US3518067A - Method of plating polyarylene polyethers,polycarbonate or polyhydroxyethers and the resulting articles - Google Patents
Method of plating polyarylene polyethers,polycarbonate or polyhydroxyethers and the resulting articles Download PDFInfo
- Publication number
- US3518067A US3518067A US3518067DA US3518067A US 3518067 A US3518067 A US 3518067A US 3518067D A US3518067D A US 3518067DA US 3518067 A US3518067 A US 3518067A
- Authority
- US
- United States
- Prior art keywords
- bis
- metal
- polymer
- group
- hydroxyphenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 53
- 229920000412 polyarylene Polymers 0.000 title description 49
- 229920000570 polyether Polymers 0.000 title description 48
- 238000007747 plating Methods 0.000 title description 23
- 229920000515 polycarbonate Polymers 0.000 title description 9
- 239000004417 polycarbonate Substances 0.000 title description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 65
- 229920000642 polymer Polymers 0.000 description 63
- -1 alkylene glycols Chemical class 0.000 description 50
- 229910052751 metal Inorganic materials 0.000 description 44
- 239000002184 metal Substances 0.000 description 44
- 239000000758 substrate Substances 0.000 description 41
- 239000000243 solution Substances 0.000 description 40
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 38
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 34
- 229920001169 thermoplastic Polymers 0.000 description 33
- 125000003118 aryl group Chemical group 0.000 description 32
- 239000004721 Polyphenylene oxide Substances 0.000 description 31
- 239000004416 thermosoftening plastic Substances 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 28
- 239000002253 acid Substances 0.000 description 25
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000012530 fluid Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 18
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 16
- 239000010949 copper Substances 0.000 description 16
- 229910052736 halogen Inorganic materials 0.000 description 16
- 229920003023 plastic Polymers 0.000 description 16
- 239000004033 plastic Substances 0.000 description 16
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 238000005530 etching Methods 0.000 description 14
- 229930185605 Bisphenol Natural products 0.000 description 13
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 125000001424 substituent group Chemical group 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 125000005843 halogen group Chemical group 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 10
- 150000002367 halogens Chemical class 0.000 description 10
- 238000007654 immersion Methods 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 125000006575 electron-withdrawing group Chemical group 0.000 description 9
- 238000009713 electroplating Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 229920000307 polymer substrate Polymers 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000000370 acceptor Substances 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 150000002989 phenols Chemical class 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 150000003457 sulfones Chemical class 0.000 description 7
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 6
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000004075 alteration Effects 0.000 description 6
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 5
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 5
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 5
- 150000002118 epoxides Chemical class 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 125000000466 oxiranyl group Chemical group 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 5
