US3544074A - Pneumatic pulsation for imparting vibratory motion to a liquid in a container - Google Patents

Pneumatic pulsation for imparting vibratory motion to a liquid in a container Download PDF

Info

Publication number
US3544074A
US3544074A US740280A US3544074DA US3544074A US 3544074 A US3544074 A US 3544074A US 740280 A US740280 A US 740280A US 3544074D A US3544074D A US 3544074DA US 3544074 A US3544074 A US 3544074A
Authority
US
United States
Prior art keywords
container
liquid
slide valve
vibratory motion
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US740280A
Inventor
Susanna Mikhailovna Karpacheva
Leonid Solomonovich Raginsky
Igor Viktorovich Ilgisonis
Noi Mikhailovich Adamsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3544074A publication Critical patent/US3544074A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/12Fluid oscillators or pulse generators
    • F15B21/125Fluid oscillators or pulse generators by means of a rotating valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/20Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of a vibrating fluid

Definitions

  • a stationary liner made from a wear-resistant material having inlet and outlet apertures in communication with the ports in the body, the liner being spaced with a permanent gap from the valve.
  • the present invention relates to pneumatic pulsators employed for imparting vibratory motion to a liquid in a container, mostly in chemical apparatus such as columns, reaction vessels, mixers'settlers, etc.
  • Vibratory motion of the liquid is required to intensify the processes proceeding in the apparatus and is created by means of a pulsator which alternately supplies compressed air into the pulsation chamber of the apparatus and discharges it, said chamber communicating with the liquid container through a hole located below the liquid level.
  • the volume of the liquid acquiring vibratory motion may vary from 0.1 to 100 cu. m. and the amount of air supplied into the container within one working cycle may vary from 0.1 to 2 cu. m. at a pressure of0.l to 3 atm.
  • the pulsators known in the art have an adjustable speed drive for rotating the slide valve located in the body; this slide valve communicates the pulsation chamber of the apparatus alternately with the compressed air line and the atmosphere which makes the liquid in the container vibrate.
  • the slide valve is a cylindrical or conical member with at least one through channel, the body accommodating said slide valve communicating through a pipe with the container of the apparatus and having an inlet port and an outlet port communicating, respectively, with the compressed line and the atmosphere.
  • An object of the invention resides in providing a pneumatic pulsator whose slide valve is less subject to wear in operation.
  • a pneumatic pulsator for imparting vibratory motion to a liquid in a container which incorporates a rotatable slide valve with at least one channel, said valve being located in a body with an inlet port and an outlet port and communicating the liquid container alternately with the compressed air line and the atmosphere.
  • a stationary liner installed between the body at the side of its ports, and the slide valve is a stationary liner made from a wear-resistant material and provided with inlet and outlet holes which coincide with the corresponding ports in the body.
  • the liner installed between the body and slide valve reduces the wear of the latter because, as the-slide valve rotates, the liner itself becomes worn partly which creates a certain clearance between it and the slide valve; as a result, further friction ceases and so does the wear of the slide valve and the liner.
  • FIG. I is a diagrammatic illustration of a pneumatic pulsator according to the invention, and a container connected thereto;
  • FIG. 2 is a top view thereof
  • FIG. 3 is a sectional view of a slide valve of a pneumatic pulsator according to the invention.
  • FIG. 4 is a section taken on line AA in FIG. 3 with a conventionally shown slide valve channel inlet hole.
  • the pneumatic pulsator has a frame I for the joint installation of a motor 2 and a reduction unit 3 whose output shaft 4 is connected with the slide valve 5 housed in the body 6.
  • the body 6 is connected by a pipe connection 7 to a receiver 8 which communicates with the compressed air line 9 and, through a pipe 10, with the pulsation chamber 11 of the liquid container 11a
  • the slide valve 5 (FIG. 3) connected to the output shaft 4 of the reduction unit 3 is a conical member with at least one through channel 12 arranged at an acute angle to the axis of the slide valve 5 so that its outlet end is in constant communication with the pipe 10.
  • the body 6 has two chambers 13 and 14. the first being in communication with the inlet port 15 and compressed air line 9, the second being in communication with the atmosphere through the hole 16 and with the outlet port 17 in the body 6.
  • the slide valve 5 Being rotated by the motor 2 via the reduction unit 3, the slide valve 5 provides communication between the container alternately with the compressed air line 9 through the chamber 13 and with the atmosphere through the chamber 14 which results in vibration of the liquid in container Ila.
  • the liquid in the container 11 is usually at atmospheric pressure; this improves considerably the dependability of such apparatus and simplifies their design.
  • the pressure in the apparatus depends on the operating conditions and may be other than atmospheric.
  • the number of ports in the body 6 and of holes in the liner 18 may vary with the required relation between the durations of the air supply and discharge cycles, the frequency of vibrations and other pertinent factors.
  • this clearance can be obtained by preliminary lapping of the slide valve 5 to the liner 18. Then, rotation of the slide valve will wear the liner 18 to a certain extent, after which there will appear a clearance between the liner and the slide valve and further friction will be discontinued.
  • a pneumatic pulsator for imparting vibratory motion to a liquid in a container, by means of compressed air, said pulsator comprising: a compressed air supply source; a receiver communicating with said compressed air supply source; a pulsation chamber having a lower portion connected to the container with the liquid; valve means communicating with the upper portion of said pulsation chamber and with said receiver for providing alternating communication of said pulsation chamber with said receiver and with atmosphere; and drive means for said valve means.
  • a valve in a pulsator for imparting vibratory motion to liquid in a container by means of compressed air comprising: a body with inlet and outlet openings; partition means in said body dividing the bodies into inlet and outlet chambers having a common flat wall and communicating respectively with said inlet and outlet openings; said flat wall having inlet and outlet ports respectively opening into said inlet and outlet chambers; a rotor in said body and having a flat surface perpendicular to the axis of its rotation and parallel to said flat wall, said flat surface facing the flat wall; said rotor having a rectilinear channel inclined at an acute angle with respect to the axis of rotation of said rotor, one end of said channel facing said flat surface of said rotor while the other end of said channel is on the axis of rotation of said rotor, said rotor and said channel being arranged with respect to the inlet and outlet ports such that-said channel communicates alternatively with said ports as the rotor rotates; a flange onsaid

