FIG-.3.
  • form 26' is in most respects substantially identical toicontintious form 26 of FIG. 2, differing,liizniiever, in'that the sidetriiar'gin portions 44' and 46' are of greatei' width and are divided-by additional longitudinally extending perforated line's88 and90 to provide outer marginal areas92 and 94 upon which are located the rows of sprocket holes 82' and 84'.
  • the side flaps 74' and 76' are free-.of sprocket holes.
  • the form:26' is substantially identical to form 26 of FIG. 2; the primed ,reference .nurneralsi'n FIG. 3
  • forated lines 56 extend across side margin portion 44 from the junctions 57 of perforated lines 48 andscore lines 50. Intlie opposite side margin portion 46, corresponding perforated lines" 58 extend from side margin 34 to the junctions 59 between perforated lines 52 and score lines 54. It willbe observed that perforated line 30, perforated line 48, and perscorelines and 54 separate the bottom sheet 66 from the side margin portions 44 and 46 to form side flaps 74 and 76 integral with the bottom sheets 66. In order to finish the seal flap 72,idiagonal slashes 78 and 80 are provided. So that the continuous envelope form may be pin-fed into conventional automated computerized printing equipment, two rows of sprocket holes 82 and 84 are provided in side margins 44 and 46.
  • the press 20 may print a return address on paratus for applying heat-activatable adhesive coated areas'on the continuous envelope form-26. It is to be understood, howprovided on each of the seal flaps 72;a'nd adhesive coated areas and 86 are provided on top sh eet'i64 adjacent to pereach of which is pfeaddressdd with a particula'riaddress'as determined b'y the computer or automatic address piiiiter I00.
  • Thelcontinuous envelope form 26 will now be in" condition for conversion into individual preaddre'ssed envelopesjThishs accomplished in 'the continuous 'forrns envelope converter 110.
  • the zigzag folded stack 28 is placed on a supply platform 112, 'and the continuous forrn 26'i5 fed by means'which will be described more fully hereinafter into con- 'verter 110 for separationby envelope separating means at iocation 114.
  • the 'side'trim zones 60 and 62 are removedby side trimming means at position 116.
  • the side flaps 74 and 7 6 are folded over by side flap fold means, '1 l8.
  • Nexfltheiitop sheet 64 is folded over the bottom sheet 66 by transverse foldover means at 120.
  • adhesive sealing means 122 causes adhesive coated areas; and 86 to adhere to side folds74 and 76, respectively.
  • the envelopes 124 which are now complete, are dropped upon a delivery tabl'l26 and conveyed to a"s'tation where they may be'tnanually or automatically stuffed and sealed ready for mailing.
  • envelope converter 1 10 includes a stand 132 which supports a main drive motor 34 having a drive pulley 136 driving a drive belt 138.
  • Belt 138 is engaged with a'ma'in driven 'pulley I40 mounted on a maln'drive shaft 142.
  • main t m shaft 142 is coupled by means of a drivcsprocket'l 44' and'drive chain 146' with a driven sprocket 148 mounted on the same shaft 1 59 as'a crank ISZQCrahk 152 is coupled to a crank arm 154 which, in turn, is couple d to a rack 156.
  • crank 152 results in backward and forward reciprocation of rack 1 56, whichis' mounted to slide back and forth nlsuitable guide means (not shown).
  • the rack 156 drives a pinion 158 which is mounted to rotate a shaft 160.
  • This shaft 160 is coupled by means of an overriding, or slip-clutch, 161 to a drive drum 162.
  • a drive sprocket 164 is mounted for rotation with drive drum 162 and drives a drive chain 166 which is engaged with a driven sprocket 168 to drive a shaft 170 upon which is also mounted a drive sprocket (not shown) for. driving endless sprocket belt 130.
  • reciprocation of rack 156 in the forward direction causes movement of belt 130 in the direction designated by the arrow and feeds continuous form 26 by engagement of pins 128 with the rows of sprocket holes 82 and 84.
  • Drive drum 162 is provided with a V groove or notch 172 (see FIGS. 7 and 9) which upon full forward movement of rack 156 is brought into engagement with a spring detent 174 mounted on a detent supporting structure 176.
  • spring detent 174 may comprise a flat spring member 178 which is biased outwardly by a coil spring 180 received within a recess 182 in supporting structure 176.
  • Drum 162 is also braked by means of a brake shoe 184 engaged with the outer surface thereof. It will be observed from FIG.
  • brake shoe 184 is adjustably mounted on a screw member 186 extending through a supporting frame member 188.
  • detent 174 is free to slide along the surface of drive drum 162 permitting drive drum 162 to rotate in a clockwise direction, thus causing shaft 170 to rotate in the same direction and move endless sprocket belt 130 in a direction to feed continuous form 26 into the envelope converter 110.
  • detent 174 reaches groove 172 detent spring member 178 falls into groove 172 preventing reverse rotation of drum 162 by virtue of the overriding clutch action previously mentioned.
  • rack 156 reciprocates in the backward direction (to the right in FIG.
  • drum 162 is maintained stationary by detent 174 and brake shoe 184, which serves to maintain drive belt 130 stationary. It is to be understood that when drive belt 130 is thus brought to a stop, it will have moved continuous form 26 to such a position that a transverse perforated line 30 will be positioned directly beneath a cutting knife 190 mounted on a knife bar 192. As will be presently explained, knife 190 will vertically reciprocate in synchronism withthe drive of continuous envelope form 26 so that it will strike the form along a transverse perforated line 30, when form 26 has been brought to a stop therebeneath.
  • an eccentric assembly 193 is provided near one end of knife bar 192 and includes an eccentric 194 mounted for rotation on drive shaft 142. Eccentric 194 rotates within an eccentric housing 196 causing vertical reciprocation of an eccentric arm 198 secured thereto as indicated by the arrow in F168.
  • the knife supporting structure includes vertical slide members 200 which vertically reciprocate in slides 202 mounted on side frame members 203.
  • the knife supporting structure also includes a bottom bar 204 to which eccentric arm 198 is secured.
  • the eccentric assemblies are designed to reciprocate knife 190 in synchronism with the intermittent feed of continuous form 26, bringing knife 190 into cutting engagement with a transverse perforated line 30 when it is stationary and directly below the knife.
  • continuous form 26 is supported by web supporting plates 206 until it is brought over a knife anvil 208 located beneath knife 190.
  • knife 190 strikes against continuous form along a line 30, the opposite side of continuous form 26 is supported by knife anvil 208.
  • FIG. 10 which shows the continuous envelope converter beginning at drive roller 212
  • lower drive belts'2l0 are supported by a web supporting plate 220, are tensioned by a tension roller 211, and rotate lower belt rollers 318 (see FIGS. 15 and 16) mounted on a shaft 222.
  • a gear 224 is mounted on shaft 222 and drives ,a gear 226 mounted on the same shaft 228 as upper belt rollers 322 (see FIGS. 15 and 16).
  • a series of upper drive belts 230 extend about rollers 322 and a knurled roller 232 above roller 212.
  • tension bar 234 which is pivotally mounted on a pair of tension arms 236, bears against drive belts 230 pressing them against belts 210.
  • pressure rollers 238 are mounted on pressure roller arms 240 pivotally mounted on a shaft 242 and engage against belts 230 pressing them against belts 210.
  • An additional set of pressure rollers 244 are mounted on a shaft 246 extending between a pair of arms 248 pivotally mounted on side frame members 250.
  • This mechanism comprises a separate drive motor 252 mounted on a support platform 254 and having a drive shaft 256 for driving a timing belt 258.
  • Timing belt 258 serves 'to drive a pair of knurled rollers 260 which are positioned beneath openings through web supporting support plate 220 as shown in FIG. 6.
  • the knurled rollers 260 are mounted on the same shaft 264 as a drive pulley 262 coupled to timing belt 258.
  • a metal pressure strip 266 is provided for each knurled roller. These strips are mounted by clamps 257 to shaft 242 and extend downwardly through the openings in web support plate 220 to press against knurled rollers 260.
  • the envelope blanks 36 are now conveyed by belts 210 and 230 to side flap fold station 118.
  • the folding over of the side flaps 74 and 76 is effected by a pair of side fold mechanisms 270 which are shown most clearly in FIGS. 11, 12, 13 and 14.
  • the side fold mechanism includes a wedge block 280 having a tip portion 282 which faces in the direction from which the envelope blanks are conveyed.
  • This tip portion 282 is positioned in the path of the side flaps and includes a first vertical surface 284 which is inclined inwardly of the envelope blank.
  • the wedge block 280 also includes a second vertically inclined surface 286 and an intermediate surface 288 joining surfaces 284 and 286, which surface 288 is inclined both laterally and upwardly.
  • the remainder 290 of the wedge block 280 is of generally rectangular shape.
