US3518673A - Antenna system for ils localizers - Google Patents

Antenna system for ils localizers Download PDF

Info

Publication number
US3518673A
US3518673A US734423A US3518673DA US3518673A US 3518673 A US3518673 A US 3518673A US 734423 A US734423 A US 734423A US 3518673D A US3518673D A US 3518673DA US 3518673 A US3518673 A US 3518673A
Authority
US
United States
Prior art keywords
antennas
logperiodic
antenna
antenna system
exact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US734423A
Inventor
Ole Petter Hakonsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintef AS
Original Assignee
Sintef AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintef AS filed Critical Sintef AS
Application granted granted Critical
Publication of US3518673A publication Critical patent/US3518673A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • This invention relates to an improvement of antenna systems for the localizer section in instrument landing systems (ILS) for airports.
  • ILS instrument landing systems
  • This kind of antenna systems is composed of a number of separate antennas and is located adjacent the end of the runway which shall be covered by the localizer.
  • the antenna system has some radiation also in a direction backwardly with respect to the runway, so that the airplanes if necessary can receive course information in positions backwardly from the runway. It is known in connection with such antenna systems to arrange the same so that different course sector widths can be obtained forwardly and backwardly, respectively, viz so that the back course sector width is larger than the front course sector width.
  • the larger back course sector width is desirable because the area covered out from the direction of the runway is larger, and feasible because the requirements as to exactitude are not so strict as in the forward direction.
  • the solution provided by the present invention is based on the utilisation of separate antennas which can give a certain backward radiation.
  • the feature which in the first place is characteristic of the antenna system according to the invention is that the separate or elementary antennas in the system have different front-to-back ratio.
  • this invention most advantageously employs logperiodic antennas as the separate antennas of the system, the same is not limited to this type of antenna.
  • Another antenna type which can be used is the Yagi antenna.
  • This latter type of antenna has the inconvenience in this connection that thus far it has not been possible to calculate the same exactly on beforehand for attainment of requirements which have been set, for instance with respect to the front-to-back ratio. The adjustment in each case must be carried out experimentally and this can be both costly and time-consuming.
  • the different front-to-back ratios are preferably obtained thereby that one or more dipoles in preferably each logperiodic dipole antenna have a length and/or a position along the feed line which involves deviation from an exact logperiodic structure. Such deviations can be determined comparatively quickly and securely because the logperiodic structure or construction can be described quite exactly by mathematical methods. But modification of the position of dipoles along the feed line the same are displaced in parallel in the longitudinal direction of the feed line.
  • the antenna system according to the inven tion is preferably made in such a way that a maximum of one fifth of the total number of dipoles have a length and/ or position which deviates from an exact logperiodic structure.
  • logperiodic separate antennas in the system according to the invention has for reason not only that this type of antenna can be treated mathematically, but also that logperiodic antennas are little influenced by weather and rain or snow conditions, for instance thick snow layers.
  • a weather resistant dielectric for instance a plastic material, such as fibreglass reinforced polyester.