Description

United States Patent Susanna Mikhailovna Karpacheva 2, Schukinsky proezd, 2 KV.88, Muratov -Valerian, Matveevich, Astoakhovsky pereulok l/2,KU.118; Leonid Solomonovich Ra'ginsky, Nikitinskaya ulitsa, l6 korpus 1, KV. 29; Igor Viktorovich Ilgisonis, Parkovoaya ulitsa, 2 korpus 4, KV.20; Noi Mikhailovich Adamsky, Novaya Bodraya ulitsa, 7,
[72] Inventors KV.45, Moscow, USSR. 21 Appl. No. 740,280 [22] Filed June 26, 1968 [45] Patented Dec. 1, 1970 32] Priority June 30, 1967 [33] U.S.S.R. [31] No. 1,167,696
[54] PNEUMATIC PULSATION FOR IMPARTING VIBRATORY MOTION TO A LIQUID IN A CONTAINER 4 Claims, 4 Drawing Figs.
[52] US. Cl 259/1 [51] Int. Cl B0lfll/00 I 50] Field of Search 259/1;
[56] References Cited UNITED STATES PATENTS 3,040,777 6/1962 Carson 137/625.15 3,097,828 7/1963 Grun 259/4 3,120,228 2/1964 Huxley 137/625.15
Primary Examiner- Robert W. Jenkins At!0rneyWaters, Roditi, Schwartz & Nissen Between the valve and the body is a stationary liner made from a wear-resistant material having inlet and outlet apertures in communication with the ports in the body, the liner being spaced with a permanent gap from the valve.
Patented Dec. 1, 1970 FIG}./
PNEUMATIC PULSATION FOR IMPARTING VIBRATORY MOTION TO A LIQUID IN A CONTAINER The present invention relates to pneumatic pulsators employed for imparting vibratory motion to a liquid in a container, mostly in chemical apparatus such as columns, reaction vessels, mixers'settlers, etc.
Vibratory motion of the liquid is required to intensify the processes proceeding in the apparatus and is created by means of a pulsator which alternately supplies compressed air into the pulsation chamber of the apparatus and discharges it, said chamber communicating with the liquid container through a hole located below the liquid level.
The volume of the liquid acquiring vibratory motion may vary from 0.1 to 100 cu. m. and the amount of air supplied into the container within one working cycle may vary from 0.1 to 2 cu. m. at a pressure of0.l to 3 atm.
The pulsators known in the art have an adjustable speed drive for rotating the slide valve located in the body; this slide valve communicates the pulsation chamber of the apparatus alternately with the compressed air line and the atmosphere which makes the liquid in the container vibrate.
As a rule, the slide valve is a cylindrical or conical member with at least one through channel, the body accommodating said slide valve communicating through a pipe with the container of the apparatus and having an inlet port and an outlet port communicating, respectively, with the compressed line and the atmosphere.
In the course of operation, the pulsator slide valve becomes worn rather rapidly, whichresults in compressed air losses; this, in turn, impairs the economy of the process and the steadiness of pulsation. Replacement of a worn slide valve becomes especially difficult when the handled liquids are toxic or radioactive.
An object of the invention resides in providing a pneumatic pulsator whose slide valve is less subject to wear in operation.
Proposed herein is a pneumatic pulsator for imparting vibratory motion to a liquid in a container which incorporates a rotatable slide valve with at least one channel, said valve being located in a body with an inlet port and an outlet port and communicating the liquid container alternately with the compressed air line and the atmosphere. ln accordance with the invention, installed between the body at the side of its ports, and the slide valve is a stationary liner made from a wear-resistant material and provided with inlet and outlet holes which coincide with the corresponding ports in the body.
The liner installed between the body and slide valve reduces the wear of the latter because, as the-slide valve rotates, the liner itself becomes worn partly which creates a certain clearance between it and the slide valve; as a result, further friction ceases and so does the wear of the slide valve and the liner.
Now the invention will be described by way of example with reference to the appended drawings in which:
FIG. I is a diagrammatic illustration of a pneumatic pulsator according to the invention, and a container connected thereto;
FIG. 2 is a top view thereof;
FIG. 3 is a sectional view of a slide valve of a pneumatic pulsator according to the invention; and
FIG. 4 is a section taken on line AA in FIG. 3 with a conventionally shown slide valve channel inlet hole.
As shown in FIGS. 1 and 2, the pneumatic pulsator has a frame I for the joint installation of a motor 2 and a reduction unit 3 whose output shaft 4 is connected with the slide valve 5 housed in the body 6. The body 6 is connected by a pipe connection 7 to a receiver 8 which communicates with the compressed air line 9 and, through a pipe 10, with the pulsation chamber 11 of the liquid container 11a The slide valve 5 (FIG. 3) connected to the output shaft 4 of the reduction unit 3 is a conical member with at least one through channel 12 arranged at an acute angle to the axis of the slide valve 5 so that its outlet end is in constant communication with the pipe 10.