  • the wedge block is seen as viewed from the direction from which the envelope blanks are conveyed.
  • side flaps 74 and 76 engage with wedge block 280 they are lifted upwardly by surface 286 and inwardly by surfaces 288 and 284 until they are perpendicular to the horizontal.
  • a vertical guide plate 292 is mounted on block 280 and is spaced a short distance inwardly of wedge block 280 to serve as a guide for the now vertical side flaps.
  • spring foldover member I 294 which has a pair of legs 296 and 298 received in openings at the end of rectangular portion 290 of wedge blocks 280. It will be observed that upper leg 296 of spring member 294 includes an inclined portion 300 which, as is most clearly shown in FIG..13, extends downwardly and inwardly terminating in a Hat loop portion 302 pressing against web support plate 220.
  • the envelope blanks 36 are now ready to be folded over the main transverse fold line established by score line 68. In order to accomplish this, they are fed forwardly into a guide chute 304.
  • This chute is made of sheet metal and includes an upper metal plate portion 306 and a lower metal plate portion 308 which are spaced apart a distance to receive the envelope blank therebetween and which are mounted on a support bar 309. It will be noted from FIG. 10'that upper plate 306 has its end 310 curled upwardly so that the envelope blanks may be easily received, while the lower end 311 of lower plate 308 is positioned closely adjacent to a roller 3l4 '(see FIGS. and
  • roller 314 is mounted on a shaft 320 on which is mounteda gear 321 chgaged with gear 224 so that rollers 318 and 314 rotate in op- 4 posite directions. Referring to FIGS. 15 and 16, in which the spacing between rollers 314 and 318 is exaggerated,.it will be noted that when blank 36 engages against stop 315, it is caused to buckle along score line 68 and be received between roller 314 and belts 210 on rollers 318 which complete the fold and draw the blank 36 downwardly out of chute 304.
  • the envelope blank 36 which now has bottom sheet 66 folded over top sheet 64 with side flaps 74 and 76 respectively engaged with adhesive areas 85 and 86, is now conveyed past adhesive securing station 122 which includes electrical heaters 330.
  • These heaters, 'as is seen in'I-IG. 6, are of cylindrical shape and, as is evident from FIG.
  • Electric control boxes 332 supply heating current to the heaters.
  • the envelope blanks are engaged against heaters 330 by means of spring strips 334 which are mounted on a shaft 335.
  • the heat supplied by heaters 330 activates the heat-activatable adhesive coatings 85 and 86 and cause the side flaps 74 and 76 to adhere thereto.
  • Sealing pressure is provided by a pair of rollers driven by gears 336 and 338.
  • Gear 336 is driven by a timing belt 340 coupled to a gear (not shown) mounted on shaft 222, and gear 336 is engaged with gear 338.
  • spring means 341 may be provided.
  • the envelopes 124 are now completed and drop upon delivery conveyor 126 as shown in FIG. 1.
  • the continuous envelope converter 110 may also be suitably modified to receive the form 26'.
  • a system for converting a continuous strip of paper into addressed envelopes comprising: press means for providing perforated lines on said strip transversely of said strip to divide said strip into a.plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and .a seal flap, a pair of longitudinal lines spaced inwardly from sides of said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet toprovide side flaps integral with said bottom sheetand perforated lines adjacent to said top sheet to provide side trim zones, a row of longitudinal sprocket holes in each of said side margins, and adhesive coatings on said sealflap and adjacent to the side margins of said top sheet and for folding said strip into a zigzagv folded stack;
  • printer means for receiving said zigzag folded stack and printing addresses on an outer face of one of said-top and bottom sheets and refolding said continuous strip as an addressed. zigzag folded stack;
  • a continuous forms envelope converter including means for receiving said addressed zigzag folded stack, meaiis for separating said blanks along said'transverse perforated lines, means forremoving said side trim zones, meansfo'r folding said side flaps over said bottom sheet,:ni'eans for folding said top sheet over said bottom sheet along said first fold line, and'means for activating said'adhesive coatings-between said top sheet and said side'flaps to secure said top sheet to said side flaps.
  • a continuous forms envelope converter continuous paper strip having perforated lines transversely of ,the strip to divide the strip into a plurality of envelope blanks
  • a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, a'pair.
  • FIGS. 4 and 5 a row of sprocket holes in each of said side margins and adhesive velope 124 is shown in FIGS. 4 and 5.
  • Bottom sheet 66 is folded over top sheet 64 with one of the side flaps 74 folded over bottom sheet 66 and adhesivelysecured to top sheet 64.
  • the other side flap (not shown in FIG. 5) will similarly'be adhesively secured to top sheet 64.
  • the dimensions of the envelope are determined by the distances between transverse lines 30 and between longitudinal lines 40 and 42.
  • said converter comprising:
  • a continuous forms envelope converter as recited in claim 7, wherein said means coupling said rack with said sprockets comprising a slip clutch and brake and detent means for preventing reverse drive of said sprocket upon said backward reciprocation of said rack.
  • each of said wedge means comprises a tip facing toward the direction from which said blanks are conveyed and positioned adjacent the outer edge of one of said side flaps, a first laterally inclined surface extending inwardly of the side flaps from said tip, and a second vertically inclined surface extending upwardly from said tip.
  • a continuous forms envelope converter as recited in claim 5, wherein said means for activating said adhesive coatings between said top sheet and said side flaps comprises heater means and means to press said blanks against said heater means.
  • Apparatus for folding over a side flap of an envelope blank comprising means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap and spring means for folding over and flattening said side flap.
  • Apparatus for folding over a side flap of an envelope blank comprising means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap and spring means for folding over and flattening said side flap, said wedge means comprising a tip facing toward the direction from which said blank is conveyed and positioned adjacent the outer edge of said side flap, a first laterally inclined surface extending inwardly of the side flap from said tip and a second vertically inclined surface extending upwardly from said tip.
  • said wedge means further comprises a third inclined further between said first and said second inclined surfaces, said third inclined surface being laterally and vertically inclined.
  • said spring means includes a first portion extending downwardly and inwardly from said wedge means for folding down said flap and a second portion for pressing said side flap against a base plate.
  • wedge means in the path of said side flap for lifting said side flap, said wedge means comprising a tip facing toward the direction from which said blank is conveyed and positioned adjacent the outer edge of said side flap, a first laterally inclined surface extending inwardly of the side flap from said tip and a second vertically inclined surface extending upwardly from said tip.
  • said wedge means further comprising a third inclined surface between said first and said, second inclined surfaces, said third inclined surface being laterally and vertically inclined.
  • a method of converting a continuous strip of paper into addressed envelopes comprising the steps of:
  • a method of converting a continuous paper strip into envelopes said paper strip having perforated lines transverse ly of the strip to divide the strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a t'ust fold line between a bottom sheet and a top sheet and a second fold line'between said top sheet and a seal flap,
  • a continuous forms envelope converter for receiving a continuous paper strip having lines of separation transversely of the strip to divide the strip into a plurality of envelope blanks, a pair of lines of weakness transversely of each blank to provide a first foldlinebetween a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, a pair of longitudinal lines spaced inwardly from the sides of said strip'to provide side margins, said longitudinal lines being lines of weakness adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and defining side trim zones adjacent said top sheet, a row of sprocket holes in each of said side margins and adhesive coatings on said seal flap and adjacent to the side margins of said top sheet, said converter comprising: means for receiving said continuous sheet from a zigzag folded stack; means for separating said blanks along said transverse lines of separation; means for removing said side trim zones; means for folding said side flaps over said bottom sheet; means for folding said top sheet over said bottom sheet along said first fold line; and means for activ

