US3532476A - Method of producing a metallic multilaminated tube - Google Patents
Method of producing a metallic multilaminated tube Download PDFInfo
- Publication number
- US3532476A US3532476A US862263A US3532476DA US3532476A US 3532476 A US3532476 A US 3532476A US 862263 A US862263 A US 862263A US 3532476D A US3532476D A US 3532476DA US 3532476 A US3532476 A US 3532476A
- Authority
- US
- United States
- Prior art keywords
- tube
- layer
- metallic
- multilaminated
- niobium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 26
- 229910052758 niobium Inorganic materials 0.000 description 14
- 239000010955 niobium Substances 0.000 description 14
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000009413 insulation Methods 0.000 description 10
- 239000011810 insulating material Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000009736 wetting Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- QVZNQFNKKMMPFH-UHFFFAOYSA-N chromium niobium Chemical compound [Cr].[Nb] QVZNQFNKKMMPFH-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K13/00—Welding by high-frequency current heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J45/00—Discharge tubes functioning as thermionic generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49865—Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49885—Assembling or joining with coating before or during assembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
- Y10T29/49927—Hollow body is axially joined cup or tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
- Y10T29/49934—Inward deformation of aperture or hollow body wall by axially applying force
Definitions
- Our invention relates to method of producing a metallic multilaminated or compound tube and more particularly to a method according to our Pat. No. 3,461,523 issued Aug. 19, 1969.
- we disclose a method of producing a metallic multilaminated tube having at least one electrically insulating lamination wherein we spray a layer of insulating material on an elongated metallic member and move the insulation-coated metallic member and a hollow metallic tube, having an inner diameter greater than the outer diameter of the insulation-coated member, axially relative to one another so as to locate the metallic tube around the insulation-coated member.
- the insulating layer consists, for example, of A1 0 ZrO or BeO and is applied to the metallic member by a conventional plasma spraying technique.
- This method of our aforementioned patent is especially suited for producing anode tubes of cylindrical thermionic converters which are formed, for example, of a respective inner and outer niobium tube as well as of a layer of insulation, suitably ground or cut in accordance with its purpose, disposed between the two niobium tubes.
- Such multilaminated or compound tubes must possess as high a thermal conductivity as possible in addition to having adequate insulating resistance and, as a further requirement, these characteristics should remain constant over very long periods of time i.e. even for years.
- FIG. 1 is a sectional view of a multilaminated tube produced in accordance with the method of our Pat. No. 3,461,523 and a component of the apparatus employed in carrying out that method;
- FIG. 2 is a view similar to FIG. 1 showing the multilaminated tube produced by the improved method of th instant application.
- FIG. 3 is a fragmentary enlarged sectional view of the encircled region shown in FIG. 2.
- FIG. 1 a multilaminated threelayer tube produced by the method of our aforementioned patent.
- the tube of FIG. 1 is made up of an inner hollow tube 1 of niobium, for example, such as the anode of a thermionic tube, which is coated with a layer 3 of aluminum oxide by a conventional plasma spray method, for example. After the desired thickness of the insulating layer has been achieved, it is externally worked by polishing so that a close union is afforded to a tube 2, also for example of niobium, that is thereafter fitted thereon.
- niobium for example, such as the anode of a thermionic tube
- the tube 2 initially has a slightly larger diameter than the previously coated inner anode tube but is heated at progressive locations alon the length thereof by a highfrequency induction coil 4 to a temperature at which the tube 2 attains a substantially plastic state, andtensile stress is applied in the direction of the arrow P simultaneously for deforming the respective plastic portion of the tube 2 and tightly fitting the tube onto the previously formed two-layer tube 1, 3.
- a highfrequency induction coil 4 to a temperature at which the tube 2 attains a substantially plastic state
- tensile stress is applied in the direction of the arrow P simultaneously for deforming the respective plastic portion of the tube 2 and tightly fitting the tube onto the previously formed two-layer tube 1, 3.
- This assembly which is especially suitable for thermionic converters employed Within nuclear reactors, must be operable uninterruptedly for at least two years during which it is cooled by liquid sodium to a temperature of about 700 C.