- 239000001119 stannous chloride Substances 0.000 description 5
- 235000011150 stannous chloride Nutrition 0.000 description 5
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 235000017168 chlorine Nutrition 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000001143 conditioned effect Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000007772 electroless plating Methods 0.000 description 4
- 229920006351 engineering plastic Polymers 0.000 description 4
- 125000001033 ether group Chemical group 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000001294 propane Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 4
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 3
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N chromium trioxide Inorganic materials O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 3
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 3
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Substances O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 150000003222 pyridines Chemical class 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000001174 sulfone group Chemical group 0.000 description 3
- 150000003462 sulfoxides Chemical class 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- LROZSPADHSXFJA-UHFFFAOYSA-N 2-(4-hydroxyphenyl)sulfonylphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=CC=C1O LROZSPADHSXFJA-UHFFFAOYSA-N 0.000 description 2
- LVLNPXCISNPHLE-UHFFFAOYSA-N 2-[(4-hydroxyphenyl)methyl]phenol Chemical compound C1=CC(O)=CC=C1CC1=CC=CC=C1O LVLNPXCISNPHLE-UHFFFAOYSA-N 0.000 description 2
- URFNSYWAGGETFK-UHFFFAOYSA-N 4,4'-Dihydroxybibenzyl Chemical compound C1=CC(O)=CC=C1CCC1=CC=C(O)C=C1 URFNSYWAGGETFK-UHFFFAOYSA-N 0.000 description 2
- NZGQHKSLKRFZFL-UHFFFAOYSA-N 4-(4-hydroxyphenoxy)phenol Chemical compound C1=CC(O)=CC=C1OC1=CC=C(O)C=C1 NZGQHKSLKRFZFL-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000001118 alkylidene group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 125000001309 chloro group Chemical class Cl* 0.000 description 2
- 229940117975 chromium trioxide Drugs 0.000 description 2
- GAMDZJFZMJECOS-UHFFFAOYSA-N chromium(6+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Cr+6] GAMDZJFZMJECOS-UHFFFAOYSA-N 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 238000000454 electroless metal deposition Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- CABDEMAGSHRORS-UHFFFAOYSA-N oxirane;hydrate Chemical compound O.C1CO1 CABDEMAGSHRORS-UHFFFAOYSA-N 0.000 description 2
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical class CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- ZGSHFDSKHTZINF-UHFFFAOYSA-N (2-methyl-6-phenylphenyl) hydrogen carbonate Chemical compound CC1=CC=CC(C=2C=CC=CC=2)=C1OC(O)=O ZGSHFDSKHTZINF-UHFFFAOYSA-N 0.000 description 1
- HKCNCNXZAZPKDZ-UHFFFAOYSA-N (4,4-difluorocyclohexa-1,5-dien-1-yl)-phenylmethanone Chemical compound C1=CC(F)(F)CC=C1C(=O)C1=CC=CC=C1 HKCNCNXZAZPKDZ-UHFFFAOYSA-N 0.000 description 1
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- 229940043375 1,5-pentanediol Drugs 0.000 description 1
- LXGNVYMMUOLELK-UHFFFAOYSA-N 1,8-difluoroanthracene-9,10-dione Chemical compound O=C1C2=CC=CC(F)=C2C(=O)C2=C1C=CC=C2F LXGNVYMMUOLELK-UHFFFAOYSA-N 0.000 description 1
- QLCJOAMJPCOIDI-UHFFFAOYSA-N 1-(butoxymethoxy)butane Chemical compound CCCCOCOCCCC QLCJOAMJPCOIDI-UHFFFAOYSA-N 0.000 description 1
- PLVUIVUKKJTSDM-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)sulfonylbenzene Chemical compound C1=CC(F)=CC=C1S(=O)(=O)C1=CC=C(F)C=C1 PLVUIVUKKJTSDM-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- MQCPOLNSJCWPGT-UHFFFAOYSA-N 2,2'-Bisphenol F Chemical compound OC1=CC=CC=C1CC1=CC=CC=C1O MQCPOLNSJCWPGT-UHFFFAOYSA-N 0.000 description 1