The body 6 has two chambers 13 and 14. the first being in communication with the inlet port 15 and compressed air line 9, the second being in communication with the atmosphere through the hole 16 and with the outlet port 17 in the body 6.
Being rotated by the motor 2 via the reduction unit 3, the slide valve 5 provides communication between the container alternately with the compressed air line 9 through the chamber 13 and with the atmosphere through the chamber 14 which results in vibration of the liquid in container Ila.
lt should be emphasized, that in spite of the fact that the pulsation chamber 11 is periodically subjected to overpressure, the liquid in the container 11 is usually at atmospheric pressure; this improves considerably the dependability of such apparatus and simplifies their design. However, in a general case, the pressure in the apparatus depends on the operating conditions and may be other than atmospheric.
lNstalled between the body 6 at the side of its ports 15 and 17 and the slide valve.5 is a stationary liner [8 made from a wear-resistant material such as graphite or Teflon (polymer of tetrafluoroethylene) and provided with inlet and outlet holes 19 and 20 (FIGS. 2 and 4) which usually are similar in cross section with the ports 15 and 17 in the body 6.
The number of ports in the body 6 and of holes in the liner 18 may vary with the required relation between the durations of the air supply and discharge cycles, the frequency of vibrations and other pertinent factors.
There should be a certain clearance between the liner 18 installed in the body 6 and the slide valve 5. For example, this clearance can be obtained by preliminary lapping of the slide valve 5 to the liner 18. Then, rotation of the slide valve will wear the liner 18 to a certain extent, after which there will appear a clearance between the liner and the slide valve and further friction will be discontinued.
This factor precludes further wear of the slide valve.
Investigations conducted with an experimental model of the pneumatic pulsator proposed herein have proved the reliability of the slide valve which has worked successfully without servicing for a long period of time.
The invention is not confined to the example disclosed above and may be modified without departing from the spirit and the scope of the invention.
We claim:
1. A pneumatic pulsator for imparting vibratory motion to a liquid in a container, by means of compressed air, said pulsator comprising: a compressed air supply source; a receiver communicating with said compressed air supply source; a pulsation chamber having a lower portion connected to the container with the liquid; valve means communicating with the upper portion of said pulsation chamber and with said receiver for providing alternating communication of said pulsation chamber with said receiver and with atmosphere; and drive means for said valve means.
2. A valve in a pulsator for imparting vibratory motion to liquid in a container by means of compressed air, said apparatus comprising: a body with inlet and outlet openings; partition means in said body dividing the bodies into inlet and outlet chambers having a common flat wall and communicating respectively with said inlet and outlet openings; said flat wall having inlet and outlet ports respectively opening into said inlet and outlet chambers; a rotor in said body and having a flat surface perpendicular to the axis of its rotation and parallel to said flat wall, said flat surface facing the flat wall; said rotor having a rectilinear channel inclined at an acute angle with respect to the axis of rotation of said rotor, one end of said channel facing said flat surface of said rotor while the other end of said channel is on the axis of rotation of said rotor, said rotor and said channel being arranged with respect to the inlet and outlet ports such that-said channel communicates alternatively with said ports as the rotor rotates; a flange onsaid body having a hole, said flange being adapted for connection with a pipe leading to a pulsation chamber, said hole in said flange being in registry with said other end of said channel and a liner secured to said flat wall of said body and having apertures which coincide with said inlet and outlet ports while between said liner and said flat surface of the rotor there is a constant gap.
3. A slide valve as claimed in claim 2 wherein said apertures
US740280A 1967-06-30 1968-06-26 Pneumatic pulsation for imparting vibratory motion to a liquid in a container Expired - Lifetime US3544074A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU1167696 1967-06-30

