US3518736A - Rolling mill descaling device - Google Patents

Rolling mill descaling device Download PDF

Info

Publication number
US3518736A
US3518736A US748408A US3518736DA US3518736A US 3518736 A US3518736 A US 3518736A US 748408 A US748408 A US 748408A US 3518736D A US3518736D A US 3518736DA US 3518736 A US3518736 A US 3518736A
Authority
US
United States
Prior art keywords
strip
frame
arm
looper
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US748408A
Inventor
Thomas C Domeika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Application granted granted Critical
Publication of US3518736A publication Critical patent/US3518736A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/02Feeding or supporting work; Braking or tensioning arrangements, e.g. threading arrangements
    • B21B39/08Braking or tensioning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/45Scale remover or preventor
    • Y10T29/4533Fluid impingement
    • Y10T29/4544Liquid jet

Definitions

  • the present invention relates to means to prevent irregular cooling and descalding of a metal strip under processing in a hot strip mill by providing variably positioned spraying nozzles under control of the loopers whereby cooling and descalding of both surfaces of the strip remain relatively constant as the strip deviates above and below the rolling line.
  • FIG. 1 is a perspective view of a framelike arrangement for carrying nozzles to provide descalding and cooling water sprays in a hot strip mill.
  • FIGS. 2 is a diagrammatic view of the manner of attaching the framelike structures of FIG. 1 to the hot mill stands, including an illustration of the looper mechanism relationships.
  • FIG. 3 shows a detailed electrical circuit for providing control from the looper mechanism output to the descaling frame apparatus.
  • a descalding unit having a frame 11 in which the horizontal members 12 are provided with a series of nozzles 13 is normally positioned so that a strip of metal being rolled passes within the frame 11 along the line L-M, the frame 11 being attached by arms 17 to a hollow shaft 15 which is rotatable in 3,518,736 Patented July 7, 1970 ICC bearings 21.
  • the hollow shaft 15, the arms 17 and the frame' 11 are constructed of hollow tubing so that a hose 19 connected to one end of the shaft 15 may provide water under pressure to the nozzles 13.
  • the other end of the shaft 15 is plugged to prevent water from escaping and is connected to a gear boX 27 having reduction gearing (not shown) to which a motor shaft 24 is attached, the latter shaft being driven by a motor 23.
  • FIG. 2 there is illustrated the manner in which descalding units 10 are applied to the stands of a hot strip mill.
  • a mill stand 27 having working rolls 31 is provided at its entrance side with a descalding unit 10a, and similarly a stand 28 having working rolls 32 is provided with a descalding unit 10b.
  • Coacting with the rolls of stand 27 is a looper mechanism (not shown, but well understood in the art) including a looper arm 34 pivoted at 34a and provided with a roller 34b which continually contacts the underside of a strip of metal 29 under processing by the strand 27.
  • a looper arm 35 pivoted at 35a and having a contacting roller 35b coacting with stand 28 is provided for contacting the strip 29.
  • the frames 11 of the units 10a and 10b are arranged so that they alway are positioned in a plane at right angles to the strip 29, being pivoted in their respective bearings 21 of the stands 27 and 28, respectively, and being rotated in the proper direction by their driving motors 23.
  • a pair of potentiometers LPP and DPP are arranged to have their arms rotate in directions corresponding to the directions of rotation of looper arm 34 (or looper arm 35) and frame 11 of descalding unit 10a (or descalding unit 10b).
  • the circuit of FIG. 3 is essentially a compensated position regulator circuit having an input derived from a potentiometer LPP (which is mechanically controlled from the looper arm 34 of FIG. 2), regulated by way of reference from another potentiometer DPP (which is mechanically controlled by the shaft 15 of FIG. 1, the shaft 15 -being rotated by the motor 23 of FIG. l), and having an output controlling the eld circuit of a direct current generator GEN, which provides current of reversible polarity to a separately excited shunt motor MOT (FIG. 3), which is the same as motor 23 of FIG. l.
  • the circuit of FIG. 3 may be further broken down into its essential components; i.e., a high gain voltage amplifier PRA, a current amplifier CRA, and a static controlled rectifier bridge SCR which directly provides excitation for the field GF of the generator GEN.
  • the bridge SCR being no part of the present invention, accepts the output of the current amplifier CRA both in magnitude and direction and excites the generator eld GF accordingly, thereby controlling the motor MOT.
  • the amplifier PRA is actually an error amplifier in respect to the voltage differences between the potential drops of the potentiometers LPP and DPP, which act as voltage dividers across the equal, composite potential sources P50V (positive potential with respect to point X) and N50V (negative potential with respect to point X) when the contacts RI1 and RIZ ⁇ are closed, the actual error signal being the algebraic difference between the voltage drops respectively of resistors RPR2 and RPR3 which is fed to the amplifier CRA via a line from point X and a junction point SJ 1.
  • a current flows through resistors RPRZ, RPRI and RCR4 to a junction point SI2 providing the input to the current amplifier CRA.
  • This current is regulated by a voltage compensating circuit, which actually establishes a current reference datum via resistors RPC, IRNC and potentiometers IRHPC, RHNC, together with the diodes CRPC and CRNC between the junction SI1 and the output of amplifier PRA.
  • the current reference fed to the current amplier via resistor RCR4 may provide a lead time in the advance or change of rotation of the shaft 15 (FIG. 1) over the reaction time of the looper arm 34 (FIG. 2).
  • This type of control is useful in providing a safety factor in descaling apparatus by keeping the nozzles 13 on the descaling unit away from the hot strip 29 during changes of the strip position in rising above the rolling line, for example.
  • a regulating circuit also may be provided for the current amplifier CRA in the form of a Zener diode Z, and in order t overcome the inherent lagging characteristics of the motor MOT (or motor 23 as in FIG. 1), a further compensating circuit is provided to the current amplifier CRA via junction SI2, this consisting of a network voltage divider per resistors RCRI and RCR2, a capacitor CORI and a limiting resistor RCR3, the latter being connected to the common line A.
  • a rolling mill having successive stands for processing a length of hot metal, a pivoted arm bearing upon said metal, a descaling device pivotally mounted intermediate said stands including means for delivering coolant to the surfaces of said metal, means for rotating said device under control of a rotation of said arm, and variable electrical means for regulating said rotating means to lead the rotation of said arm.
  • variable electrical means includes a potentiometer.
  • variable electrical means includes a time delay