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Making Paper Articles (AREA)

Abstract

A continuous forms press converts a roll of envelope paper into a continuous envelope form having a plurality of transverse perforated lines dividing the form into envelope blanks, a plurality of transverse score lines defining fold lines on the envelope blanks, longitudinal perforated lines and score lines defining side trim zones and side flaps, lines of sprocket holes along the side margins of the form, and adhesive coatings on a seal flap and adjacent side margins of a top sheet of each blank. The press folds the continuous form into a zigzag folded stack suitable for feeding into a computer printout device or automatic typewriter where the forms are automatically addressed from addresses contained in a tape or punch card memory. The continuous form is again folded into a zigzag stack and fed into a continuous forms envelope converter which includes means for separating the continuous form into separate envelope blanks, means for trimming the side trim zones from the blanks, means for folding over the side flaps, means for folding over a top sheet of each blank over a bottom sheet thereof along a transverse fold line, and means for activating the adhesive coatings adjacent the side margins of the top sheet and securing the side flaps thereto for completing the envelopes.

Description

United States Patent a corporation of Maryland, a part interest CONTINUOUS FORMS ENVELOPE CONVERTER SYSTEM 30 Claims, 16 Drawing Figs.
US. 93/61, 93/52, 229/69 Int. Cl 1131b 1/00 Field of Search 229/69; 93/61; 93/61, 62, 52
References Cited UNITED STATES PATENTS 2,655,082 10/1953 Amyx et 93/52 7/1963 Winkler et al. 93/62 3,395,624 8/1968 Seyl 93/52X Primary Examiner-Bernard Stickney Attorney-Raphael Semmes ABSTRACT: A continuous forms press converts a roll of envelope paper into a continuous envelope form having a plurality of transverse perforated lines dividing the form into envelope blanks, a plurality of transverse score lines defining fold lines on the envelope blanks, longitudinal perforated lines and score lines defining side trim zones and side flaps, lines of sprocket holes along the side margins of the form, and adhesive coatings on a seal flap and adjacent side margins of a top sheet of each blank. The press folds the continuous form into a zigzag folded stack suitable for feeding into a computer printout device or automatic typewriter where the forms are automatically addressed from addresses contained in a tape or punch card memory. The continuous form is again folded into a zigzag stack and fed into a continuous forms envelope converter which includes means for separating the continuous form into separate envelope blanks, means for trimming the side trim zones from the blanks, means for folding over the side flaps, means for folding over a top sheet of each blank over a bottom sheet thereof along a transverse fold line, and means for activating the adhesive coatings adjacent the side margins of the top sheet and securing the side flaps thereto for completing the envelopes.
PATENTED JAN 5 l9?! SHEET 2 [)F 8 INVENT OR PAUL 0. WILSON ATTORNEY PATENTED'JAN 5m 3552282 sum am 8 INVENT OR PAUL 0. WILSON BY MAM ATTORNEY PATENTED JAN 5m sum u 0F 8 m QM NmN w:
vmN CNN OwN 0mm NON OON NON MON m9 OON mOm INVENTOR PAUL 0. IWILS ON ATTORNEY i\2o4 ,INVENTOR PAUL 0. WILSON BY @MM ATTORNEY PATENTEU JAN 51971 SHEET 8 UF 8 mmm mmm Ovm 9 wt v INVENTOR PAULO.WILS ON ATTORNEY PATENTEUJAN 51% I 3552.282
sum 7 or 8 INVENTOR PAUL 0. WILSON QWM ATTORNEY PATENTEU JAN 5 I971 SHEET 8 OF 8 INVENTOR PAUL 0. WILSON ATTORNEY CONTINUOUS FORMS ENVELOPE CONVERTER SYSTEM BACKGROUND OF THE INVENTION This invention relates to envelope making apparatus and,
more specifically,'to a system for converting a roll of envelope paper into a continuous form which is automatically addressed and which is converted into standard envelopes.
It is frequently necessary to mail envelopes stuffed with form letters, advertising material, circulars, or the like to a large number of addresses. Since the addressing of the envelopes manually from a mailing list is very time consuming, it has become the practice to employ automatic business machines within the memory of which the mailing list is stored for automatically preparing addressing labels for-application to the envelopes. However, this practice requires that the labels be secured to the envelopes in an additional operation. It has also been suggested that addressing machines be employed having preaddressed plates which may be employed for printing in sequence directly upon the envelopes, but systems of this character require a great deal of storage space for the addressing plates and require special machinery for making the plates. I
It is therefore desirable to provide a system in which envelopes may be addressed directly from automatic computerized typewriters which are programmed to print out addresses from a computer memory, and there have been a number of suggestions for addressing envelopes in this way. For example, it has been proposedthatpreviously formed envelopes be adhesively secured to a continuous carrier strip of "computer" paper having rows of sprocket holes adjacent its side margins so that it might be easily fed through automatic computerized printing equipment. However, this system requires that the envelopes be secured to and detached from the carrier strip which is then discarded. It has also been suggested that addresses be printed directly upon a continuous form which is provided with sprocket holes to facilitate pin feeding into automatic printing equipment and which is converted into envelopes by laminating it to a second continuous strip. The resulting envelopes are unconventional, differing from the style of envelope customarily used in business practice, and are not adaptable for subsequent automatic stuffing and sealing operations.
SUMMARY OF THE INVENTION It is accordingly the principal object of the invention to provide an improved system for automatically addressing and forming envelopes for large scale mailings.
It is also an object of the invention to provide an envelope addressing system which provides addressed envelopes quickly and inexpensively which eliminates costl'y addressing equipment, and which is substantially fully automated.
More specifically, it is an object of the invention to provide an envelope fonning system which makes use of a continuous envelope form adapted to be fed through automatic computerized printing equipment to be preaddressed therein and which converts the continuous form into standard envelopes.
Another object of the invention is the provision of a continuous envelope form specially prepared for feeding through automatic computerized printing equipment and for conversion into standard envelopes.
An additional object is the provision of a continuous forms envelope converter for converting a continuous envelope form, which has been preaddressed in computerized printing equipment, into standard preaddressed envelopes.
it is a further object of the invention to provide a continuous forms envelope converter for converting a continuous envelope form of the aforementioned character into envelopes by separating it into individual envelope blanks, trimming excess material therefrom, folding over side flaps, folding the blank about a main fold line, and sealing the side flaps.
Additional objects include the provision of improved means for separating the envelope blanks, improved means for trimming the blanks of excess material, improved means for folding over the side flaps, improved means for folding'the blank along the main fold line, and improved means for sealing the side flaps.
Briefly, the invention contemplates a system for converting a continuous strip of paper into separate addressed envelopes. The system includes press means for providing perforated lines on the sheet transversely of the sheet to divide the strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first main fold line between a bottom sheet and a top sheet and a second fold line between the top sheet and a seal flap, a pair of longitudinal lines spaced inwardly from the sides of the sheets to provide side margins, the longitudinal lines being score liens adjacent the bottom sheets to provide side flaps integral with the bottom sheets and perforated lines adjacent the top sheets to provide side trim zones, and a row of sprocket holes within each of the side margins. The prcss also includes adhesive coater means for providing adhesive coatings on the seal flap and adjacent to the side margins of the top sheet. The strip is then folded into a continuous zigzag folded stack suitable forfeeding into automatic computerized printing equipment. After the sheet is preaddressed in the automatic printing equipment, it is again folded into a zigzag folded stack and fed into a continuous forms envelope converter. The strip is intermittently fed to bring the transverse perforated lines beneath a cutter knife which is synchronized with the intermittent feed to separate the strip into envelope blanks. The blanks are then conveyed past side trimmers, which remove the side trim zones, and past side flap folders, which are positioned in the path of the side flaps. The side flap folders include wedge means for lifting the side flaps and spring means for folding over and flattening the side flaps. The envelope blanks are then fed into a guide chute wherein the forward edge engages stop means, causing the blank to buckle about the main fold line between the top sheet and the bottom sheet and be engaged by a pair of rollers and which complete the fold. The blank is then conveyed away from the guide chute past heaters which activate the adhesive coatings to seal the side flaps to the top sheet. The completed envelopes are then received in a hopper or deposited on a conveyor which brings them to a station where they are stuffed and sealed.
The foregoing and other objects, advantages, and features of the invention and the manner in which the same are accomplished will become more readily apparent upon consideration of the following detailed description of the invention when taken in conjunction with the accompanying drawings, which illustrate preferred and exemplary embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a continuous forms envelope converter system of the invention;
FIG. 2 is a partial plan view of a continuous envelope form used in the system of the invention;
FIG. 3 is a partial plan view of another embodiment of a continuous envelope form used in the system of the invention;
FIG. 4 is a perspective view of a completed envelope of the invention;
FIG. 5 is a partial sectional view taken along the line 5-5 of FIG. 4;
FIG. 6 is a plan view of a continuous forms envelope converter of the invention;
FIG. 7 is a partial schematic side elevation view of the continuous forms envelope converter of FIG. 6;
FIG. 8 is a partial perspective view showing a detail of the continuous forms envelope converter of FIG. 6;
FIG. 9 is a partial side elevation view, partly in section, of a detail of the continuous forms envelope converter of FIG. 6;