  • FIG. 1 shows diagrammatically and simplified a plan view of an antenna system according to the invention with radiation patterns indicated.
  • FIG. 2 shows a plan view of a logperiodic dipole antenna with deviation from the exact logperiodic structure.
  • FIG. 3 is a diagram of an exact logperiodic structure.
  • the antenna system of FIG. 1 is composed of six separate antennas 1-6, for instance logperiodic dipole antennas, which are arranged side by side along a line T which forms a right angle with the centre line S of the runway. As known per se, the antenna arrangement is symmetric about the centre line S. With full lines there is for each separate antenna indicated a radiation pattern comprising a forward lobe 1c, 20, and so on, respectively, and a backward lobe 1a, 2a, 3a, 4a, 5a, and 6a, respectively.
  • antennas 1, 2, 5, and 6 which are the two outermost antennas on each side in the system-there is further with dotted lines indicated backward lobes 1b, 2b, 5b, and 6b, which are different from the backward lobes 3a and 4a.
  • the antennas 1, 2, 5, and 6 are according to the invention modified in such a way that their initial backward lobes 1a, 2a, and so on, have been changed to those lobes 1b, 2b, 5b, and 6b which are shown with dotted lines, so that the radiation in the backward direction has become smaller compared to the forward radiation, i.e. the front-to-back ratio has become greater. It is then presumed that the forward radiation has not been noticeably influenced by the modification of these antennas.
  • FIG. 1 there is further with the lines 1 1' and 11" indicated an angle C in the forward direction.
  • This angle shall illustrate the course sector width in the forward direction.
  • the course sector width A is the one obtained when all separate or elementary antennas have the same front-to-back ratio, i.e. when none of the separate antennas are modified as explained above.
  • FIG. 2 there is shown an example of a type of separate or elementary antenna which can be used in the antenna system according to the invention.
  • a logperiodic dipole antenna 20 with seven dipole elements .21-27 mounted on the feed line 28. Since the antenna is symmetrical only one half thereof has been included in the drawing. Dipole element number five from the front (the element 25) is here made shorter than what would have been required in an exact logperiodic structure, and this leads to a modification of the kind discussed above. Such a deviation from the exact logperiodic structure has for result that the antenna which in its normal construction has quite negligible backward radiation-becomes a noticeable backward ra diation which is utilised in the antenna system according to the invention.
  • FIG. 3 An exact logperiodic structure is shown on FIG. 3.
  • the extremes of the dipoles are bounded by an angle a and the distances from a virtual centre 0 are defined by the constant parameter -r and the radius R
  • a change in dipole length and/or the distance from the dipole to the virtual center 0 is defined as a deviation from the exact logperiodic structure.
  • the front-to-back ratio will decrease from a normal-and negligiblevalue (exact logperiodic structure) of about 30 db, to about 13 db. Shortening of such an element by other percentages will give corresponding variations in the front-to-back ratio.
  • Antenna system for an ILS localizer comprising a plurality of elementary antennas located adjacent the end of the runway covered by the localizer, means producing sufiicient radiation and course information in a direction backwardly from the runway having difierent course sector widths forwardly and backwardly and said elementary antennas of the system having different frontto-back ratios.
  • said elementary antennas have the form of logperiodic dipole antennas with at least one dipole in each logperiodic dipole antenna having a length along the feed line which involves a deviation from an exact logperiodic structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