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)
  • Control Of Position Or Direction (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

.myZ-1970i fcjbikA 3,518,735
RoLLI'nGvuiLL DESCALING DEVICE lFiled July 29. 196e ,-4 sheets-sheet 1 lM V I l INVENTOR.
'BY Tl-OMAQ- c. Daumen-A July 7, 1970 TL QDOMEIKA ROLLING'MILL DESCALING DEVICE Filed July 29. 1968 2 Sheets-Sheet 2 UZK United States Patent O 3,518,736 ROLLING MILL DESCALING DEVICE Thomas C. Domeika, Roanoke, Va., assgnor to General Electric Company, a corporation of New York Filed July 29, 1968, Ser. No. 748,408 Int. Cl. B21c 43/ 04 U.S. Cl. 29-81 4 Claims ABSTRACT OF THE DISCLOSURE Apparatus for assuring uniform descaling of a strip being processed in a hot strip rolling mill wherein water sprays are directed upon the strip uniformly above and below the strip during rolling operations by nozzles carried in frames positioned around the strip between the respective mill stands, the frames being arranged to retain predetermined uniform positions in respect to the strip by position regulators controlled by the looper control mechanism in accordance with strip variations from the rolling line.
BACKGROUND OF THE INVENTION It is common practice in the operation of a so-called hot strip mill, where a red hot bar or slab is passed through a succession of pairs of working rolls, to quench the strip between stands carrying the working rolls. Normally water is sprayed under high pressure upon the top and bottom surfaces of the strip by xed sets of nozzles equally spaced above and below the rolling line not only to reduce strip temperature, but also for removing undesirable scales that form upon the strip surfaces. In the rolling process frequently the strip may deviate vertically from the rolling line either as a result of changes in strip tension, or under influence of the loopers changing position, so that the water sprayed on one surface of the strip is more or less elfective than on the other surface. Uneven cooling may result from this situati-n and scales may not be removed. In some instances the deviation of the strip may cause temperature differences between the top and bottom surfaces of the strip to bring about warping.
SUMMARY OF THE INVENTION The present invention relates to means to prevent irregular cooling and descalding of a metal strip under processing in a hot strip mill by providing variably positioned spraying nozzles under control of the loopers whereby cooling and descalding of both surfaces of the strip remain relatively constant as the strip deviates above and below the rolling line.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a framelike arrangement for carrying nozzles to provide descalding and cooling water sprays in a hot strip mill.
FIGS. 2 is a diagrammatic view of the manner of attaching the framelike structures of FIG. 1 to the hot mill stands, including an illustration of the looper mechanism relationships.
FIG. 3 shows a detailed electrical circuit for providing control from the looper mechanism output to the descaling frame apparatus.
DESCRIPTION OF THE PREFERRED EMBODIMENT With reference to FIG. l a descalding unit having a frame 11 in which the horizontal members 12 are provided with a series of nozzles 13 is normally positioned so that a strip of metal being rolled passes within the frame 11 along the line L-M, the frame 11 being attached by arms 17 to a hollow shaft 15 which is rotatable in 3,518,736 Patented July 7, 1970 ICC bearings 21. The hollow shaft 15, the arms 17 and the frame' 11 are constructed of hollow tubing so that a hose 19 connected to one end of the shaft 15 may provide water under pressure to the nozzles 13. The other end of the shaft 15 is plugged to prevent water from escaping and is connected to a gear boX 27 having reduction gearing (not shown) to which a motor shaft 24 is attached, the latter shaft being driven by a motor 23.