- the inner surface of the multilaminated tube assembly forms one wall of the converter gap wherein cesium having a vapor pressure of about 4 torr is contained.
- the temperature differential between the inner and outer wall thereof should not exceed 1 C. for a heat flow of 1 watt per square centimeter.
- the temperature differential across the inner and outer walls was found to be from 3 to 4.5 C., however. Accurate tests disclosed that this rather poor thermal conductivity was due to insufficient thermal contact between the metal and the A1 0 layer resulting from the following causes.
- a layer 3 of A1 0 was applied to the hollow metal tube 1 it was necessary to completely melt the A1 0 particles, requiring for example the expenditure of 12 kw. heat energy. This was possible, however, only if nitrogen were employed as working gas.
- This gas formed a nitride layer on the niobium tube 1 which became decomposed when cooled, causing a decrease in thermal contact between 3 the niobium tube 1 and the A1 layer 3 due to the formation of a fine, i.e. narrow, gap or space between the adjacent surfaces thereof.
- This phenomenon was found to be preventable according to our invention by applying a layer 52, according to one example of our invention, of an alloy Nlgo'crgo, having a melting point of 1440 C., to the niobium tube 1 before spraying the insulating layer 3 thereon.
- a thin coating of copper is first applied to the niobium tube 1 by a spray technique or galvanically.
- the copper coating 51 melted momentarily and wetted the surface of the niobium tube 1 as well as the opposing surface of the NiCr layer 52.
- the Ni-Cr layer 52 was not attacked by the nitrogen working gas and was partly melted by the application of the ceramic A1 0 layer so as to provide thereby a relatively good contact with the A1 0 particles.
- the thermal connection or bond between the insulating layer 3 and the outer niobium tube 2 is produced.
- the nickel-chrome alloy is again initially sprayed onto the insulating layer 3 to form a layer 61 thereon, and a thin copper layer 62 is again applied to the nickel-chrome layer 61.
- the outer niobium tube 2 is sweated onto the thus-formed mutilaminated tubular assembly 1, 51, 52, 3, 61, 62 in the manner disclosed in our Pat. No. 3,461,523.
- the outer copper layer 62 accordingly melts and, upon cooling, in effect solders the nickel-chrome layer 61 to the outer niobium tube 2.
- the spacing between the tubes 1 and 2 can be extremely small, such as for example of the order of magnitude of from 0.2 to 0.3 mm.
- the thickness of the A1 0 insulating layer is then about 0.15 to 0.2 mm.
- Collector tubes produced by the method of the instant application exhibit a temperature differential of from 0.7 to 1 C. with respect to unity of the heat flow density and consequently meet the aforementioned requirement.
- a multilaminated tube having at least one electrically insulating lamination by spraying a layer of insulating material on an elongated metallic member, moving the insulation-coated metallic member and a hollow metallic tube, having an inner diameter greater than the outer diameter of the insulationcoated member, axially relative to one another so as to locate the metallic tube around the insulation-coated member, heating the metallic tube in zones progressively along the length thereof to a temperature at which the material of the tube is in plastic state, and simultaneously applying tensile stress to the metallic tube in the longitudinal direction thereof, so as to deform the plastic material in the heated Zones whereby the metallic tube is shrink-fitted onto the insulation-coated metallic member, the improvement which comprises applying both to the elongated metallic member, before spraying the latter with the layer of insulating material, and to the layer of insulating material thereafter, at least one layer, respec tively, of metal having a lower melting point than that of the insulating layer and relatively good wetting characteristics with respect to the metal
- Method according to claim 2 which comprises initially applying to the elongated metallic member a coating of metal having good wetting characteristics relative to the material of the elongated metallic member.
- Method according to claim 4 which comprises ap plying to the metal layer initially applied to the insulating layer a coating of metal having good wetting characteristics relative to the material of the metallic tube.
