US3520263A - Constant depth buoyancy system - Google Patents

Constant depth buoyancy system Download PDF

Info

Publication number
US3520263A
US3520263A US760042A US3520263DA US3520263A US 3520263 A US3520263 A US 3520263A US 760042 A US760042 A US 760042A US 3520263D A US3520263D A US 3520263DA US 3520263 A US3520263 A US 3520263A
Authority
US
United States
Prior art keywords
depth
gas
bag
pressure
buoyancy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US760042A
Inventor
Robert D Berry
Jay Witcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3520263A publication Critical patent/US3520263A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • F42B19/01Steering control
    • F42B19/04Depth control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B22/00Marine mines, e.g. launched by surface vessels or submarines
    • F42B22/08Drifting mines

Definitions

  • a constant depth control system for an ocean vehicle which maintains a constant depth by adjusting the displacement of a rubber gas bag to achieve neutral buoyancy when a feed back pressure equals a reference pressure.
  • the displacement of the gas bag is related to the differential pressure between the gas inside the bag and the water outside the bag.
  • Rate feed back is electronically controlled so that when a design depth (sea pressure) is approached, bag displacement is automatically adjusted to reduce the velocity of the system.
  • the system may be adjusted to be neutrally buoyant and at zero velocity at the precise time that a preset reference sea pressure is reached.
  • Numerous systems have been suggested for effecting depth control by adjusting the buoyancy of a vessel including dropping ballast or releasing buoyant material; pumping water in and out of buoyancy tanks; and hovering controls by means of mechanical and fluid thrust devices.
  • the present invention relates to an improved system which maintains a constant depth of a vehicle by adjusting the displacement of a rubber gas bag to achieve neutral buoyancy when a predetermined reference pressure is equaled by feed-back pressure.
  • the displacement of the gas bag is related to the differential pressure between the gas inside the bag and the water outside the bag. 7
  • the system according to the present invention is very stable and can be set to remain at a predetermined depth.
  • the system does not require forward vehicle motion in order to maintain depth.
  • Fuel may be supplied by a gas blow down system, pump or self pressuring fuel system.
  • FIG. l is a diagrammatic view of one embodiment of the system
  • FIG. 2 is a schematic of the system of FIG. 1, indicating the mode of operation
  • FIG. 3 is a root locus plot of the system
  • FIG. 4 is a mathematical block diagram of the system.
  • the system shown in FIG. 1 comprises a flexible gas bag 12 consisting of rubber or the like.
  • the gas bag shown is of cylindrical configuration with the ends of the cylinder confined by attachment of two circular end plates "ice 25, 26.
  • the end plates are biased toward the center of the bag 12 by means of a tension spring 14.
  • Spring 14 is fastened to the end plates 25, 26 by means of tubular guides 30, 31, respectively.
  • the amount of gas 13 in gas bag 12 may be decreased by the opening of vent valve 15 or increased by supplying fuel from supply tank 17 to a monopropellant gas generator 11 by opening valve 16.
  • Valves 15 and 16 may be electrically controlled from an electronic control center 19.
  • Control center 19 is adapted to receive signals from a differential pressure transducer 23 and a sea pressure transducer 24 and to relate signals to a preset parameter representative of the pressure calculated for the desired depth to be maintained.
  • a pay load 20, as well as other components such as the power supply 18 and the control section 19, may be hung from the guides 30, 31 by means of hangers such as 21, 22. It may be assembled with a minimum of effort and cost from hardware similar or identical to the hardware being tested for the Underwater Gas Generator programs now being conducted.
  • Major components would include:
  • the system maintains a constant depth by adjusting the displacement of the rubber gas bag to achieve neutral buoyancy when the feedback sea pressure equals the reference pressure.