Referring now to FIG. 2 there is illustrated the manner in which descalding units 10 are applied to the stands of a hot strip mill. A mill stand 27 having working rolls 31 is provided at its entrance side with a descalding unit 10a, and similarly a stand 28 having working rolls 32 is provided with a descalding unit 10b. Coacting with the rolls of stand 27 is a looper mechanism (not shown, but well understood in the art) including a looper arm 34 pivoted at 34a and provided with a roller 34b which continually contacts the underside of a strip of metal 29 under processing by the strand 27. Similarly, a looper arm 35 pivoted at 35a and having a contacting roller 35b coacting with stand 28 is provided for contacting the strip 29.
The frames 11 of the units 10a and 10b (see FIG. l) are arranged so that they alway are positioned in a plane at right angles to the strip 29, being pivoted in their respective bearings 21 of the stands 27 and 28, respectively, and being rotated in the proper direction by their driving motors 23. With reference momentarily to FIG. 3 a pair of potentiometers LPP and DPP, respectively, are arranged to have their arms rotate in directions corresponding to the directions of rotation of looper arm 34 (or looper arm 35) and frame 11 of descalding unit 10a (or descalding unit 10b). Considering only stand 27, for eX- ample, when looper arm 34 rotates clockwise, its potentiometer arm LPP will rotate in a manner to cause the motor 23 of descalding unit 10a to cause the frame 11 of that unit to be rotated counterclockwise so that the frame 11 positions itself in a plane at right angles to the strip 29'. When his frame 11 rotates its corresponding potentiometer arm DPP also rotates counterclockwise in order to offset the change brought about by the inuence of the looper arm 34 movement, i.e., to bring about a -balanced condition of stability for the frame 11.
While it is obvious that many electrical circuits may be provided to function to cause one mechanical motion in respect to the frame 11 and looper 34 relationship discussed above, the circuit of FIG. 3 has been found to have additional novel features in the circuit embodiment of FIG. 3, which follows:
The circuit of FIG. 3 is essentially a compensated position regulator circuit having an input derived from a potentiometer LPP (which is mechanically controlled from the looper arm 34 of FIG. 2), regulated by way of reference from another potentiometer DPP (which is mechanically controlled by the shaft 15 of FIG. 1, the shaft 15 -being rotated by the motor 23 of FIG. l), and having an output controlling the eld circuit of a direct current generator GEN, which provides current of reversible polarity to a separately excited shunt motor MOT (FIG. 3), which is the same as motor 23 of FIG. l.
The circuit of FIG. 3 may be further broken down into its essential components; i.e., a high gain voltage amplifier PRA, a current amplifier CRA, and a static controlled rectifier bridge SCR which directly provides excitation for the field GF of the generator GEN. (The bridge SCR, being no part of the present invention, accepts the output of the current amplifier CRA both in magnitude and direction and excites the generator eld GF accordingly, thereby controlling the motor MOT.)
The amplifier PRA is actually an error amplifier in respect to the voltage differences between the potential drops of the potentiometers LPP and DPP, which act as voltage dividers across the equal, composite potential sources P50V (positive potential with respect to point X) and N50V (negative potential with respect to point X) when the contacts RI1 and RIZ` are closed, the actual error signal being the algebraic difference between the voltage drops respectively of resistors RPR2 and RPR3 which is fed to the amplifier CRA via a line from point X and a junction point SJ 1. As a result of the potential drop from potentiometer LPP a current flows through resistors RPRZ, RPRI and RCR4 to a junction point SI2 providing the input to the current amplifier CRA. This current is regulated by a voltage compensating circuit, which actually establishes a current reference datum via resistors RPC, IRNC and potentiometers IRHPC, RHNC, together with the diodes CRPC and CRNC between the junction SI1 and the output of amplifier PRA.