June 30, 1970 o. P. HAKONSEN ANTENNA SYSTEM FOR ILS LOCALIZERS 3 Sheets-Sheet 1 Filed June 4. 1968 INVENTOR.
OLE PETTER H KONSED ATTORNEYS June 30, 1970 o. P. HAKONSEN 3,518,673
ANTENNA SYSTEM FOR ILS LOCALIZERS Filed June 4, 1968 3 Sheets-Sheet 2 E I\ W &
INVENTOR.
OLE PETTER HAKONSEN ATTORNEYS June 30, 1970 o. P. HAKQNSEN ANTENNA SYSTEM FOR ILS LOCALIZERS 3 Sheets-Sheet 5 Filed June 4, 1968 m QE INVENTOR.
OLE PETTER HAKONSEN BY W ATTORNEYS United States Patent Int. c1. G015 1/16; H01q 11/10 US. Cl. 343-108 7 Claims ABSTRACT OF THE DISCLOSURE Antenna system for ILS localizers adapted to have sufiicient backward radiation for course information backwardly from the runway, with different course sector widths forwardly and backwardly, the elementary antennas of the system having different front-to-back ratios.
This invention relates to an improvement of antenna systems for the localizer section in instrument landing systems (ILS) for airports. This kind of antenna systems is composed of a number of separate antennas and is located adjacent the end of the runway which shall be covered by the localizer.
It is frequently desirable that the antenna system has some radiation also in a direction backwardly with respect to the runway, so that the airplanes if necessary can receive course information in positions backwardly from the runway. It is known in connection with such antenna systems to arrange the same so that different course sector widths can be obtained forwardly and backwardly, respectively, viz so that the back course sector width is larger than the front course sector width. The larger back course sector width is desirable because the area covered out from the direction of the runway is larger, and feasible because the requirements as to exactitude are not so strict as in the forward direction.
It is the object of this invention to provide a new antenna system which is a more simple and inexpensive way than the existing systems makes possible different front and back course sector widths together with an exact and controllable adjustment of the relations and conditions wanted in each practical case.
In known antenna systems for ILS localizers there are used separate antennas directed backwardly from the runway so as to obtain the desired backward radiation. Thus, such a solution is the only possible in a known system in which dipoles arranged in front of a metal wire net are used as main antennas. Such an arrangement will give too small or no radiation at all backwardly, so that no course information can be obtained in that direction. Another complication with such conventional systems is that the separate antennas for the backward direction require special equipment for a suitable feeding thereof.
The solution provided by the present invention is based on the utilisation of separate antennas which can give a certain backward radiation. The feature which in the first place is characteristic of the antenna system according to the invention is that the separate or elementary antennas in the system have different front-to-back ratio.
With the solution according to the invention it has been found most practical to modify only some of those antennas which are located outermost in the system, i.e. with the largest distances from the centre line. In many instances it will be sufficient only to modify the outer- \most antenna on each side. For obtaining an increased course sector width in a backward direction it is necessary to modify these outermost antennas in such a way that their backward radiation becomes smaller. In this connection it is of interest to note that with the actual types 3,518,673 Patented June 30, 1970 'ice of separate antennas-and in particular with the preferred logperiodic dipole antennas-the forward radiation will not be noticeably influenced by the change of the backward radiation in this 'way.
Even though this invention most advantageously employs logperiodic antennas as the separate antennas of the system, the same is not limited to this type of antenna. Another antenna type which can be used is the Yagi antenna. This latter type of antenna, however, has the inconvenience in this connection that thus far it has not been possible to calculate the same exactly on beforehand for attainment of requirements which have been set, for instance with respect to the front-to-back ratio. The adjustment in each case must be carried out experimentally and this can be both costly and time-consuming.