  • the displacement of the gas bag is related to the differential pressure between the gas inside the bag and the water outside the bag.
  • the differential pressure is a function of the spring extension. As the bag fills with gas, the spring is extended creating more spring force which in turn requires a greater differential pressure to balance the greater spring force. If the bag vent valve is opened the gas escapes causing a reduction in spring extension and differential pressure. If the system should sink below the design depth (sea pressure) the control system would call for a greater differential pressure between the gas and water which would cause the fill valve to open sending hydrazine fuel into the monopropellant gas generator.
  • the fuel would decompose into gas and enter the gas bag causing an extension of the spring and subsequent rise in differential pressure. This should cause positive buoyancy and a gradual rising of the system.
  • the control electronics includes rate feedback so that as the design depth (sea pressure) is approached the bag displacement is adjusted to reduce the velocity of the system. If the control system is properly designed the vehicle should be neutrally buoyant and at zero velocity at the precise time that reference sea pressure is reached.
  • FIGS. 3 and 4 wherein the following reference symbols are utilized for brevity of explanation.
  • G (s) Depth controller transfer function
  • K Buoyancy controller transfer function
  • G (s) Gas bag and associated hardware transfer function
  • K Gas bag volume feedback transfer function
  • K Depth feedback transducer transfer function 4
  • the drag force is assumed proportional to the velocity for small 3c X l
  • the heart of the system is the gas bag-MGG buoyancy v( 2 control system which is the inner control loop of the block (S) (s) diagram including K (s), G (s), and K Earlier analog studies of a nearly identical system for the Navys Moray 1 V vehicle indicated that there was no particular problem where associated with stabilizing the buoyancy system at a con- K zl D stant depth.
  • the buoyancy system time constant should be much smaller in all instances than the vehicles, i.e.,
  • FIG. 3 is shown the root locus plot of the system. Since the endurance of the system is a function of fuel used, the primary consideration in the design of a long duration control system would be minimization of fuel consumption.
  • the response time of the system would not be a design consideration since no depth command changes would be desired.
  • a very stable system with a high damping ratio would be ideal.
  • the highest damping ratio that can be achieved for the system with the root locus of FIG. 3 is 0.9.
  • a lower gain would result in a pole closer to the origin on the circle touching the origin. Therefore the angle formed by the line from that new pole to the origin and the negative real axis would be larger thus the damping ratio would be less.
  • a higher gain would result in a pole further away from the real axis on the other branch of the locus. The angle between the line from this new pole to the origin and the negative real axis would be larger thus the damping ratio would be less.
  • the location of the poles for the optimum gain are shown on the root locus plot.
  • a constant depth buoyancy system comprising:
  • flexible container means adapted to be compressed to a minimum internal volume and extended to a maximum internal volume
  • said flexible member being substantially cylindrical and comprising a peripheral wall of rubber-like material and two end Walls; and biasing means between said end walls biasing said end walls toward a central position;
  • said means for introducing gas into said container comprising:
  • sensing means producing a first output representative of pressure external of said container
  • second sensing means producing a second output representative of the differential between pressure within said container and pressure external of said container
  • valve means responsive to said first, second and third outputs for controlling said valve means for introducing fuel and for exhausting gas so that the volume of gas present in said container varies as necessary to acquire zero velocity and neutral buoyancy of the system when a predetermined sea pressure is reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Fluid Pressure (AREA)