- QFIIFFRWCNYRLM-UHFFFAOYSA-N 2,3,4,4,5,5-hexachlorocyclopent-2-en-1-one Chemical compound ClC1=C(Cl)C(Cl)(Cl)C(Cl)(Cl)C1=O QFIIFFRWCNYRLM-UHFFFAOYSA-N 0.000 description 1
- ZAGYIPDRDJPYKU-UHFFFAOYSA-N 2,3-difluorocyclohexa-2,5-diene-1,4-dione Chemical compound FC1=C(F)C(=O)C=CC1=O ZAGYIPDRDJPYKU-UHFFFAOYSA-N 0.000 description 1
- LSYXXLMBRSSBGS-UHFFFAOYSA-N 2,4,6-tris(hydroxymethyl)phenol Chemical compound OCC1=CC(CO)=C(O)C(CO)=C1 LSYXXLMBRSSBGS-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- XFSAZBKSWGOXRH-UHFFFAOYSA-N 2-(2-carbonochloridoyloxyethoxy)ethyl carbonochloridate Chemical compound ClC(=O)OCCOCCOC(Cl)=O XFSAZBKSWGOXRH-UHFFFAOYSA-N 0.000 description 1
- VXHYVVAUHMGCEX-UHFFFAOYSA-N 2-(2-hydroxyphenoxy)phenol Chemical class OC1=CC=CC=C1OC1=CC=CC=C1O VXHYVVAUHMGCEX-UHFFFAOYSA-N 0.000 description 1
- QUWAJPZDCZDTJS-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfonylphenol Chemical class OC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1O QUWAJPZDCZDTJS-UHFFFAOYSA-N 0.000 description 1
- BQONGVOFGQBTMR-UHFFFAOYSA-N 2-(6-oxabicyclo[3.1.0]hexan-2-ylsulfonyl)-6-oxabicyclo[3.1.0]hexane Chemical compound C1CC2OC2C1S(=O)(=O)C1C2OC2CC1 BQONGVOFGQBTMR-UHFFFAOYSA-N 0.000 description 1
- MMTOSBCMFDNOIY-UHFFFAOYSA-N 2-(chloromethyl)-3-methyloxirane Chemical compound CC1OC1CCl MMTOSBCMFDNOIY-UHFFFAOYSA-N 0.000 description 1
- DKHNRHWAVBIOGY-UHFFFAOYSA-N 2-[2-(7-oxabicyclo[4.1.0]heptane-4-carbonyloxy)ethoxy]ethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCCOCCOC(=O)C1CC2OC2CC1 DKHNRHWAVBIOGY-UHFFFAOYSA-N 0.000 description 1
- AVNFUVHTTAGFJM-UHFFFAOYSA-N 2-bromo-4-(3-bromo-4-hydroxyphenoxy)phenol Chemical compound C1=C(Br)C(O)=CC=C1OC1=CC=C(O)C(Br)=C1 AVNFUVHTTAGFJM-UHFFFAOYSA-N 0.000 description 1
- DYTIQBZNYCPBKT-UHFFFAOYSA-N 2-chloro-4-(3-chloro-4-hydroxynaphthalen-1-yl)oxynaphthalen-1-ol Chemical compound C12=CC=CC=C2C(O)=C(Cl)C=C1OC1=CC(Cl)=C(O)C2=CC=CC=C12 DYTIQBZNYCPBKT-UHFFFAOYSA-N 0.000 description 1
- GMVRBNZMOQKAPI-UHFFFAOYSA-N 2-chloro-4-(3-chloro-4-hydroxyphenoxy)phenol Chemical compound C1=C(Cl)C(O)=CC=C1OC1=CC=C(O)C(Cl)=C1 GMVRBNZMOQKAPI-UHFFFAOYSA-N 0.000 description 1
- 125000006282 2-chlorobenzyl group Chemical group [H]C1=C([H])C(Cl)=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- UDJZIOLNSUTXIK-UHFFFAOYSA-N 2-methyl-2-(2-methyloxiran-2-yl)oxirane Chemical compound C1OC1(C)C1(C)CO1 UDJZIOLNSUTXIK-UHFFFAOYSA-N 0.000 description 1
- UMNVUZRZKPVECS-UHFFFAOYSA-N 2-propanoyloxyethyl propanoate Chemical compound CCC(=O)OCCOC(=O)CC UMNVUZRZKPVECS-UHFFFAOYSA-N 0.000 description 1
- RKSBPFMNOJWYSB-UHFFFAOYSA-N 3,3-Bis(4-hydroxyphenyl)pentane Chemical compound C=1C=C(O)C=CC=1C(CC)(CC)C1=CC=C(O)C=C1 RKSBPFMNOJWYSB-UHFFFAOYSA-N 0.000 description 1
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 1
- SEDGGCMDYFKAQN-UHFFFAOYSA-N 3-methyloxirane-2-carboxylic acid Chemical compound CC1OC1C(O)=O SEDGGCMDYFKAQN-UHFFFAOYSA-N 0.000 description 1
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 1
- XJBDGYMLLCHIMB-UHFFFAOYSA-N 4-(4-hydroxy-3-propan-2-ylphenoxy)-2-propan-2-ylphenol Chemical compound C1=C(O)C(C(C)C)=CC(OC=2C=C(C(O)=CC=2)C(C)C)=C1 XJBDGYMLLCHIMB-UHFFFAOYSA-N 0.000 description 1
- HAXZAKSZTJVNIS-UHFFFAOYSA-N 4-(4-hydroxynaphthalen-1-yl)oxynaphthalen-1-ol Chemical compound C12=CC=CC=C2C(O)=CC=C1OC1=CC=C(O)C2=CC=CC=C12 HAXZAKSZTJVNIS-UHFFFAOYSA-N 0.000 description 1
- YXVSYZRICGNXIH-UHFFFAOYSA-N 4-[1-(4-hydroxyphenyl)-2-phenylethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)CC1=CC=CC=C1 YXVSYZRICGNXIH-UHFFFAOYSA-N 0.000 description 1