By manually adjusting one or the other, or both, of the potentiometers RHPC, RHNC the current reference fed to the current amplier via resistor RCR4 may provide a lead time in the advance or change of rotation of the shaft 15 (FIG. 1) over the reaction time of the looper arm 34 (FIG. 2). This type of control is useful in providing a safety factor in descaling apparatus by keeping the nozzles 13 on the descaling unit away from the hot strip 29 during changes of the strip position in rising above the rolling line, for example.
Similarly when a change in the looper arm occurs as a result of the strip 29 lowering below the rolling line, or from a higher to a lower position, the rotation of the shaft 15 (via motor MOT, i.e., motor 23 of FIG. l) is delayed by time delay circuits, one of which is formed by resistors RPR4 and RPR3 and capacitor CPR1 acting directly upon the amplifier PRA. Another similar time delay circuit is formed by resistors RCR6 and RCRS and capacitor CCR2 acting directly upon the current amplifier via junction SI2, excitation for this circuit being obtained as a current feedback from the generator GEN via an amplistat AS and a shunt SH.
A regulating circuit also may be provided for the current amplifier CRA in the form of a Zener diode Z, and in order t overcome the inherent lagging characteristics of the motor MOT (or motor 23 as in FIG. 1), a further compensating circuit is provided to the current amplifier CRA via junction SI2, this consisting of a network voltage divider per resistors RCRI and RCR2, a capacitor CORI and a limiting resistor RCR3, the latter being connected to the common line A.
Since it is necessary that during the changes of the Work rolls` of any mill stand having a descaling unit according to the present invention the descaling frame 11 (see FIG. 1) be cleared from the rolling line (the looper arm 34 being down normally at such times) an auxiliary contact RC is provided in lieu of contact R11, these contacts being interlocked, the former having a resistor RC1 4 in series so that the reaction of the looper arm 34 is offset to a degree whereby the frame 11 is cleared from the strip 29. Further direct control of the frame 11 is also provided by the jog contacts JF (forward motion) and JR (reverse motion), which are operated manuallyifor purposes of adjustment, these contacts leading from the lines PSV and N50V, respectively, through the resistors RJF and RJR to the junction SI1 of the amplier PRA.
While the invention has been explained and described with the aid of particular embodiments thereof, it will be understood that the invention is not limited thereby and that many modifications retaining and utilizing the spirit thereof without departing essentially therefrom will occur to those skilled in the art in applying the invention to specific operating environments and conditions. It is therefore contemplated by the appended claims to cover all such modifications as fall within the scope and spirit of the invention.
What is claimed is:
1. In a rolling mill having successive stands for processing a length of hot metal, a pivoted arm bearing upon said metal, a descaling device pivotally mounted intermediate said stands including means for delivering coolant to the surfaces of said metal, means for rotating said device under control of a rotation of said arm, and variable electrical means for regulating said rotating means to lead the rotation of said arm.
2. The invention set forth in claim 1 with the further modification of the said variable electrical means for regulating said rotating means to lag the rotation of said arm.
3. The invention of claim 1 wherein the said variable electrical means includes a potentiometer.
4. The invention of claim 1 wherein the said variable electrical means includes a time delay.
References Cited UNITED STATES PATENTS 1,874,080 8/ 1932 Brislin 29-81 2,552,871 5/1951 Shaw 29-81 2,851,042 9/ 1958 Spence 29`81 2,867,893 l/ 1959 Andresen et al. 29-81 2,961,741 11/1960 Cizek 29-81 3,151,197 9/1964 Schultz 29-81 3,378,676 4/ 1968 Clement 118-8 X WALTER A. SCHEEL, Primary Examiner L. G. MACHLIN, Assistant Examiner' U.S. C1. X.R.
US748408A 1968-07-29 1968-07-29 Rolling mill descaling device Expired - Lifetime US3518736A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74840868A 1968-07-29 1968-07-29