Description

Jilly 14, 170 D, BERRY ETAL 3,520,263
CONSTANT DEPTH BUOYANCY SYSTEM Filed Sept. 16, 1968 2 Sh eetsSheet 1 MGG 52%,, Pow ER CONTROL 1 SUPPLY ELECTRONICS I l I I7 FIG. I. T20
42 4s 50 PRESET ELECTRICAL DEPTH DEPTH SiGNAL M66 BUOYANCY Posmou VEHICLE w- 5 CONTROLLER z svsrsm 2 L 40 44 48 52 DEPTH SENSOR 58 HQ 2 INVENTORS.
GERALD F. BAKER AGENT.
y 1970 R. D. BERRY ETAL 3,520,263
CONSTANT DEPTH BUOYANCY SYSTEM Filed Sept. 16, 1968 2 Sheets-Sheet 2 DAHPING RATIO .9
REF. l
DEPTH United States Patent US. Cl. 11416 1 Claim ABSTRACT OF THE DISCLOSURE A constant depth control system for an ocean vehicle is provided which maintains a constant depth by adjusting the displacement of a rubber gas bag to achieve neutral buoyancy when a feed back pressure equals a reference pressure. The displacement of the gas bag is related to the differential pressure between the gas inside the bag and the water outside the bag. Rate feed back is electronically controlled so that when a design depth (sea pressure) is approached, bag displacement is automatically adjusted to reduce the velocity of the system. The system may be adjusted to be neutrally buoyant and at zero velocity at the precise time that a preset reference sea pressure is reached.
GOVERNMENT INTEREST The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
BACKGROUND OF THE INVENTION For purposes of oceanographic study and exploration it is sometimes desirable to send a vessel to a predetermined submerged depth and to maintain the vessel at that depth.
Numerous systems have been suggested for effecting depth control by adjusting the buoyancy of a vessel including dropping ballast or releasing buoyant material; pumping water in and out of buoyancy tanks; and hovering controls by means of mechanical and fluid thrust devices.
The present invention relates to an improved system which maintains a constant depth of a vehicle by adjusting the displacement of a rubber gas bag to achieve neutral buoyancy when a predetermined reference pressure is equaled by feed-back pressure. The displacement of the gas bag is related to the differential pressure between the gas inside the bag and the water outside the bag. 7
The system according to the present invention is very stable and can be set to remain at a predetermined depth. The system does not require forward vehicle motion in order to maintain depth. Fuel may be supplied by a gas blow down system, pump or self pressuring fuel system.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING FIG. l is a diagrammatic view of one embodiment of the system;
FIG. 2 is a schematic of the system of FIG. 1, indicating the mode of operation;
FIG. 3 is a root locus plot of the system; and
FIG. 4 is a mathematical block diagram of the system.
DETAILED DESCRIPTION OF THE INVENTION The system shown in FIG. 1 comprises a flexible gas bag 12 consisting of rubber or the like. The gas bag shown is of cylindrical configuration with the ends of the cylinder confined by attachment of two circular end plates " ice 25, 26. The end plates are biased toward the center of the bag 12 by means of a tension spring 14. Spring 14 is fastened to the end plates 25, 26 by means of tubular guides 30, 31, respectively. The amount of gas 13 in gas bag 12 may be decreased by the opening of vent valve 15 or increased by supplying fuel from supply tank 17 to a monopropellant gas generator 11 by opening valve 16. Valves 15 and 16 may be electrically controlled from an electronic control center 19. Control center 19 is adapted to receive signals from a differential pressure transducer 23 and a sea pressure transducer 24 and to relate signals to a preset parameter representative of the pressure calculated for the desired depth to be maintained. A pay load 20, as well as other components such as the power supply 18 and the control section 19, may be hung from the guides 30, 31 by means of hangers such as 21, 22. It may be assembled with a minimum of effort and cost from hardware similar or identical to the hardware being tested for the Underwater Gas Generator programs now being conducted. Major components would include:
' (a) Pressurized hydrazine fuel tank 17 (b) Monopropellant gas generator (MGG) 11 (c) Flexible rubber gas bag 12 with rigid end plates 25,
26 pulled together with a heavy coil spring 14 (d) Two solenoid valves 15, 16 for filling and venting the gas bag 12 (e) Power source (battery) 18 (f) A differential pressure transducer 23 (g) A sea pressure transducer 24 (h) Control electronics 19 (i) Rope of sufficient length to recover system Items (a), (b), (c), and (i) may be found among items procured for the Navy deep sea recovery tests. Items ((1), (e), (f) and (g) are off-the-shelf items. The only item that needs to be custom fabricated is item (h), the control electronics.
The system maintains a constant depth by adjusting the displacement of the rubber gas bag to achieve neutral buoyancy when the feedback sea pressure equals the reference pressure. The displacement of the gas bag is related to the differential pressure between the gas inside the bag and the water outside the bag. The differential pressure is a function of the spring extension. As the bag fills with gas, the spring is extended creating more spring force which in turn requires a greater differential pressure to balance the greater spring force. If the bag vent valve is opened the gas escapes causing a reduction in spring extension and differential pressure. If the system should sink below the design depth (sea pressure) the control system would call for a greater differential pressure between the gas and water which would cause the fill valve to open sending hydrazine fuel into the monopropellant gas generator. The fuel would decompose into gas and enter the gas bag causing an extension of the spring and subsequent rise in differential pressure. This should cause positive buoyancy and a gradual rising of the system. The control electronics includes rate feedback so that as the design depth (sea pressure) is approached the bag displacement is adjusted to reduce the velocity of the system. If the control system is properly designed the vehicle should be neutrally buoyant and at zero velocity at the precise time that reference sea pressure is reached.