Publications (1)

Publication Number Publication Date
US3544074A true US3544074A (en) 1970-12-01

Family

ID=20440821

Family Applications (1)

Application Number Title Priority Date Filing Date
US740280A Expired - Lifetime US3544074A (en) 1967-06-30 1968-06-26 Pneumatic pulsation for imparting vibratory motion to a liquid in a container

Country Status (4)

Country Link
US (1) US3544074A (en)
DE (1) DE1758551B1 (en)
FR (1) FR1578185A (en)
GB (1) GB1237271A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680842A (en) * 1969-11-24 1972-08-01 Vibratechniques Sa Variable amplitude vibrator, for example for the manufacture of moulded concrete products
US4271007A (en) * 1979-11-20 1981-06-02 Gulf Canada Limited Method and apparatus for the prevention of solids deposits in a tubular reactor by pulsed flow
US4533255A (en) * 1982-07-01 1985-08-06 Eppendorf Geratebau Netheler & Hinz Gmbh Process for mixing liquid samples to be analyzed, as well as apparatus for performing this process
US5246025A (en) * 1991-03-28 1993-09-21 Cawlfield B Gene Controlled fluid agitation method and apparatus
US5306641A (en) * 1990-07-27 1994-04-26 Saccocio Edward J Apparatus and method for determining gel rate of polymerizable compositions
US5642937A (en) * 1996-04-23 1997-07-01 Kuan; Ching Fu Pressure-differential liquid stirrer
US5810474A (en) * 1991-07-08 1998-09-22 Hidalgo; Oscar Mario Guagnelli Apparatus for treating materials by creating a cavitation zone downstream of a rotating baffle assembly
US5868495A (en) * 1991-07-08 1999-02-09 Hidalgo; Oscar Mario Guagnelli Method for treating fluent materials
US20020163854A1 (en) * 2001-05-07 2002-11-07 Parks Richard E. Method and apparatus for gas induced mixing and blending of fluids and other materials
US6565533B1 (en) 2000-01-21 2003-05-20 Novus International, Inc. Inoculation apparatus and method
US20040247401A1 (en) * 2003-04-21 2004-12-09 Witheridge Anthony John Maintaining fluidized beds of cohesive particles using vibrating fluids
CN110553053A (en) * 2018-05-31 2019-12-10 北京方和科技有限责任公司 Pulse gas valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1111860B (en) * 1954-03-02 1961-07-27 Centre Nat Rech Scient Device for emitting sound or ultrasound into a liquid