Publications (1)

Publication Number Publication Date
US3518736A true US3518736A (en) 1970-07-07

Family

ID=25009321

Family Applications (1)

Application Number Title Priority Date Filing Date
US748408A Expired - Lifetime US3518736A (en) 1968-07-29 1968-07-29 Rolling mill descaling device

Country Status (6)

Country Link
US (1) US3518736A (en)
JP (1) JPS4945977B1 (en)
DE (1) DE1938147A1 (en)
FR (1) FR2013907A1 (en)
GB (1) GB1270994A (en)
NL (1) NL6910407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738629A (en) * 1971-03-04 1973-06-12 Dorn Co V Bar quench fixture
US6273790B1 (en) 1998-12-07 2001-08-14 International Processing Systems, Inc. Method and apparatus for removing coatings and oxides from substrates
US6389666B1 (en) * 1999-01-08 2002-05-21 Sms Schloemann-Siegmag Ag Method of and apparatus for descaling of surfaces having oscillation marks of cast billets produced by a continuous casting machine
US20080276996A1 (en) * 2004-02-20 2008-11-13 Klaus Ginsberg Platform for Industrial Installations, Particulary for High-Pressure Descalers, Emergency Shears and Pendulum Shears in Rolling Mill Trains or the Like
US20110252616A1 (en) * 2008-09-13 2011-10-20 Sms Siemag Aktiengesellschaft Descaling device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089183U (en) * 1983-11-22 1985-06-19 モロゾフ株式会社 confectionery packaging
US4617815A (en) * 1984-12-24 1986-10-21 Wean United, Inc. Apparatus for descaling hot strip in a rolling mill
DE19535789C2 (en) * 1995-09-26 1997-09-11 Hermetik Hydraulik Ab Device for descaling semi-finished products
DE19925809A1 (en) * 1999-06-07 2000-12-14 Sms Demag Ag Descaling process for a metal strip and descaling arrangement corresponding to it
CN106180212B (en) * 2016-07-01 2018-11-16 江苏永钢集团有限公司 A kind of intelligent adjustment control method of looper control system and loop length