- the working gas is nitrogen
- the elongated metallic member and the metallic tube are formed of niobium
- the metal coatings having good wetting characteristics are formed of copper
- the metal layers resistant to attack by the nitrogen are formed of a niobium-chromium alloy
- the insulating material is a ceramic selected from the group consisting of A1 0 ZrO and BeO.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19681800307 DE1800307B1 (de) | 1968-10-01 | 1968-10-01 | Verfahren zur Herstellung eines metallischen Mehrschichtenverbundrohres |
Publications (1)
Publication Number | Publication Date |
---|---|
US3532476A true US3532476A (en) | 1970-10-06 |
Family
ID=5709203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US862263A Expired - Lifetime US3532476A (en) | 1968-10-01 | 1969-09-30 | Method of producing a metallic multilaminated tube |
Country Status (4)
Country | Link |
---|---|
US (1) | US3532476A (enrdf_load_stackoverflow) |
DE (1) | DE1800307B1 (enrdf_load_stackoverflow) |
FR (1) | FR2019593A6 (enrdf_load_stackoverflow) |
GB (1) | GB1239005A (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3863328A (en) * | 1972-10-10 | 1975-02-04 | Copperweld Steel Co | Method of making a Composite steel tubing |
US4238658A (en) * | 1976-03-08 | 1980-12-09 | Ioffe Benyamin A | Method of assembly of nonmagnetic current-conducting components |
US4377897A (en) * | 1981-08-04 | 1983-03-29 | Ocular Associates | Ophthalmic needle and method for manufacturing the same |
US4449281A (en) * | 1982-03-16 | 1984-05-22 | Kawasaki Jukogyo Kabushiki Kaisha | Method of producing multiple-wall, composite tubular structures |
US4745245A (en) * | 1986-10-31 | 1988-05-17 | Fuji Electric Co., Ltd. | Method and apparatus for the manufacture of a clad tube through use of induction heating |
US20030094209A1 (en) * | 2000-06-14 | 2003-05-22 | Suncall Corporation | Two-layer clad pipe and method for making the same |
US20110017305A1 (en) * | 2009-07-24 | 2011-01-27 | Mogas Industries, Inc. | Tubular Member with Thermal Sleeve Liner |
US20140102875A1 (en) * | 2012-10-16 | 2014-04-17 | Silvia De Dea | Target material supply apparatus for an extreme ultraviolet light source |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2218366A (en) * | 1988-05-09 | 1989-11-15 | Teledyne Mec | Method for assembling travelling wave tube |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2609595A (en) * | 1948-05-18 | 1952-09-09 | Kellogg M W Co | Method of forming laminated pressure vessels |
US2781308A (en) * | 1945-04-12 | 1957-02-12 | Edward C Creutz | Neutronic reactor control |
US3009484A (en) * | 1958-09-08 | 1961-11-21 | Arvin Ind Inc | Sound attenuating laminated pipe |
US3010355A (en) * | 1957-06-10 | 1961-11-28 | Phillips Petroleum Co | Method for making a rocket motor |
US3279028A (en) * | 1964-05-01 | 1966-10-18 | Rca Corp | Method of manufacturing thermionic energy converter tube |
US3318340A (en) * | 1964-06-19 | 1967-05-09 | Nat Res Corp | Metal product |
US3368084A (en) * | 1964-07-31 | 1968-02-06 | Rca Corp | Cascaded thermionic energy converter tube |
US3461523A (en) * | 1965-11-06 | 1969-08-19 | Siemens Ag | Method of producing a multilaminated tube |
-
1968
- 1968-10-01 DE DE19681800307 patent/DE1800307B1/de active Pending
-
1969
- 1969-09-17 GB GB1239005D patent/GB1239005A/en not_active Expired
- 1969-09-30 FR FR6933360A patent/FR2019593A6/fr not_active Expired
- 1969-09-30 US US862263A patent/US3532476A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2781308A (en) * | 1945-04-12 | 1957-02-12 | Edward C Creutz | Neutronic reactor control |
US2609595A (en) * | 1948-05-18 | 1952-09-09 | Kellogg M W Co | Method of forming laminated pressure vessels |
US3010355A (en) * | 1957-06-10 | 1961-11-28 | Phillips Petroleum Co | Method for making a rocket motor |