Reference is now made to FIGS. 3 and 4 wherein the following reference symbols are utilized for brevity of explanation.
G (s) =Depth controller transfer function K =Buoyancy controller transfer function G (s) =Gas bag and associated hardware transfer function K =Gas bag volume feedback transfer function G (s) :Vehicle dynamics transfer function K =Depth feedback transducer transfer function 4 The drag force is assumed proportional to the velocity for small 3c X l The heart of the system is the gas bag-MGG buoyancy v( 2 control system which is the inner control loop of the block (S) (s) diagram including K (s), G (s), and K Earlier analog studies of a nearly identical system for the Navys Moray 1 V vehicle indicated that there was no particular problem where associated with stabilizing the buoyancy system at a con- K zl D stant depth. For a constant depth, the closed loop transfer 10 function of the inner loop can be approximated by T vzm/ D Assume G (s) is a proportional plus reset plus rate conk troller with the following transfer function. 1 T 1 5 1 K because 1 s 1+ Ts) PV=MRT 1 V=MRT/P K|: T+Kd s (1+T/ R, T, P are nearly constant for a vehicle at constant s(1+ Ts) depth.
where M f M in- 0l1t) K= roportiona1ity constant =integration rate time constant 0 12' Kd=derivative constant f T=derivative filter time constant The block diagram is now 1 K (K +T +T/ 1 X d 8 T Y 10,, -kv X i s(1+Ts) (I-i-T S) s(1+T s) V o o n( T The closed loop transfer function:
where K la ni c l K K k G (s) is determined from the basic equations of motion, F =ma Water surface l depth vehicle W l o -DX W: weight of system in water B=buoyancy force D=drag coefficient F W-BDx=mx =W(S) -B (S) DSX :mS X
The forward transfer function, G(s), is
It would be desirable to choose the controller parameters in such a way that zeros occur between the dominant poles of the system transfer function, s=0, and
The buoyancy system time constant should be much smaller in all instances than the vehicles, i.e.,
For non-oscillatory response the zeros should be real. A good response can be achieved by selecting K =T and =8T The zeros then occur at T should be chosen less than T and should be small enough that both zeros are still negative real numbers.
In FIG. 3 is shown the root locus plot of the system. Since the endurance of the system is a function of fuel used, the primary consideration in the design of a long duration control system would be minimization of fuel consumption.
The response time of the system would not be a design consideration since no depth command changes would be desired. A very stable system with a high damping ratio would be ideal. The highest damping ratio that can be achieved for the system with the root locus of FIG. 3 is 0.9. A lower gain would result in a pole closer to the origin on the circle touching the origin. Therefore the angle formed by the line from that new pole to the origin and the negative real axis would be larger thus the damping ratio would be less. A higher gain would result in a pole further away from the real axis on the other branch of the locus. The angle between the line from this new pole to the origin and the negative real axis would be larger thus the damping ratio would be less. The location of the poles for the optimum gain are shown on the root locus plot.
What is claimed is:
1. A constant depth buoyancy system comprising:
flexible container means adapted to be compressed to a minimum internal volume and extended to a maximum internal volume;
said flexible member being substantially cylindrical and comprising a peripheral wall of rubber-like material and two end Walls; and biasing means between said end walls biasing said end walls toward a central position;
means for introducing a gas into said container under pressure;
means for exhausting gas from said container;
said means for introducing gas into said container comprising:
a monopropellant gas generator;
a fuel supply attached to said container;
first valve means between said fuel supply and said generator for supplying discrete amounts of fuel to said gas generator;
second valve means for exhausting gas from said container;
sensing means producing a first output representative of pressure external of said container;
second sensing means producing a second output representative of the differential between pressure within said container and pressure external of said container;
rate feedback means for producing a third output representative of the velocity of the system; and
means responsive to said first, second and third outputs for controlling said valve means for introducing fuel and for exhausting gas so that the volume of gas present in said container varies as necessary to acquire zero velocity and neutral buoyancy of the system when a predetermined sea pressure is reached.
References Cited UNITED STATES PATENTS 3,179,962 4/1965 Shear et a1. 9-8 3,257,672 6/1966 Meyer et a1. 9--8 3,322,088 5/1967 Harada et a1 11454 3,436,776 4/1969 Davis 11416 X TRYGVE M. BLIX, Primary Examiner
US760042A 1968-09-16 1968-09-16 Constant depth buoyancy system Expired - Lifetime US3520263A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76004268A 1968-09-16 1968-09-16