With separate antennas in the form of logperiodic dipole antennas which is preferred according to the inventionthe different front-to-back ratios are preferably obtained thereby that one or more dipoles in preferably each logperiodic dipole antenna have a length and/or a position along the feed line which involves deviation from an exact logperiodic structure. Such deviations can be determined comparatively quickly and securely because the logperiodic structure or construction can be described quite exactly by mathematical methods. But modification of the position of dipoles along the feed line the same are displaced in parallel in the longitudinal direction of the feed line.
More specifically it is according to the invention found practical that the length and/or position of one or more dipoles deviate with a maximum of 30 percent from an exact logperiodic structure.
Further, the antenna system according to the inven tion is preferably made in such a way that a maximum of one fifth of the total number of dipoles have a length and/ or position which deviates from an exact logperiodic structure.
The fact that it is preferred to employ logperiodic separate antennas in the system according to the invention has for reason not only that this type of antenna can be treated mathematically, but also that logperiodic antennas are little influenced by weather and rain or snow conditions, for instance thick snow layers. For further improvement of the characteristics in this respect it is advantageous to encase the feed line with a weather resistant dielectric, for instance a plastic material, such as fibreglass reinforced polyester.
For a closer explanation of the invention the same is described below with reference to the drawings.
FIG. 1 shows diagrammatically and simplified a plan view of an antenna system according to the invention with radiation patterns indicated. FIG. 2 shows a plan view of a logperiodic dipole antenna with deviation from the exact logperiodic structure.
FIG. 3 is a diagram of an exact logperiodic structure.
The antenna system of FIG. 1 is composed of six separate antennas 1-6, for instance logperiodic dipole antennas, which are arranged side by side along a line T which forms a right angle with the centre line S of the runway. As known per se, the antenna arrangement is symmetric about the centre line S. With full lines there is for each separate antenna indicated a radiation pattern comprising a forward lobe 1c, 20, and so on, respectively, and a backward lobe 1a, 2a, 3a, 4a, 5a, and 6a, respectively. For the antennas 1, 2, 5, and 6which are the two outermost antennas on each side in the system-there is further with dotted lines indicated backward lobes 1b, 2b, 5b, and 6b, which are different from the backward lobes 3a and 4a. The antennas 1, 2, 5, and 6 are according to the invention modified in such a way that their initial backward lobes 1a, 2a, and so on, have been changed to those lobes 1b, 2b, 5b, and 6b which are shown with dotted lines, so that the radiation in the backward direction has become smaller compared to the forward radiation, i.e. the front-to-back ratio has become greater. It is then presumed that the forward radiation has not been noticeably influenced by the modification of these antennas.
In FIG. 1 there is further with the lines 1 1' and 11" indicated an angle C in the forward direction. This angle shall illustrate the course sector width in the forward direction. Backwardly there is in a corresponding way shown a course sector width with the angle A between the lines 13 and 13", and a course sector width B between the lines 12' and 12". The course sector width A is the one obtained when all separate or elementary antennas have the same front-to-back ratio, i.e. when none of the separate antennas are modified as explained above. In this case the course sector width in the forward direction is equal to the course sector width backwardly, i.e. A=C.
If, however, the antennas 1, 2, 5, and 6 are modified as explained so that their backward lobes are as indicated 'with dotted lines, the course sector width backwardly 'will become greater, which is shown with the angle B in FIG. 1.
In FIG. 2 there is shown an example of a type of separate or elementary antenna which can be used in the antenna system according to the invention. In this figure there is shown a logperiodic dipole antenna 20 with seven dipole elements .21-27 mounted on the feed line 28. Since the antenna is symmetrical only one half thereof has been included in the drawing. Dipole element number five from the front (the element 25) is here made shorter than what would have been required in an exact logperiodic structure, and this leads to a modification of the kind discussed above. Such a deviation from the exact logperiodic structure has for result that the antenna which in its normal construction has quite negligible backward radiation-becomes a noticeable backward ra diation which is utilised in the antenna system according to the invention. Thus, by employment of such a logperiodic antenna in the system of FIG. 1, preferably all antennas will deviate from the strict logperiodic principle, but the two outermost antennas on each side are modified diflerently from the two central antennas, viz in such a way that their backward lobes are smaller than those of the latter antennas. In this way there is according to the invention simply and inexpensively obtained a change of the back course sector width with respect to the front course sector width.