US3009484A (en) * | 1958-09-08 | 1961-11-21 | Arvin Ind Inc | Sound attenuating laminated pipe |
US3279028A (en) * | 1964-05-01 | 1966-10-18 | Rca Corp | Method of manufacturing thermionic energy converter tube |
US3318340A (en) * | 1964-06-19 | 1967-05-09 | Nat Res Corp | Metal product |
US3368084A (en) * | 1964-07-31 | 1968-02-06 | Rca Corp | Cascaded thermionic energy converter tube |
US3461523A (en) * | 1965-11-06 | 1969-08-19 | Siemens Ag | Method of producing a multilaminated tube |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3863328A (en) * | 1972-10-10 | 1975-02-04 | Copperweld Steel Co | Method of making a Composite steel tubing |
US4238658A (en) * | 1976-03-08 | 1980-12-09 | Ioffe Benyamin A | Method of assembly of nonmagnetic current-conducting components |
US4377897A (en) * | 1981-08-04 | 1983-03-29 | Ocular Associates | Ophthalmic needle and method for manufacturing the same |
US4449281A (en) * | 1982-03-16 | 1984-05-22 | Kawasaki Jukogyo Kabushiki Kaisha | Method of producing multiple-wall, composite tubular structures |
US4745245A (en) * | 1986-10-31 | 1988-05-17 | Fuji Electric Co., Ltd. | Method and apparatus for the manufacture of a clad tube through use of induction heating |
US20030094209A1 (en) * | 2000-06-14 | 2003-05-22 | Suncall Corporation | Two-layer clad pipe and method for making the same |
US20110017305A1 (en) * | 2009-07-24 | 2011-01-27 | Mogas Industries, Inc. | Tubular Member with Thermal Sleeve Liner |
US8783279B2 (en) | 2009-07-24 | 2014-07-22 | Mogas Industries, Inc. | Tubular member with thermal sleeve liner |
US20140102875A1 (en) * | 2012-10-16 | 2014-04-17 | Silvia De Dea | Target material supply apparatus for an extreme ultraviolet light source |
US9392678B2 (en) * | 2012-10-16 | 2016-07-12 | Asml Netherlands B.V. | Target material supply apparatus for an extreme ultraviolet light source |
US9632418B2 (en) | 2012-10-16 | 2017-04-25 | Asml Netherlands B.V. | Target material supply apparatus for an extreme ultraviolet light source |
Also Published As
Publication number | Publication date |
---|---|
DE1800307B1 (de) | 1970-06-04 |
GB1239005A (enrdf_load_stackoverflow) | 1971-07-14 |
FR2019593A6 (enrdf_load_stackoverflow) | 1970-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3532476A (en) | Method of producing a metallic multilaminated tube | |
US4180723A (en) | Electrical contacts for electrically conductive carbon glasses | |
US3414863A (en) | Electrically conducting panel | |
US4746054A (en) | Method of joining concentric cylinders | |
US4753849A (en) | Porous coating for enhanced tubes | |
JPS58132383A (ja) | マグネチック内破による衝撃溶接方法 | |
US3461523A (en) | Method of producing a multilaminated tube | |
US3365787A (en) | Method of making metal honeycomb sandwich structure | |
US4247830A (en) | Plasma sprayed wicks for pulsed metal vapor lasers | |
US3473217A (en) | Manufacture of superconductors | |
US2844868A (en) | Method of joining refractory metals | |
US4213557A (en) | Method for producing a mass filter analyzer system and analyzer system produced according to the method | |
KR850000706B1 (ko) | 금속소자에 열흑면을 제공하는 방법 | |
US2828433A (en) | Electron gun construction | |
KR880008403A (ko) | X-레이 튜브 타켓 | |
US3581144A (en) | Metal-clad insulated electrical heater | |
US7123825B2 (en) | Water heater and method of providing the same | |
US2708787A (en) | Fabrication of metal to ceramic seals | |
JPS5827603B2 (ja) | 安定化超伝導体の製造法 | |
US3307974A (en) | Method of forming thermionic cathodes | |
US20180211817A1 (en) | Electrode assembly for a dielectric barrier discharge plasma source and method of manufacturing such an electrode assembly | |
US4890669A (en) | Porous coating for enhanced tubes | |
US2431965A (en) | Manfuacture of electrical resistances | |
US11920782B2 (en) | Streamlined vaporizer cores | |
GB1489168A (en) | Aluminium brazing method |