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680842A (en) * 1969-11-24 1972-08-01 Vibratechniques Sa Variable amplitude vibrator, for example for the manufacture of moulded concrete products
US4271007A (en) * 1979-11-20 1981-06-02 Gulf Canada Limited Method and apparatus for the prevention of solids deposits in a tubular reactor by pulsed flow
US4533255A (en) * 1982-07-01 1985-08-06 Eppendorf Geratebau Netheler & Hinz Gmbh Process for mixing liquid samples to be analyzed, as well as apparatus for performing this process
US5306641A (en) * 1990-07-27 1994-04-26 Saccocio Edward J Apparatus and method for determining gel rate of polymerizable compositions
US5246025A (en) * 1991-03-28 1993-09-21 Cawlfield B Gene Controlled fluid agitation method and apparatus
US5810474A (en) * 1991-07-08 1998-09-22 Hidalgo; Oscar Mario Guagnelli Apparatus for treating materials by creating a cavitation zone downstream of a rotating baffle assembly
US5868495A (en) * 1991-07-08 1999-02-09 Hidalgo; Oscar Mario Guagnelli Method for treating fluent materials
US5642937A (en) * 1996-04-23 1997-07-01 Kuan; Ching Fu Pressure-differential liquid stirrer
US6565533B1 (en) 2000-01-21 2003-05-20 Novus International, Inc. Inoculation apparatus and method
US20030229312A1 (en) * 2000-01-21 2003-12-11 Novus International, Inc. Inoculation apparatus and method
US20020163854A1 (en) * 2001-05-07 2002-11-07 Parks Richard E. Method and apparatus for gas induced mixing and blending of fluids and other materials
US6629773B2 (en) * 2001-05-07 2003-10-07 Richard E. Parks Method and apparatus for gas induced mixing and blending of fluids and other materials
US20040247401A1 (en) * 2003-04-21 2004-12-09 Witheridge Anthony John Maintaining fluidized beds of cohesive particles using vibrating fluids
US6986625B2 (en) * 2003-04-21 2006-01-17 Anthony John Witheridge Maintaining fluidized beds of cohesive particles using vibrating fluids
CN110553053A (en) * 2018-05-31 2019-12-10 北京方和科技有限责任公司 Pulse gas valve

Also Published As

Publication number Publication date
DE1758551B1 (en) 1970-12-17
FR1578185A (en) 1969-08-14
GB1237271A (en) 1971-06-30

Similar Documents

Publication Publication Date Title
US3544074A (en) Pneumatic pulsation for imparting vibratory motion to a liquid in a container
US3161442A (en) Transmission of granular material
EP0775861A2 (en) Apparatus for generating pulsating air
JPH0271975A (en) Abrasive material swivel assembly and method
DK153638B (en) CEMENT MIXING BLADE APPLIANCE.
GB1320575A (en) Mixing machine
US3608866A (en) Pneumatic pulsator for imparting vibratory motion to liquid in a container
EP0483453A1 (en) Mill for triturating and breaking up solids predispersed in liquids
US4747942A (en) Pulse generator for an air pulsed jigging machine
US4478514A (en) Vibrating concrete mixer
US4407436A (en) Metering and/or feeding device for materials
US4207007A (en) Liquid-stirring device and installation for treating loose materials
KR940702589A (en) A swash plate pump
US2682811A (en) Machine for screening paper stock
CA1172904A (en) Fluid driven reciprocating pump
GB1429626A (en) Bulk material processing apparatus
US3672639A (en) Rotating pneumatic vibrator
US4746250A (en) Device for introducing a dosed quantity of powder into a carrier gas stream
US5372423A (en) Device for mixing pulverulent material into a liquid
US2508987A (en) Slurry feeding apparatus
US3171693A (en) Pneumatic means for feeding cementitious materials
US3401848A (en) Apparatus for discharging fluid material from a container
SU1711969A1 (en) Tumbling barrel
RU2069618C1 (en) Part surface working method and apparatus
KR200259705Y1 (en) hydrauric and air screw motor