- LCYRQNBSGYQLKY-UHFFFAOYSA-N 4-[2-(4-hydroxynaphthalen-1-yl)propan-2-yl]naphthalen-1-ol Chemical compound C1=CC=C2C(C(C)(C=3C4=CC=CC=C4C(O)=CC=3)C)=CC=C(O)C2=C1 LCYRQNBSGYQLKY-UHFFFAOYSA-N 0.000 description 1
- DUKMWXLEZOCRSO-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)-1-phenylpropan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)CC1=CC=CC=C1 DUKMWXLEZOCRSO-UHFFFAOYSA-N 0.000 description 1
- XHQYAMKBTLODDV-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)heptan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(CCCCC)C1=CC=C(O)C=C1 XHQYAMKBTLODDV-UHFFFAOYSA-N 0.000 description 1
- HJSPWKGEPDZNLK-UHFFFAOYSA-N 4-benzylphenol Chemical compound C1=CC(O)=CC=C1CC1=CC=CC=C1 HJSPWKGEPDZNLK-UHFFFAOYSA-N 0.000 description 1
- ZNPSUQQXTRRSBM-UHFFFAOYSA-N 4-n-Pentylphenol Chemical compound CCCCCC1=CC=C(O)C=C1 ZNPSUQQXTRRSBM-UHFFFAOYSA-N 0.000 description 1
- NRZLCERAUXQYQN-UHFFFAOYSA-N 4-tert-butyl-2,3-bis(hydroxymethyl)phenol Chemical compound CC(C)(C)C1=CC=C(O)C(CO)=C1CO NRZLCERAUXQYQN-UHFFFAOYSA-N 0.000 description 1
- LBRZEKDKQIOFGB-UHFFFAOYSA-N 6-oxabicyclo[3.1.0]hexane-2-carboxylic acid Chemical compound O1C2CCC(C21)C(=O)O LBRZEKDKQIOFGB-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- ADAHGVUHKDNLEB-UHFFFAOYSA-N Bis(2,3-epoxycyclopentyl)ether Chemical compound C1CC2OC2C1OC1CCC2OC21 ADAHGVUHKDNLEB-UHFFFAOYSA-N 0.000 description 1
- FMSYUSWWSGVNIG-UHFFFAOYSA-N C(C=O)(=O)O.ClC(C=O)(Cl)Cl Chemical compound C(C=O)(=O)O.ClC(C=O)(Cl)Cl FMSYUSWWSGVNIG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- ZFIVKAOQEXOYFY-UHFFFAOYSA-N Diepoxybutane Chemical compound C1OC1C1OC1 ZFIVKAOQEXOYFY-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 241001674048 Phthiraptera Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- UZLIPWKFUFXLGE-UHFFFAOYSA-N [1,1-bis(5-butyl-7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-ethylhexyl] dihydrogen phosphate Chemical compound CCCCC1=C2C(=C(C=C1)C(C3=C4C(=C(C=C3)CCCC)O4)(C(CC)CCCC)OP(=O)(O)O)O2 UZLIPWKFUFXLGE-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000008065 acid anhydrides Chemical group 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001263 acyl chlorides Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000102 alkali metal hydride Inorganic materials 0.000 description 1
- 150000008046 alkali metal hydrides Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- CXJVMJWCNFOERL-UHFFFAOYSA-N benzenesulfonylsulfonylbenzene Chemical compound C=1C=CC=CC=1S(=O)(=O)S(=O)(=O)C1=CC=CC=C1 CXJVMJWCNFOERL-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- IMHDGJOMLMDPJN-UHFFFAOYSA-N biphenyl-2,2'-diol Chemical group OC1=CC=CC=C1C1=CC=CC=C1O IMHDGJOMLMDPJN-UHFFFAOYSA-N 0.000 description 1
- POZGCGJFBOZPCM-UHFFFAOYSA-N bis(2-methylphenyl) carbonate Chemical compound CC1=CC=CC=C1OC(=O)OC1=CC=CC=C1C POZGCGJFBOZPCM-UHFFFAOYSA-N 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- NTJYFWYFUKSSEM-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) carbonate Chemical compound C1OC1COC(=O)OCC1CO1 NTJYFWYFUKSSEM-UHFFFAOYSA-N 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- IRXBNHGNHKNOJI-UHFFFAOYSA-N butanedioyl dichloride Chemical class ClC(=O)CCC(Cl)=O IRXBNHGNHKNOJI-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- AOGYCOYQMAVAFD-UHFFFAOYSA-N chlorocarbonic acid Chemical class OC(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- OSXYHAQZDCICNX-UHFFFAOYSA-N dichloro(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](Cl)(Cl)C1=CC=CC=C1 OSXYHAQZDCICNX-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 1