Publications (1)

Publication Number Publication Date
US3520263A true US3520263A (en) 1970-07-14

Family

ID=25057901

Family Applications (1)

Application Number Title Priority Date Filing Date
US760042A Expired - Lifetime US3520263A (en) 1968-09-16 1968-09-16 Constant depth buoyancy system

Country Status (1)

Country Link
US (1) US3520263A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942456A (en) * 1973-05-16 1976-03-09 Erno Raumfahrttechnik Rescue equipment for submarine vehicles
US4183316A (en) * 1977-12-05 1980-01-15 The United States Of America As Represented By The Secretary Of The Navy Variable volume depth control
US4286539A (en) * 1978-04-05 1981-09-01 Joseph Pignone Dual buoyancy device
US4364325A (en) * 1980-11-24 1982-12-21 The Charles Stark Draper Laboratory, Inc. Passive controlled buoyancy apparatus
US4538230A (en) * 1982-10-29 1985-08-27 Conoco Inc. Method and apparatus for controlling altitude
US5303552A (en) * 1992-07-06 1994-04-19 Webb Douglas C Compressed gas buoyancy generator powered by temperature differences in a fluid body
US5379267A (en) * 1992-02-11 1995-01-03 Sparton Corporation Buoyancy control system
US5460556A (en) * 1993-12-30 1995-10-24 Loral Corporation Variable buoyancy buoy
GB2351718A (en) * 1999-07-09 2001-01-10 Dr James Edward Stangroom Improvements in, or relating to,the control of buoyancy underwater at great depths
US6321676B1 (en) * 1999-01-07 2001-11-27 Seamagine Hydrospace Corporation Underwater craft having sealed and inflatable buoyancy chambers
US6772705B2 (en) 2001-09-28 2004-08-10 Kenneth J. Leonard Variable buoyancy apparatus for controlling the movement of an object in water
US20070186837A1 (en) * 2003-08-22 2007-08-16 Aberdeen University Buoyancy control system
WO2011108917A1 (en) * 2010-03-05 2011-09-09 Albert Johan Houtman Submersible boat, comprising a diving tank having an inflatable buoyancy body
RU2524514C1 (en) * 2013-01-14 2014-07-27 Виктор Иванович Метёлкин Method of controlling buoyancy of underwater vehicle
RU2602640C1 (en) * 2015-04-29 2016-11-20 Евгений Иванович Татаренко Underwater vehicle buoyancy changing system
US10144493B2 (en) * 2012-03-02 2018-12-04 Sea-Bird Electronics, Inc. Fluid-based buoyancy compensation
RU2764323C1 (en) * 2021-07-15 2022-01-17 Олег Станиславович Клюнин Apparatus for equalising the pressure in a sealed body of an autonomous apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179962A (en) * 1963-12-24 1965-04-27 John C Shear Flotation apparatus and mechanical control therefor
US3257672A (en) * 1963-12-24 1966-06-28 John A Meyer Flotation apparatus and electrical control therefor
US3322088A (en) * 1964-11-07 1967-05-30 Asahi Chemical Ind Apparatus for refloating submerged bodies
US3436776A (en) * 1967-02-23 1969-04-08 Texas Instruments Inc Self-ballasting streamer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179962A (en) * 1963-12-24 1965-04-27 John C Shear Flotation apparatus and mechanical control therefor
US3257672A (en) * 1963-12-24 1966-06-28 John A Meyer Flotation apparatus and electrical control therefor
US3322088A (en) * 1964-11-07 1967-05-30 Asahi Chemical Ind Apparatus for refloating submerged bodies
US3436776A (en) * 1967-02-23 1969-04-08 Texas Instruments Inc Self-ballasting streamer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942456A (en) * 1973-05-16 1976-03-09 Erno Raumfahrttechnik Rescue equipment for submarine vehicles
US4183316A (en) * 1977-12-05 1980-01-15 The United States Of America As Represented By The Secretary Of The Navy Variable volume depth control
US4286539A (en) * 1978-04-05 1981-09-01 Joseph Pignone Dual buoyancy device
US4364325A (en) * 1980-11-24 1982-12-21 The Charles Stark Draper Laboratory, Inc. Passive controlled buoyancy apparatus
US4538230A (en) * 1982-10-29 1985-08-27 Conoco Inc. Method and apparatus for controlling altitude
US5379267A (en) * 1992-02-11 1995-01-03 Sparton Corporation Buoyancy control system
US5303552A (en) * 1992-07-06 1994-04-19 Webb Douglas C Compressed gas buoyancy generator powered by temperature differences in a fluid body
US5460556A (en) * 1993-12-30 1995-10-24 Loral Corporation Variable buoyancy buoy
US6321676B1 (en) * 1999-01-07 2001-11-27 Seamagine Hydrospace Corporation Underwater craft having sealed and inflatable buoyancy chambers
GB2351718A (en) * 1999-07-09 2001-01-10 Dr James Edward Stangroom Improvements in, or relating to,the control of buoyancy underwater at great depths
GB2351718B (en) * 1999-07-09 2003-02-12 Dr James Edward Stangroom Improvements in, or related to, the control of buoyancy underwater at great de pths
US6772705B2 (en) 2001-09-28 2004-08-10 Kenneth J. Leonard Variable buoyancy apparatus for controlling the movement of an object in water
US20070186837A1 (en) * 2003-08-22 2007-08-16 Aberdeen University Buoyancy control system
WO2011108917A1 (en) * 2010-03-05 2011-09-09 Albert Johan Houtman Submersible boat, comprising a diving tank having an inflatable buoyancy body
US10144493B2 (en) * 2012-03-02 2018-12-04 Sea-Bird Electronics, Inc. Fluid-based buoyancy compensation
RU2524514C1 (en) * 2013-01-14 2014-07-27 Виктор Иванович Метёлкин Method of controlling buoyancy of underwater vehicle
RU2602640C1 (en) * 2015-04-29 2016-11-20 Евгений Иванович Татаренко Underwater vehicle buoyancy changing system
RU2764323C1 (en) * 2021-07-15 2022-01-17 Олег Станиславович Клюнин Apparatus for equalising the pressure in a sealed body of an autonomous apparatus