FIG. 10 is a partial schematic side elevation view of the continuous forms envelope converter of FIG. 6;
each of the blanks 36. Rotary forms press 20 also includes adhesive coater ap the transverse foldover mechanism of the continuous forms l0 envelope converter of FIG. 6; and
FIG; 16 is an additional schematic diagram illustrating the operation of the transverse foldover mechanism.
DETAILED DESCRIPTION Referring to FIG. I, it will be seen that a continuous forms envelope converter system of the invention includes a rotary forms press 20 which converts a strip 22 of envelope paper stock from a roll 24 into a continuous envelope form 26, of the type shown in'more detail in FIG. 2 or FIG. 3, folded into a continuous zigzag folded stack 28. Since rotaryforms press 20 comprises conventional apparatus, it is not described in detail herein. However, it is to be understood that this press applies score lines to the strip 22, punches sprocket holes therein along both edges, cuts perforations and diagonal cutstherein,
applies adhesive coatings thereto, and prints thereon. Turning to FIG. 2, it will be seen that one embodiment of continuous envelope form 26" may include transverse perforated line's 30 extending from one side edge 32 to the other side edge 34 of the strip. These perforated lines 30 serve as lines of separation dividing the continuous envelope form into a plurality of individual envelope blanks 36, which will remain integral with the continuous form until separated as explained hereinafter, and are also utilized as the fold lines in zigzag folded stack 28. Strip 26 is provided with a pair of longitudinal lines of weakness 40 and 42 spaced inwardly from side edges 32 and 34, respectively, to establish side margin portions 44 and 46. It will be noted that line 40 comprises alternating perforated lines 48 and score lines 50, and line 42 comprises corresponding perforated lines 52 and score lines 54. Additional perforated lines 48 and 52. As will be explained more fully hereinafter, coated areas 85 and 86 will cooperate with side flaps 74 and 76, respectively, for sealing the side flaps to the top sheet 64.
While FIG. 2 illustrates one embodiment of a continuous envelope form of the invention, it is ttibeunderstood that this form maybe provided in other formats. For example, a second embodiment of a continuous envelope form .is illustrated by continuous form 26' in FIG-.3. It will be noted that form 26' is in most respects substantially identical toicontintious form 26 of FIG. 2, differing,liizniiever, in'that the sidetriiar'gin portions 44' and 46' are of greatei' width and are divided-by additional longitudinally extending perforated line's88 and90 to provide outer marginal areas92 and 94 upon which are located the rows of sprocket holes 82' and 84'. Thus, in this embodiment the side flaps 74' and 76' are free-.of sprocket holes. Inall other respects, the form:26' is substantially identical to form 26 of FIG. 2; the primed ,reference .nurneralsi'n FIG. 3
designate the same features-as are designated by the corresponding unprimed reference numeralsin FIG. 2. I I Returning to FIG. 1, it willbe-notedthat after continuous form 26 (or, in the case of the embodiment of FIG. 3,5:ontinuous form 26') is formedinto' zigzag folded stack 28, it is pinfed into an address printer 100. The printer will be a printout device of conventional computer equipment or a pin-fedautomatic typewriter, which includes .a memory in the form of prepunched cards or magnetic tape containing address information, and which is'programmed toautomatica'lly print the addresses stored in the memory on the successive envelope blanks 36. Such equipment is readily adapted for quick and inexpensive correction or updating of the mailing list. Continuous form 26 is then refolded into zigzag stack 28. The continuous form will now comprise a pluralityof envelope blanks .36
forated lines 56 extend across side margin portion 44 from the junctions 57 of perforated lines 48 andscore lines 50. Intlie opposite side margin portion 46, corresponding perforated lines" 58 extend from side margin 34 to the junctions 59 between perforated lines 52 and score lines 54. It willbe observed that perforated line 30, perforated line 48, and perscorelines and 54 separate the bottom sheet 66 from the side margin portions 44 and 46 to form side flaps 74 and 76 integral with the bottom sheets 66. In order to finish the seal flap 72,idiagonal slashes 78 and 80 are provided. So that the continuous envelope form may be pin-fed into conventional automated computerized printing equipment, two rows of sprocket holes 82 and 84 are provided in side margins 44 and 46. While it is not shown in the drawings, it is to be understood that appropriate'printed matter may be printed on continuous form 26. For example, the press 20 may print a return address on paratus for applying heat-activatable adhesive coated areas'on the continuous envelope form-26. It is to be understood, howprovided on each of the seal flaps 72;a'nd adhesive coated areas and 86 are provided on top sh eet'i64 adjacent to pereach of which is pfeaddressdd with a particula'riaddress'as determined b'y the computer or automatic address piiiiter I00.
Thelcontinuous envelope form 26 will now be in" condition for conversion into individual preaddre'ssed envelopesjThishs accomplished in 'the continuous 'forrns envelope converter 110. As shown in FIG. 1, the zigzag folded stack 28 is placed on a supply platform 112, 'and the continuous forrn 26'i5 fed by means'which will be described more fully hereinafter into con- 'verter 110 for separationby envelope separating means at iocation 114. The ' side'trim zones 60 and 62 are removedby side trimming means at position 116.'The side flaps 74 and 7 6 are folded over by side flap fold means, '1 l8. Nexfltheiitop sheet 64 is folded over the bottom sheet 66 by transverse foldover means at 120. Finally, adhesive sealing means 122 causes adhesive coated areas; and 86 to adhere to side folds74 and 76, respectively. The envelopes 124 which are now complete, are dropped upon a delivery tabl'l26 and conveyed to a"s'tation where they may be'tnanually or automatically stuffed and sealed ready for mailing.
Considering the continuous forms envelope convertenllo in greater detail and referring initially to FlGS.-6 and 7, it will be observed that continuous forni26 is fed into envelope coriverter by means ofsprocket pins 128 which project from endless chains on belts through slots 129' provided between a pair ofstrip guide plates 131. The pins il2 8 and belt 130 are driven toadvance continuous form 26 until transverse perforated lines 30 are directly beneath cutting means to Be described more fully hereinafter, which will operate in synchronism therewith.
'As'shown in FIG. 1, envelope converter 1 10 includes a stand 132 which supports a main drive motor 34 having a drive pulley 136 driving a drive belt 138. Belt 138 is engaged with a'ma'in driven 'pulley I40 mounted on a maln'drive shaft 142. Referring to no. 7, it will be noted that main t m shaft 142 is coupled by means of a drivcsprocket'l 44' and'drive chain 146' with a driven sprocket 148 mounted on the same shaft 1 59 as'a crank ISZQCrahk 152 is coupled to a crank arm 154 which, in turn, is couple d to a rack 156. Thus, rotation of crank 152 results in backward and forward reciprocation of rack 1 56, whichis' mounted to slide back and forth nlsuitable guide means (not shown). The rack 156 drives a pinion 158 which is mounted to rotate a shaft 160. This shaft 160 is coupled by means of an overriding, or slip-clutch, 161 to a drive drum 162. A drive sprocket 164 is mounted for rotation with drive drum 162 and drives a drive chain 166 which is engaged with a driven sprocket 168 to drive a shaft 170 upon which is also mounted a drive sprocket (not shown) for. driving endless sprocket belt 130. Thus, reciprocation of rack 156 in the forward direction (to the left in FIG. 7) causes movement of belt 130 in the direction designated by the arrow and feeds continuous form 26 by engagement of pins 128 with the rows of sprocket holes 82 and 84.
However, as already mentioned, it is necessary that the drive of the continuous envelope form 26 be in one direction only and intermittent. The manner in which this is effected will now be explained. Drive drum 162 is provided with a V groove or notch 172 (see FIGS. 7 and 9) which upon full forward movement of rack 156 is brought into engagement with a spring detent 174 mounted on a detent supporting structure 176. As shown most clearly in FIG. 9, spring detent 174 may comprise a flat spring member 178 which is biased outwardly by a coil spring 180 received within a recess 182 in supporting structure 176. Drum 162 is also braked by means of a brake shoe 184 engaged with the outer surface thereof. It will be observed from FIG. 7 that brake shoe 184 is adjustably mounted on a screw member 186 extending through a supporting frame member 188. Thus, when rack 156 is reciprocated in the forward direction detent 174 is free to slide along the surface of drive drum 162 permitting drive drum 162 to rotate in a clockwise direction, thus causing shaft 170 to rotate in the same direction and move endless sprocket belt 130 in a direction to feed continuous form 26 into the envelope converter 110. However, when detent 174 reaches groove 172 detent spring member 178 falls into groove 172 preventing reverse rotation of drum 162 by virtue of the overriding clutch action previously mentioned. Hence, as rack 156 reciprocates in the backward direction (to the right in FIG. 7), drum 162 is maintained stationary by detent 174 and brake shoe 184, which serves to maintain drive belt 130 stationary. It is to be understood that when drive belt 130 is thus brought to a stop, it will have moved continuous form 26 to such a position that a transverse perforated line 30 will be positioned directly beneath a cutting knife 190 mounted on a knife bar 192. As will be presently explained, knife 190 will vertically reciprocate in synchronism withthe drive of continuous envelope form 26 so that it will strike the form along a transverse perforated line 30, when form 26 has been brought to a stop therebeneath.
Referring to FIGS. 7 and 8, it will be noted that an eccentric assembly 193 is provided near one end of knife bar 192 and includes an eccentric 194 mounted for rotation on drive shaft 142. Eccentric 194 rotates within an eccentric housing 196 causing vertical reciprocation of an eccentric arm 198 secured thereto as indicated by the arrow in F168. As will be noted from FIGS. 6 and 8, the knife supporting structure includes vertical slide members 200 which vertically reciprocate in slides 202 mounted on side frame members 203. The knife supporting structure also includes a bottom bar 204 to which eccentric arm 198 is secured. Although only a single eccentric assembly 193 is shown in FIG. 8, it is to be understood that a second identical eccentric assembly is provided on drive shaft 142 near the opposite end of bottom bar 204. The eccentric assemblies are designed to reciprocate knife 190 in synchronism with the intermittent feed of continuous form 26, bringing knife 190 into cutting engagement with a transverse perforated line 30 when it is stationary and directly below the knife. It will be noted that continuous form 26 is supported by web supporting plates 206 until it is brought over a knife anvil 208 located beneath knife 190. When knife 190 strikes against continuous form along a line 30, the opposite side of continuous form 26 is supported by knife anvil 208.