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1874080A (en) * 1929-08-30 1932-08-30 American Rolling Mill Co Controlling mechanism for scale removers and the like
US2552871A (en) * 1948-11-18 1951-05-15 Allis Chalmers Mfg Co Log barking apparatus having converging oscillatable water jets and means to proportionally vary center of convergence and amplitude of oscillation
US2851042A (en) * 1955-10-11 1958-09-09 British Thomson Houston Co Ltd Cooling equipment
US2867893A (en) * 1955-09-01 1959-01-13 Arne O Andresen Descaling apparatus for forging ingots
US2961741A (en) * 1956-05-09 1960-11-29 American Steel Foundries Hydraulic descaler
US3151197A (en) * 1962-12-05 1964-09-29 United States Steel Corp Apparatus for quenching rolled products
US3378676A (en) * 1963-07-16 1968-04-16 Industrial Nucleonics Corp System employing plural time-spaced average computations for measuring a second variable characteristic imparted to a material initially having a first variable characteristic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1874080A (en) * 1929-08-30 1932-08-30 American Rolling Mill Co Controlling mechanism for scale removers and the like
US2552871A (en) * 1948-11-18 1951-05-15 Allis Chalmers Mfg Co Log barking apparatus having converging oscillatable water jets and means to proportionally vary center of convergence and amplitude of oscillation
US2867893A (en) * 1955-09-01 1959-01-13 Arne O Andresen Descaling apparatus for forging ingots
US2851042A (en) * 1955-10-11 1958-09-09 British Thomson Houston Co Ltd Cooling equipment
US2961741A (en) * 1956-05-09 1960-11-29 American Steel Foundries Hydraulic descaler
US3151197A (en) * 1962-12-05 1964-09-29 United States Steel Corp Apparatus for quenching rolled products
US3378676A (en) * 1963-07-16 1968-04-16 Industrial Nucleonics Corp System employing plural time-spaced average computations for measuring a second variable characteristic imparted to a material initially having a first variable characteristic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738629A (en) * 1971-03-04 1973-06-12 Dorn Co V Bar quench fixture
US6273790B1 (en) 1998-12-07 2001-08-14 International Processing Systems, Inc. Method and apparatus for removing coatings and oxides from substrates
US6389666B1 (en) * 1999-01-08 2002-05-21 Sms Schloemann-Siegmag Ag Method of and apparatus for descaling of surfaces having oscillation marks of cast billets produced by a continuous casting machine
US20080276996A1 (en) * 2004-02-20 2008-11-13 Klaus Ginsberg Platform for Industrial Installations, Particulary for High-Pressure Descalers, Emergency Shears and Pendulum Shears in Rolling Mill Trains or the Like
US8113028B2 (en) * 2004-02-20 2012-02-14 Sms Siemag Aktiengesellschaft Platform for industrial installations, particulary for high-pressure descalers, emergency shears and pendulum shears in rolling mill trains or the like
US20110252616A1 (en) * 2008-09-13 2011-10-20 Sms Siemag Aktiengesellschaft Descaling device

Also Published As

Publication number Publication date
JPS4945977B1 (en) 1974-12-07
DE1938147A1 (en) 1970-02-12
GB1270994A (en) 1972-04-19
FR2013907A1 (en) 1970-04-10
NL6910407A (en) 1970-02-02

Similar Documents

Publication Publication Date Title
US3518736A (en) Rolling mill descaling device
USRE25075E (en) Rolling mills
US3062078A (en) Material thickness control apparatus
Khramshin et al. System for speed mode control of the electric drives of the continuous train of the hot-rolling mill
US3457747A (en) Rolling mills
US3078747A (en) Manufacture of metal sheet or strip
US3186200A (en) Automatic thickness regulator for strip rolling mills
US3036480A (en) Automatic control of multi-stand rolling mills
US2590717A (en) Automatic gauge regulator for grinding and polishing machines
US2949799A (en) Gage-control system for multi-stand strip mill
US3194035A (en) System for eliminating cyclic variations in rolling mill gauge errors
US2972269A (en) Automatic strip thickness control apparatus
US3194036A (en) Material thickness control apparatus
US4079609A (en) Control system for multiple stage reducing apparatus
US2660077A (en) Apparatus for rolling sheet metal
US3237439A (en) Tension control system
US3177346A (en) Apparatus for use in controlling a rolling mill
US3580022A (en) Rolling mill including gauge control
US3782151A (en) Automatic gauge control system for tandem rolling mill
US3081652A (en) Taper rolling mill control
US2649099A (en) Apparatus for treating continuous products
DE621409C (en) Device for measuring the degree of deformation of the rolling stock during rolling
US3049950A (en) Manufacture of metal sheet or strip
US3820365A (en) Automatic extension control
US3162069A (en) Method and apparatus for metal rolling