An exact logperiodic structure is shown on FIG. 3. The extremes of the dipoles are bounded by an angle a and the distances from a virtual centre 0 are defined by the constant parameter -r and the radius R A change in dipole length and/or the distance from the dipole to the virtual center 0 is defined as a deviation from the exact logperiodic structure.
As an example of what can be obtained it may be mentioned that with a shortening of said element 25 in the antenna 20 with about 12 percent, the front-to-back ratio will decrease from a normal-and negligiblevalue (exact logperiodic structure) of about 30 db, to about 13 db. Shortening of such an element by other percentages will give corresponding variations in the front-to-back ratio.
With six identical elementary antennas having a frontto-back ratio of 13 db in the system shown in FIG. 1, one will for instance have a front course sector width of about 4 equal to the back course sector width (A=C=about 4). If the two outermost antennas on each side, i.e. the antennas 1, 2, 5, and 6 are modified in such a way that their front-to-back ratio becomes about 19 4 db, the back course sector width will for instance increase to about 7 The ILS localizer referred to in the specification and claims is defined in the Aeronautical Telecommunications, Annex 10 of the International Civil Aviation Organization .(ICAO) It is obvious that the invention is not limited to the embodiments shown in the drawing and the above ex ample. Even if normally it will be desirable to have a larger back course sector width than front course sector width, the opposite will also easily be obtainable with the solution provided by the invention. With particular reference to logperiodic dipole antennas it is on the basis of the above description further obvious to an expert in this field that in addition to variation of the length of the antenna elements, variation of the position of the elements along the feed line can also be used to obtain said deviations from the exact logperiodic structure. According to the invention it is found that such length or position deviations of up to 30 percent can be utilised with advantage in practice. Likewise it has been found practical that up to a maximum of one fifth of the total number of dipole elements can be used for such modifications of this type of antenna.
I claim:
1. Antenna system for an ILS localizer comprising a plurality of elementary antennas located adjacent the end of the runway covered by the localizer, means producing sufiicient radiation and course information in a direction backwardly from the runway having difierent course sector widths forwardly and backwardly and said elementary antennas of the system having different frontto-back ratios.
2. Antenna system according to claim 1 wherein said elementary antennas have the form of logperiodic dipole antennas with at least one dipole in each logperiodic dipole antenna having a length along the feed line which involves a deviation from an exact logperiodic structure.
3. Antenna system according to claim 1 wherein said elementary antennas have the form of logperiodic dipole antennas with at least one dipole in each logperiodic dipole antenna having a position along the feed line which involves a deviation from an exact logperiodic structure.
4. Antenna system according to claim 2 wherein said length deviates with a maximum of 30 percent from an exact logperiodic structure.
5. Antenna system according to claim 3 wherein said position deviates with a maximum of 30 percent from at exact logperiodic structure.
6. Antenna system according to claim 2 wherein a maxi mum of one fifth of the total number of said dipoles has a length which deviate from an exact logperiodic structure.
7. Antenna system according to claim 3 wherein a maximum of one fifth of the total number of saiddipoles has a position which deviate from an exact logperiodic structure.
References Cited UNITED STATES PATENTS 2,593,485 4/ 1952 Pickles 343-107 2,993,665 7/1961 Carpenter 343-107 X 3,147,479 9/1964 Williams 343792.5 3,257,661 6/1966 Tanner 343792.5 3,283,325 11/1966 Jones 343109 2,513,493 7/ 1950 Kliever 343-107 RODNEY D. BENNETT, Primary Examiner T. H. TUBBESING, Assistant Examiner US. Cl. X.R. 343792.5, 853
US734423A 1967-06-08 1968-06-04 Antenna system for ils localizers Expired - Lifetime US3518673A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO168528A NO124503B (en) 1967-06-08 1967-06-08