At this point, the continuous envelope form 26 is separated into separate envelope blanks 36. It is now necessary to convey the separated blanks 36 to side trim removal station 116. To this end, a series of lower conveyor belts 210 are provided. As shown in FIG. 7, these belts are driven by a lower belt drive roller 212 which is driven by means of a drive sprocket (not shown) on main drive shaft 142 through drive chain 214 and driven sprocket 216 mounted on the same shaft 218 as drive roller 212. When continuous form 26 is brought to a stop by means of the intermittent drive of belt 130, a forward edge will extend over driving belts 210. Thus, after knife 190 severs a blank 36 from continuous form 26, it will be conveyed forward by belts 210.
. Referring to FIG. 10 which shows the continuous envelope converter beginning at drive roller 212, it will be seen that lower drive belts'2l0 are supported by a web supporting plate 220, are tensioned by a tension roller 211, and rotate lower belt rollers 318 (see FIGS. 15 and 16) mounted on a shaft 222. A gear 224 is mounted on shaft 222 and drives ,a gear 226 mounted on the same shaft 228 as upper belt rollers 322 (see FIGS. 15 and 16). A series of upper drive belts 230 extend about rollers 322 and a knurled roller 232 above roller 212. A
' tension bar 234, which is pivotally mounted on a pair of tension arms 236, bears against drive belts 230 pressing them against belts 210. In addition, pressure rollers 238 are mounted on pressure roller arms 240 pivotally mounted on a shaft 242 and engage against belts 230 pressing them against belts 210. An additional set of pressure rollers 244 are mounted on a shaft 246 extending between a pair of arms 248 pivotally mounted on side frame members 250.
The side trim removal mechanism at station 116 will now be described. This mechanism comprises a separate drive motor 252 mounted on a support platform 254 and having a drive shaft 256 for driving a timing belt 258. Timing belt 258 serves 'to drive a pair of knurled rollers 260 which are positioned beneath openings through web supporting support plate 220 as shown in FIG. 6. The knurled rollers 260 are mounted on the same shaft 264 as a drive pulley 262 coupled to timing belt 258. A metal pressure strip 266 is provided for each knurled roller. These strips are mounted by clamps 257 to shaft 242 and extend downwardly through the openings in web support plate 220 to press against knurled rollers 260. As an envelope blank is conveyed to side trim removal station 116, pressure strips 266 press downwardly on the side marginal portions 44 and 46 of the blanks causing the side trim zones 60 and 62 to tear away from the main portion of blanks 36. a pair of nipper rollers 268 engage knurled rollers 260 just below pressure strips 266 to snap the side trim zones away from the envelope blanks. However, side flaps 74 and 76 are not separated from the blanks. When the continuous envelope form 26' of FIG. 3 is utilized, the outer marginal areas 92 and 94 will be separated from the form along with side trim zones 60 and 62.
The envelope blanks 36 are now conveyed by belts 210 and 230 to side flap fold station 118. The folding over of the side flaps 74 and 76 is effected by a pair of side fold mechanisms 270 which are shown most clearly in FIGS. 11, 12, 13 and 14. It will be noted that the side fold mechanism includes a wedge block 280 having a tip portion 282 which faces in the direction from which the envelope blanks are conveyed. This tip portion 282 is positioned in the path of the side flaps and includes a first vertical surface 284 which is inclined inwardly of the envelope blank. The wedge block 280 also includes a second vertically inclined surface 286 and an intermediate surface 288 joining surfaces 284 and 286, which surface 288 is inclined both laterally and upwardly. The remainder 290 of the wedge block 280 is of generally rectangular shape. In FIG. 14, the wedge block is seen as viewed from the direction from which the envelope blanks are conveyed. When side flaps 74 and 76 engage with wedge block 280 they are lifted upwardly by surface 286 and inwardly by surfaces 288 and 284 until they are perpendicular to the horizontal. A vertical guide plate 292 is mounted on block 280 and is spaced a short distance inwardly of wedge block 280 to serve as a guide for the now vertical side flaps.
this is accomplished by means of a spring foldover member I 294 which has a pair of legs 296 and 298 received in openings at the end of rectangular portion 290 of wedge blocks 280. It will be observed that upper leg 296 of spring member 294 includes an inclined portion 300 which, as is most clearly shown in FIG..13, extends downwardly and inwardly terminating in a Hat loop portion 302 pressing against web support plate 220.
As the vertical side flaps engage against inclined portion 300, they are gradually folded over until they are pressed flat by the flat loop portion 302.
The envelope blanks 36 are now ready to be folded over the main transverse fold line established by score line 68. In order to accomplish this, they are fed forwardly into a guide chute 304. This chute is made of sheet metal and includes an upper metal plate portion 306 and a lower metal plate portion 308 which are spaced apart a distance to receive the envelope blank therebetween and which are mounted on a support bar 309. It will be noted from FIG. 10'that upper plate 306 has its end 310 curled upwardly so that the envelope blanks may be easily received, while the lower end 311 of lower plate 308 is positioned closely adjacent to a roller 3l4 '(see FIGS. and
.plate 306 and bottom plate 308,the forward end thereof strikes against the stops 315. These stops are so positioned that the main score line 68 of envelope blank will now be positioned above the gap between rollers.314 and 318. Roller 314 is mounted on a shaft 320 on which is mounteda gear 321 chgaged with gear 224 so that rollers 318 and 314 rotate in op- 4 posite directions. Referring to FIGS. 15 and 16, in which the spacing between rollers 314 and 318 is exaggerated,.it will be noted that when blank 36 engages against stop 315, it is caused to buckle along score line 68 and be received between roller 314 and belts 210 on rollers 318 which complete the fold and draw the blank 36 downwardly out of chute 304.
Again referring to FIG. 10, the envelope blank 36, which now has bottom sheet 66 folded over top sheet 64 with side flaps 74 and 76 respectively engaged with adhesive areas 85 and 86, is now conveyed past adhesive securing station 122 which includes electrical heaters 330. These heaters, 'as is seen in'I-IG. 6, are of cylindrical shape and, as is evident from FIG.
, '10, are vertically disposed along thepath traversed by the now completely folded envelope blanks36. Electric control boxes 332 supply heating current to the heaters. The envelope blanksare engaged against heaters 330 by means of spring strips 334 which are mounted on a shaft 335. The heat supplied by heaters 330 activates the heat-activatable adhesive coatings 85 and 86 and cause the side flaps 74 and 76 to adhere thereto. Sealing pressure is provided by a pair of rollers driven by gears 336 and 338. Gear 336 is driven by a timing belt 340 coupled to a gear (not shown) mounted on shaft 222, and gear 336 is engaged with gear 338. In order to apply pressure to these rollers, spring means 341 may be provided.
The envelopes 124 are now completed and drop upon delivery conveyor 126 as shown in FIG. 1. The completed'enposition of stops 315. If the continuous envelope form of FIG. 3 is used, the continuous envelope converter 110 may also be suitably modified to receive the form 26'.
While preferred embodiments of the invention have been shown and described, it will be apparent to those skilled in the art that changes can be made withoutdeparting from the principles and spirit of the invention, the scope of which is defined in the appended claims.
Iclairn: 1. A system for converting a continuous strip of paper into addressed envelopes comprising: press means for providing perforated lines on said strip transversely of said strip to divide said strip into a.plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and .a seal flap, a pair of longitudinal lines spaced inwardly from sides of said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet toprovide side flaps integral with said bottom sheetand perforated lines adjacent to said top sheet to provide side trim zones, a row of longitudinal sprocket holes in each of said side margins, and adhesive coatings on said sealflap and adjacent to the side margins of said top sheet and for folding said strip into a zigzagv folded stack;
printer meansfor receiving said zigzag folded stack and printing addresses on an outer face of one of said-top and bottom sheets and refolding said continuous strip as an addressed. zigzag folded stack; and
a continuous forms envelope converter including means for receiving said addressed zigzag folded stack, meaiis for separating said blanks along said'transverse perforated lines, means forremoving said side trim zones, meansfo'r folding said side flaps over said bottom sheet,:ni'eans for folding said top sheet over said bottom sheet along said first fold line, and'means for activating said'adhesive coatings-between said top sheet and said side'flaps to secure said top sheet to said side flaps.
2. A system as recited in claim 1, wherein said press means provides an additional longitudinal perforated line in eachside margin to define outer marginal strips, said sprocket hol'es being located on said marginal outer strips.
3. A system as recited in claim 1, wherein said press means provides diagonal slashes between the ends of said second fold lines and said transvers perforated lines.
4. A system as recited in claim 1, wherein said adhesive coatings are heat activatable and said means for activating said adhesive coatings comprises heater means;
5. A continuous forms envelope converter continuous paper strip having perforated lines transversely of ,the strip to divide the strip into a plurality of envelope blanks,
a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, a'pair.
of longitudinal lines spaced inwardly from the sides of said I strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and being perforated lines adjacent said top sheet to provide side trim zones, a row of sprocket holes in each of said side margins and adhesive velope 124 is shown in FIGS. 4 and 5. Bottom sheet 66 is folded over top sheet 64 with one of the side flaps 74 folded over bottom sheet 66 and adhesivelysecured to top sheet 64. The other side flap (not shown in FIG. 5) will similarly'be adhesively secured to top sheet 64.