Similar Documents

Publication Publication Date Title
US3520263A (en) Constant depth buoyancy system
CN109334929B (en) Automatic underwater buoyancy adjusting device and using method thereof
US3436776A (en) Self-ballasting streamer
US5379267A (en) Buoyancy control system
US4266500A (en) Hover control system for a submersible buoy
CN109353477B (en) underwater glider
US8069808B1 (en) Buoyancy control systems and methods for submersible objects
US6772705B2 (en) Variable buoyancy apparatus for controlling the movement of an object in water
US7921795B2 (en) Buoyancy control systems and methods
US11447218B2 (en) Dynamic buoyancy control
US20070186837A1 (en) Buoyancy control system
US4826465A (en) Model submarine
US3837310A (en) Underwater oil storage
CN113184151B (en) Buoyancy adjusting system and method for medium-shallow depth submersible
CN110803270A (en) AUV buoyancy adjusting device and control method
US10259550B2 (en) Waterborne payload deployment vessel and method
US3673556A (en) Two-level depth controllers for seismic streamer cables
US3228369A (en) Depth control system
US3504648A (en) Deepwater hydraulic power unit
US3541989A (en) Hydropneumatic measurement and control from buoyed bodies
US3257672A (en) Flotation apparatus and electrical control therefor
US3379156A (en) Automatic buoyancy compensation system
US3688720A (en) Bathyal unit
UA20094U (en) Underwater apparatus- transporter
US20240294241A1 (en) Uprighting device for an underwater vehicle