Publications (1)

Publication Number Publication Date
US3518673A true US3518673A (en) 1970-06-30

Family

ID=19910103

Family Applications (1)

Application Number Title Priority Date Filing Date
US734423A Expired - Lifetime US3518673A (en) 1967-06-08 1968-06-04 Antenna system for ils localizers

Country Status (6)

Country Link
US (1) US3518673A (en)
DE (1) DE1766526B1 (en)
FR (1) FR1567838A (en)
GB (1) GB1224246A (en)
NO (1) NO124503B (en)
SE (1) SE352173B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868689A (en) * 1973-07-30 1975-02-25 Texas Instruments Inc Log periodic pole mounted marker beacon antenna
US4232316A (en) * 1977-12-05 1980-11-04 Tokyo Shibaura Denki Kabushiki Kaisha Aircraft landing-guiding apparatus
EP0718912A1 (en) * 1994-12-23 1996-06-26 Alcatel SEL Aktiengesellschaft Antenna
US10837479B2 (en) 2017-02-14 2020-11-17 Whirlpool Corporation Multi-layer encapsulation system for joint sealing of vacuum insulated cabinets

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513493A (en) * 1945-09-17 1950-07-04 Honeywell Regulator Co Aircraft control system
US2593485A (en) * 1948-02-06 1952-04-22 Int Standard Electric Corp Localizer beacon system
US2993665A (en) * 1948-09-15 1961-07-25 Honeywell Regulator Co Automatic instrument landing systems for air-borne craft
US3147479A (en) * 1962-03-01 1964-09-01 Radiation Inc Plural juxtaposed parabolic reflectors with frequency independent feeds
US3257661A (en) * 1962-04-11 1966-06-21 Robert L Tanner Log-periodic antenna
US3283325A (en) * 1962-06-13 1966-11-01 Jones Spencer Selth Duniam Directive transmitter system for aircraft runway approach

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513493A (en) * 1945-09-17 1950-07-04 Honeywell Regulator Co Aircraft control system
US2593485A (en) * 1948-02-06 1952-04-22 Int Standard Electric Corp Localizer beacon system
US2993665A (en) * 1948-09-15 1961-07-25 Honeywell Regulator Co Automatic instrument landing systems for air-borne craft
US3147479A (en) * 1962-03-01 1964-09-01 Radiation Inc Plural juxtaposed parabolic reflectors with frequency independent feeds
US3257661A (en) * 1962-04-11 1966-06-21 Robert L Tanner Log-periodic antenna
US3283325A (en) * 1962-06-13 1966-11-01 Jones Spencer Selth Duniam Directive transmitter system for aircraft runway approach

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868689A (en) * 1973-07-30 1975-02-25 Texas Instruments Inc Log periodic pole mounted marker beacon antenna
US4232316A (en) * 1977-12-05 1980-11-04 Tokyo Shibaura Denki Kabushiki Kaisha Aircraft landing-guiding apparatus
EP0718912A1 (en) * 1994-12-23 1996-06-26 Alcatel SEL Aktiengesellschaft Antenna
US10837479B2 (en) 2017-02-14 2020-11-17 Whirlpool Corporation Multi-layer encapsulation system for joint sealing of vacuum insulated cabinets

Also Published As

Publication number Publication date
SE352173B (en) 1972-12-18
FR1567838A (en) 1969-04-08
DE1766526B1 (en) 1971-10-07
GB1224246A (en) 1971-03-03
NO124503B (en) 1972-04-24

Similar Documents

Publication Publication Date Title
US3795915A (en) Leaky coaxial cable
US3225351A (en) Vertically polarized microstrip antenna for glide path system
US2502974A (en) Blind landing system
GB1323384A (en) Cylindrical array antenna
US4642645A (en) Reducing grating lobes due to subarray amplitude tapering
US4306238A (en) Microwave landing systems
US3518673A (en) Antenna system for ils localizers
JPH0342521B2 (en)
US4119971A (en) High data rate frequency scan slotted waveguide antenna
US10502825B2 (en) Radioelectric device for transmitting and receiving radioelectric waves and associated radio altimetry system
US3078463A (en) Parallel plate waveguide with slotted array and multiple feeds
CA2100021C (en) Space duplexed beamshaped microstrip antenna system
US3413633A (en) Method and apparatus for the radio-electric exploration of space
US3116486A (en) Luneberg lens system
DE2139216B2 (en) Directional aerial system with curved main reflector mirror - has dipole group with background thin, dielectric reflector plate with wires in dipole polarisation direction
US2422076A (en) Antenna system
US2983920A (en) Planar array of microwave antennas
US3665198A (en) Aircraft landing guidance system using collimated fan shaped radiation beams
US2270130A (en) Directive antenna system
Cox et al. MLS-A practical application of microwave technology
US4232316A (en) Aircraft landing-guiding apparatus
DE3642072C2 (en) Radar antenna arrangement with predeterminable backscatter cross section
DE2532970A1 (en) ANTENNA
US3273062A (en) System of propagating radio energy by means of artificial scatterers
US3111672A (en) Backscattering antenna array