The dimensions of the envelope, which will be recognized as being of standard style, are determined by the distances between transverse lines 30 and between longitudinal lines 40 and 42. When an envelope of different size is to be used, it may be necessary to adjust the spacing'of sprocket belts 130, the timing of eccentric assembly 193, the location of pressure strips 266, the location of side fold mechanisms 270 and the coatings on said seal flap and adjacent to the side margins of said top sheet, said converter comprising:
means for receiving said continuous sheet from-a zigzag folded stack;
means for separating said blanks along said transverse perforated lines; means for removing said side trim zones; means for folding said side flaps over said bottom sheet; means for folding said top sheet over said bottom sheet along said first fold line; and
means for activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to I said sideflaps.
for receiving a 6. A continuous forms envelope converter as recited in claim 5, further comprising feed means for feeding said sheet from said zigzag folded stack, said feed means comprising sprocket pins engaged with said sprocket holes, means for intermittently moving said sprocket pins in one direction to bring said transverse perforated lines successively to said means for separating said blanks, and wherein said means for separating said blanks comprises knife means vertically reciprocated in synchronism with said feed means to engage said transverse perforated lines when they are positioned stationary beneath said knife means.
7. A continuous forms envelope converter as recited in claim 6, wherein said feed means comprises a rack, means for reciprocating said rack, and means coupling said rack with said sprockets whereby said rack drives said, sprockets in said one direction upon forward reciprocation of said rack and said sprockets are maintained stationary upon backward reciprocation of said rack.
8. A continuous forms envelope converter as recited in claim 7, Wherein said means coupling said rack with said sprockets comprising a slip clutch and brake and detent means for preventing reverse drive of said sprocket upon said backward reciprocation of said rack.
9. A continuous forms envelope converter as recited in claim 5, further comprising conveyor means for conveying said separated blanks to said means for removing said side trim zones, said means for removing said side trim zones comprising a pair of knurled rollers adjacent to and below said side margins of said strip and flat spring strips pressing said side margins against said knurled rollers to separate said side trim zones.
10. A continuous forms envelope converter as recited in claim 5, further comprising conveyor means for conveying said separated blanks to said means for folding over said side flaps, said means for folding over said side flaps comprising wedge means adjacent each side margin for lifting said side flaps and spring means for folding over and flattening said side flaps.
11. A continuous forms envelope converter as recited in claim 10, wherein each of said wedge means comprises a tip facing toward the direction from which said blanks are conveyed and positioned adjacent the outer edge of one of said side flaps, a first laterally inclined surface extending inwardly of the side flaps from said tip, and a second vertically inclined surface extending upwardly from said tip.
12. A continuous forms envelope converter as recited in claim 11, wherein said wedge means further comprises a third inclined surface between said first and said second inclined surfaces, said third inclined surface being laterally and vertically inclined.
13. A continuous forms envelope converter as recited in claim 10, wherein said means for folding over said side flaps further comprises guide means spaced inwardly of said wedge means for guiding said lifted side flaps.
14. A continuous forms envelope converter as recited in claim 10, wherein said spring means includes a first portion extending downwardly and inwardly from said wedge means for folding down said side flaps and a second portion pressing said side flaps against a base plate.
15. A continuous forms envelope converter as recited in claim 5, further comprising means for conveying said separated blanks from said means for folding over said side flaps to said means for folding said top sheet over said bottom sheet, said means for folding said top sheet over said bottom sheet comprising guide means, stop means on said guide means for engaging the forward edge of said blanks causing said blanks to buckle along said first fold line, and roller means for engaging saidblank on opposite sides of said first fold line for conveying said folded blank away from said guide means.
16. A continuous forms envelope converter as recited in claim 15, wherein said stop means is so located as to position said first fold lines over said roller means when said forward edge of said blanks engage said stop means.
17. A continuous forms envelope converter as recited in claim 15, wherein said guide means comprises a lower guide member and an upper guide member spaced above said lower guide member to provide a guide chute for said blanks.
18. A continuous forms envelope converter as recited in claim 5, wherein said means for activating said adhesive coatings between said top sheet and said side flaps comprises heater means and means to press said blanks against said heater means.
19.. Apparatus for folding over a side flap of an envelope blank comprising means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap and spring means for folding over and flattening said side flap.
20. Apparatus for folding over a side flap of an envelope blank comprising means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap and spring means for folding over and flattening said side flap, said wedge means comprising a tip facing toward the direction from which said blank is conveyed and positioned adjacent the outer edge of said side flap, a first laterally inclined surface extending inwardly of the side flap from said tip and a second vertically inclined surface extending upwardly from said tip.
21. Apparatus as recited in claim 20, wherein said wedge means further comprises a third inclined further between said first and said second inclined surfaces, said third inclined surface being laterally and vertically inclined.
22. Apparatus as recited in claim 20, further comprising guide means spaced inwardly of said wedge means for guiding said lifted side flaps.
23. Apparatus as recited in claim 19, wherein said spring means includes a first portion extending downwardly and inwardly from said wedge means for folding down said flap and a second portion for pressing said side flap against a base plate.
24. In apparatus for folding over a side fiap of an envelope blank having means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap, said wedge means comprising a tip facing toward the direction from which said blank is conveyed and positioned adjacent the outer edge of said side flap, a first laterally inclined surface extending inwardly of the side flap from said tip and a second vertically inclined surface extending upwardly from said tip.
25. In apparatus as recited in claim 24, said wedge means further comprising a third inclined surface between said first and said, second inclined surfaces, said third inclined surface being laterally and vertically inclined.
26. A method of converting a continuous strip of paper into addressed envelopes comprising the steps of:
providing perforated lines on said strip transversely of said strip to divide said strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, and a pair of longitudinal lines spaced inwardly from sides of said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and perforated lines adjacent to said top sheet to provide side trim zones;
folding said strip into a zigzag folded stack;
transporting said zigzag folded stack to an address printing station;
feeding said strip from said zigzag folded stack and printing addresses on an outer face of one of said top and bottom sheets;
refolding said strip into an addressed zigzag folded stack;
transporting said addressed zigzag folded stack to an envelope converting station;
feeding said strip from said addressed zigzag folded stack;
separating said blanks along said transverse perforated lines;
removing said side trim zones;
folding said side flaps over said bottom sheet; and
folding said top sheet over said bottom sheet along said first line. 27. A method as recited in claim 26, further comprising the steps of providing adhesive coatings on said seal flap and adjacent to the side margins of the top sheet and, after said steps of folding said side flaps over said bottom sheet and said top sheet over said bottom sheet activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.
, 28. A method of converting a continuous paper strip into envelopes, said paper strip having perforated lines transverse ly of the strip to divide the strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a t'ust fold line between a bottom sheet and a top sheet and a second fold line'between said top sheet and a seal flap,
and a pair of longitudinal lines spaced inwardly from the sides of-said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and being perforated lines adjacent said top sheet to provide side trim zones, comprising the steps of:
separating said blanks along said transverse perforated lines; removing said side trim zones;
folding said side flaps over said bottom sheet; and folding said top sheet over said bottom sheet. 29. A method as recited in claim 28, further comprising the steps of applying adhesive to said top sheet adjacent to the side margins of said top sheet and, after said steps of folding said side flaps over said bottom sheet and said top sheet over said bottom sheet, activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.
30. A continuous forms envelope converter for receiving a continuous paper strip having lines of separation transversely of the strip to divide the strip into a plurality of envelope blanks, a pair of lines of weakness transversely of each blank to provide a first foldlinebetween a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, a pair of longitudinal lines spaced inwardly from the sides of said strip'to provide side margins, said longitudinal lines being lines of weakness adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and defining side trim zones adjacent said top sheet, a row of sprocket holes in each of said side margins and adhesive coatings on said seal flap and adjacent to the side margins of said top sheet, said converter comprising: means for receiving said continuous sheet from a zigzag folded stack; means for separating said blanks along said transverse lines of separation; means for removing said side trim zones; means for folding said side flaps over said bottom sheet; means for folding said top sheet over said bottom sheet along said first fold line; and means for activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.