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical class [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical class O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- BXCCKEJWQJEUMS-UHFFFAOYSA-N formaldehyde;4-nonylphenol Chemical compound O=C.CCCCCCCCCC1=CC=C(O)C=C1 BXCCKEJWQJEUMS-UHFFFAOYSA-N 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002485 inorganic esters Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical class O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- MNZMMCVIXORAQL-UHFFFAOYSA-N naphthalene-2,6-diol Chemical compound C1=C(O)C=CC2=CC(O)=CC=C21 MNZMMCVIXORAQL-UHFFFAOYSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- QUBQYFYWUJJAAK-UHFFFAOYSA-N oxymethurea Chemical compound OCNC(=O)NCO QUBQYFYWUJJAAK-UHFFFAOYSA-N 0.000 description 1
- 229950005308 oxymethurea Drugs 0.000 description 1
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003375 sulfoxide group Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003784 tall oil Chemical class 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- ZOYFEXPFPVDYIS-UHFFFAOYSA-N trichloro(ethyl)silane Chemical compound CC[Si](Cl)(Cl)Cl ZOYFEXPFPVDYIS-UHFFFAOYSA-N 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/381—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/22—General preparatory processes using carbonyl halides
- C08G64/24—General preparatory processes using carbonyl halides and phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
- C08G75/23—Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/02—Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/208—Multistep pretreatment with use of metal first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/22—Roughening, e.g. by etching
- C23C18/26—Roughening, e.g. by etching using organic liquids
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/285—Sensitising or activating with tin based compound or composition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0326—Organic insulating material consisting of one material containing O
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0333—Organic insulating material consisting of one material containing S
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2650/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G2650/28—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
- C08G2650/56—Polyhydroxyethers, e.g. phenoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/05—Polymer mixtures characterised by other features containing polymer components which can react with one another
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0779—Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
- H05K2203/0783—Using solvent, e.g. for cleaning; Regulating solvent content of pastes or coatings for adjusting the viscosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/901—Printed circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/934—Electrical process
- Y10S428/935—Electroplating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12389—All metal or with adjacent metals having variation in thickness
- Y10T428/12396—Discontinuous surface component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12556—Organic component
- Y10T428/12569—Synthetic resin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12778—Alternative base metals from diverse categories
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
- Y10T428/31529—Next to metal
Definitions
- thermoplastic polymeric surface from the group of polyarylene polyethers, polycarbonates or polyhydroxyethers by treatment with a fluid from the group of N,N-dimethylformamide, pyridine and substituted pyridine compounds or alkylene glycols having a particular solubility parameter of 8.7 to 10.7.