Claims (30)

1. A system for converting a continuous strip of paper into addressed envelopes comprising: press means for providing perforated lines on said strip transversely of said strip to divide said strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a sEcond fold line between said top sheet and a seal flap, a pair of longitudinal lines spaced inwardly from sides of said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and perforated lines adjacent to said top sheet to provide side trim zones, a row of longitudinal sprocket holes in each of said side margins, and adhesive coatings on said seal flap and adjacent to the side margins of said top sheet and for folding said strip into a zigzag folded stack; printer means for receiving said zigzag folded stack and printing addresses on an outer face of one of said top and bottom sheets and refolding said continuous strip as an addressed zigzag folded stack; and a continuous forms envelope converter including means for receiving said addressed zigzag folded stack, means for separating said blanks along said transverse perforated lines, means for removing said side trim zones, means for folding said side flaps over said bottom sheet, means for folding said top sheet over said bottom sheet along said first fold line, and means for activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.
2. A system as recited in claim 1, wherein said press means provides an additional longitudinal perforated line in each side margin to define outer marginal strips, said sprocket holes being located on said marginal outer strips.
3. A system as recited in claim 1, wherein said press means provides diagonal slashes between the ends of said second fold lines and said transvers perforated lines.
4. A system as recited in claim 1, wherein said adhesive coatings are heat activatable and said means for activating said adhesive coatings comprises heater means.
5. A continuous forms envelope converter for receiving a continuous paper strip having perforated lines transversely of the strip to divide the strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, a pair of longitudinal lines spaced inwardly from the sides of said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and being perforated lines adjacent said top sheet to provide side trim zones, a row of sprocket holes in each of said side margins and adhesive coatings on said seal flap and adjacent to the side margins of said top sheet, said converter comprising: means for receiving said continuous sheet from a zigzag folded stack; means for separating said blanks along said transverse perforated lines; means for removing said side trim zones; means for folding said side flaps over said bottom sheet; means for folding said top sheet over said bottom sheet along said first fold line; and means for activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.
6. A continuous forms envelope converter as recited in claim 5, further comprising feed means for feeding said sheet from said zigzag folded stack, said feed means comprising sprocket pins engaged with said sprocket holes, means for intermittently moving said sprocket pins in one direction to bring said transverse perforated lines successively to said means for separating said blanks, and wherein said means for separating said blanks comprises knife means vertically reciprocated in synchronism with said feed means to engage said transverse perforated lines when they are positioned stationary beneath said knife means.
7. A continuous forms envelope converter as recited in claim 6, wherein said feed means comprises a rack, means for reciprocating said rack, and means coupling said rack with said sprockets whereby said rack drives said, sproCkets in said one direction upon forward reciprocation of said rack and said sprockets are maintained stationary upon backward reciprocation of said rack.
8. A continuous forms envelope converter as recited in claim 7, Wherein said means coupling said rack with said sprockets comprising a slip clutch and brake and detent means for preventing reverse drive of said sprocket upon said backward reciprocation of said rack.
9. A continuous forms envelope converter as recited in claim 5, further comprising conveyor means for conveying said separated blanks to said means for removing said side trim zones, said means for removing said side trim zones comprising a pair of knurled rollers adjacent to and below said side margins of said strip and flat spring strips pressing said side margins against said knurled rollers to separate said side trim zones.
10. A continuous forms envelope converter as recited in claim 5, further comprising conveyor means for conveying said separated blanks to said means for folding over said side flaps, said means for folding over said side flaps comprising wedge means adjacent each side margin for lifting said side flaps and spring means for folding over and flattening said side flaps.
11. A continuous forms envelope converter as recited in claim 10, wherein each of said wedge means comprises a tip facing toward the direction from which said blanks are conveyed and positioned adjacent the outer edge of one of said side flaps, a first laterally inclined surface extending inwardly of the side flaps from said tip, and a second vertically inclined surface extending upwardly from said tip.
12. A continuous forms envelope converter as recited in claim 11, wherein said wedge means further comprises a third inclined surface between said first and said second inclined surfaces, said third inclined surface being laterally and vertically inclined.
13. A continuous forms envelope converter as recited in claim 10, wherein said means for folding over said side flaps further comprises guide means spaced inwardly of said wedge means for guiding said lifted side flaps.
14. A continuous forms envelope converter as recited in claim 10, wherein said spring means includes a first portion extending downwardly and inwardly from said wedge means for folding down said side flaps and a second portion pressing said side flaps against a base plate.
15. A continuous forms envelope converter as recited in claim 5, further comprising means for conveying said separated blanks from said means for folding over said side flaps to said means for folding said top sheet over said bottom sheet, said means for folding said top sheet over said bottom sheet comprising guide means, stop means on said guide means for engaging the forward edge of said blanks causing said blanks to buckle along said first fold line, and roller means for engaging said blank on opposite sides of said first fold line for conveying said folded blank away from said guide means.
16. A continuous forms envelope converter as recited in claim 15, wherein said stop means is so located as to position said first fold lines over said roller means when said forward edge of said blanks engage said stop means.
17. A continuous forms envelope converter as recited in claim 15, wherein said guide means comprises a lower guide member and an upper guide member spaced above said lower guide member to provide a guide chute for said blanks.
18. A continuous forms envelope converter as recited in claim 5, wherein said means for activating said adhesive coatings between said top sheet and said side flaps comprises heater means and means to press said blanks against said heater means.
19. Apparatus for folding over a side flap of an envelope blank comprising means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap and spring means for folding over and flattening said side flap.
20. Apparatus for folding over a side flap of an envelope blank comprising Means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap and spring means for folding over and flattening said side flap, said wedge means comprising a tip facing toward the direction from which said blank is conveyed and positioned adjacent the outer edge of said side flap, a first laterally inclined surface extending inwardly of the side flap from said tip and a second vertically inclined surface extending upwardly from said tip.
21. Apparatus as recited in claim 20, wherein said wedge means further comprises a third inclined further between said first and said second inclined surfaces, said third inclined surface being laterally and vertically inclined.
22. Apparatus as recited in claim 20, further comprising guide means spaced inwardly of said wedge means for guiding said lifted side flaps.
23. Apparatus as recited in claim 19, wherein said spring means includes a first portion extending downwardly and inwardly from said wedge means for folding down said flap and a second portion for pressing said side flap against a base plate.
24. In apparatus for folding over a side flap of an envelope blank having means for conveying said envelope blank, wedge means in the path of said side flap for lifting said side flap, said wedge means comprising a tip facing toward the direction from which said blank is conveyed and positioned adjacent the outer edge of said side flap, a first laterally inclined surface extending inwardly of the side flap from said tip and a second vertically inclined surface extending upwardly from said tip.
25. In apparatus as recited in claim 24, said wedge means further comprising a third inclined surface between said first and said second inclined surfaces, said third inclined surface being laterally and vertically inclined.
26. A method of converting a continuous strip of paper into addressed envelopes comprising the steps of: providing perforated lines on said strip transversely of said strip to divide said strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, and a pair of longitudinal lines spaced inwardly from sides of said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and perforated lines adjacent to said top sheet to provide side trim zones; folding said strip into a zigzag folded stack; transporting said zigzag folded stack to an address printing station; feeding said strip from said zigzag folded stack and printing addresses on an outer face of one of said top and bottom sheets; refolding said strip into an addressed zigzag folded stack; transporting said addressed zigzag folded stack to an envelope converting station; feeding said strip from said addressed zigzag folded stack; separating said blanks along said transverse perforated lines; removing said side trim zones; folding said side flaps over said bottom sheet; and folding said top sheet over said bottom sheet along said first line.
27. A method as recited in claim 26, further comprising the steps of providing adhesive coatings on said seal flap and adjacent to the side margins of the top sheet and, after said steps of folding said side flaps over said bottom sheet and said top sheet over said bottom sheet activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.
28. A method of converting a continuous paper strip into envelopes, said paper strip having perforated lines transversely of the strip to divide the strip into a plurality of envelope blanks, a pair of score lines transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, and a pair of longitudinal lines spaced inwardly from the sides of said strip to provide side margins, said longitudinal lines being score lines adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and being perforated lines adjacent said top sheet to provide side trim zones, comprising the steps of: separating said blanks along said transverse perforated lines; removing said side trim zones; folding said side flaps over said bottom sheet; and folding said top sheet over said bottom sheet.
29. A method as recited in claim 28, further comprising the steps of applying adhesive to said top sheet adjacent to the side margins of said top sheet and, after said steps of folding said side flaps over said bottom sheet and said top sheet over said bottom sheet, activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.
30. A continuous forms envelope converter for receiving a continuous paper strip having lines of separation transversely of the strip to divide the strip into a plurality of envelope blanks, a pair of lines of weakness transversely of each blank to provide a first fold line between a bottom sheet and a top sheet and a second fold line between said top sheet and a seal flap, a pair of longitudinal lines spaced inwardly from the sides of said strip to provide side margins, said longitudinal lines being lines of weakness adjacent to said bottom sheet to provide side flaps integral with said bottom sheet and defining side trim zones adjacent said top sheet, a row of sprocket holes in each of said side margins and adhesive coatings on said seal flap and adjacent to the side margins of said top sheet, said converter comprising: means for receiving said continuous sheet from a zigzag folded stack; means for separating said blanks along said transverse lines of separation; means for removing said side trim zones; means for folding said side flaps over said bottom sheet; means for folding said top sheet over said bottom sheet along said first fold line; and means for activating said adhesive coatings between said top sheet and said side flaps to secure said top sheet to said side flaps.
US751467A 1968-08-09 1968-08-09 Continuous forms envelope converter system Expired - Lifetime US3552282A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US75146768A 1968-08-09 1968-08-09

Publications (1)

Publication Number Publication Date
US3552282A true US3552282A (en) 1971-01-05

Family

ID=25022099

Family Applications (1)

Application Number Title Priority Date Filing Date
US751467A Expired - Lifetime US3552282A (en) 1968-08-09 1968-08-09 Continuous forms envelope converter system

Country Status (2)

Country Link
US (1) US3552282A (en)
GB (1) GB1271254A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031818A (en) * 1974-10-16 1977-06-28 Gaf Corporation Apparatus for preparing sealed envelope units with messages
US4915287A (en) * 1988-11-03 1990-04-10 Moore Business Forms, Inc. Intelligently imaged envelopes with intelligently imaged integral tear-off flaps
US5137506A (en) * 1990-11-05 1992-08-11 The Standard Register Company In-line folder/gluer
AU672656B2 (en) * 1993-01-21 1996-10-10 Moore North America, Inc. Pressure seal roll product and apparatus and methods using the product to form mailers
US5980442A (en) * 1997-06-10 1999-11-09 Hamilton; James T. Apparatus and method of producing a food server with pre-fold of glue panels
CN103879027A (en) * 2014-04-14 2014-06-25 张丹红 Technology for producing bottom 45-degree-angle bonding bag opening pre-folding mark sharp-bottom coating paper bag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115711B2 (en) * 1985-04-19 1995-12-13 エンベロップメンツ ピーティーワイ、リミテッド Letter paper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655082A (en) * 1946-07-26 1953-10-13 Int Paper Box Machine Co Score breaker
US3097578A (en) * 1959-12-16 1963-07-16 Berkley Machine Co Apparatus for folding the closure flaps of envelopes and similar articles
US3395624A (en) * 1966-01-18 1968-08-06 Winkler Duennebier Kg Masch Device for folding flaps of envelopes and the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655082A (en) * 1946-07-26 1953-10-13 Int Paper Box Machine Co Score breaker
US3097578A (en) * 1959-12-16 1963-07-16 Berkley Machine Co Apparatus for folding the closure flaps of envelopes and similar articles
US3395624A (en) * 1966-01-18 1968-08-06 Winkler Duennebier Kg Masch Device for folding flaps of envelopes and the like

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031818A (en) * 1974-10-16 1977-06-28 Gaf Corporation Apparatus for preparing sealed envelope units with messages
US4915287A (en) * 1988-11-03 1990-04-10 Moore Business Forms, Inc. Intelligently imaged envelopes with intelligently imaged integral tear-off flaps
US5137506A (en) * 1990-11-05 1992-08-11 The Standard Register Company In-line folder/gluer
AU672656B2 (en) * 1993-01-21 1996-10-10 Moore North America, Inc. Pressure seal roll product and apparatus and methods using the product to form mailers
US6207257B1 (en) * 1993-01-21 2001-03-27 Moore Business Forms, Inc. Pressure seal roll product and apparatus and methods using the product to form mailers
US5980442A (en) * 1997-06-10 1999-11-09 Hamilton; James T. Apparatus and method of producing a food server with pre-fold of glue panels
CN103879027A (en) * 2014-04-14 2014-06-25 张丹红 Technology for producing bottom 45-degree-angle bonding bag opening pre-folding mark sharp-bottom coating paper bag
CN103879027B (en) * 2014-04-14 2016-05-11 张丹红 Miter angle bonding sack in bottom pre-folds trace point end film paper bag production technology

Also Published As

Publication number Publication date
GB1271254A (en) 1972-04-19

Similar Documents

Publication Publication Date Title
US3894905A (en) Machine for making addressed and filled envelopes in a single operation
US2970634A (en) Method and apparatus for applying cover material to book cores and cases
US4875965A (en) Apparatus for folding and sealing documents
US4552497A (en) Apparatus and method for preparing multipage, taped, side-stitched documents
US5197262A (en) Assembly for producing a mass distributable printed packet
US3559875A (en) Continuous envelope form
US3552282A (en) Continuous forms envelope converter system
US2819656A (en) Method and apparatus for making mounts for diapositives
US3314089A (en) Machine for producing imitated normal hard book covers and method therefor
US3579947A (en) Method of printing and folding a mailing piece
US4769969A (en) Apparatus for producing shipping forms
US4880651A (en) Method of and apparatus for producing infusible bag holders
US4190478A (en) Process and apparatus for production of faced or laminated sheets
US4202150A (en) Device for producing envelopes in a continuous operation
US4644731A (en) Method and equipment for the automatic inserting of encoded cards inside envelopes, and relating envelope module
US3602114A (en) Items having indicia thereon and method of producing same
US3387542A (en) Method of joining sets of stacked, superimposed sheets, and apparatus for applying joining strips
US4333784A (en) Machine and method for producing weatherproofed multi leaf shipping forms
US3468227A (en) Envelope blank forming machine
JPH05193613A (en) Folding machine and sealed letter making device
US3741085A (en) Apparatus for forming a continuous assembly of envelopes or the like
US4019937A (en) Sleeved photo album page and means and method for making same
US2168364A (en) Feed mechanism for duplicating machines
US3683756A (en) Continuous forms envelope converter system
US2575924A (en) Corner mount and method and machine for making the same