- the N,N-dimethylformamide may be applied in gas or vapor form.
- the metal plated polymer will exhibit a peel strength of greater than 5 lbs. per inch.
- the metal coatings may be chromium, nickel or copper.
- This invention relates to method for metal-plating aromatic polymers, to products produced thereby and, in particular to metal-plated articles of thermoplastic polyarylene polyethers characterized by excellent thermal properties.
- Metallic coatings on engineering plastics such as polycarbonates, polyhydroxyethers and polyarylene polyethers have been used for electrical and decorative purposes as, for example, in printed circuit boards and ornamental decorations.
- metal coated plastic parts can replace all-metal parts.
- metal coated plastic parts are superior to allmetal parts in many important respects.
- chromium-plated plastics are more weathenresistant than chromium-plated metals since the plastic substrate is in herently non-corrosive; moreover, considerable weight can often be saved while still retaining a metallic appearance and feel.
- the metal coating can blister or peel from the plastic substrate either when subjected to variations in temperature, due to the difference in thermal coeflicient of expansion between metal and plastic, or to small strains, due to the difference in elastic modulus. It has heretofore been empirically established in the plating art that a minimum peel strength of about 5 pounds per inch is required to prevent this type of failure in most applications of metalplated plastic parts.
- the methods currently employed for depositing metal coatings on engineering plastic substrates usually involve the use of several treating and plating baths.
- the plastic substrate is first conditioned or treated in a strong oxidizing solution, e.g., chromic acid/sulfuric acid, and then sensitized in a solution of a reducing agent, e.g., stannous chloride.
- a strong oxidizing solution e.g., chromic acid/sulfuric acid
- a reducing agent e.g., stannous chloride
- the substrate is thereafter activated by immersion in a dilute solution of a noble metal salt, e.g., palladium chloride, and then transferred to a so-called electroless plating bath wherein the substrate receives a sufficiently conductive metal coating to permit subsequent electroplating by the conventional methods used for standard metal parts.
- a noble metal salt e.g., palladium chloride
- Electroless plating solutions are metastablesolutions of a metal salt, e.g., copper, nickel and the like, and a reducing agent, e.g., formaldehyde, hypophosphite, sodium borohydride, and the like, in which reduction of the metal ion is inhibited by complexing agents such as ammonia, hydroxycarboxylic acids, and the like.
- a metal salt e.g., copper, nickel and the like
- a reducing agent e.g., formaldehyde, hypophosphite, sodium borohydride, and the like
- complexing agents such as ammonia, hydroxycarboxylic acids, and the like.
- the present invention provides metal-plated engineering plastic substrates exhibiting a minimum peel strength of at least about 5.0 pounds per inch, and preferably at least about 8.0 pounds per inch.
- the present invention provides a metal-plated article of thermoplastic polyarylene polyether, preferably exhibiting a minimum peel strength of at least about 5 pounds per inch, capable of being used in applications which involve exposure to elevated temperature for short or prolonged periods of time.
- Such metal-plated polyarylene polyether articles are useful as plumbing fixtures such as faucets and the like, capable of conveying and handling extremely hot fluids without ill effect, as printed circuits capable of being used at temperatures as high as 149 C. and higher without effect to the electrical properties of the circuit, as a reflector in searchlights and projectors capable of withstanding elevated temperatures for prolonged periods of time, and the like.
- the metal-plated polyarylene polyether articles of this invention have excellent resistance to environmental attack by virtue of the superior physical properties of the polyarylene polyether substrate and the added resistance gained from the metal-plated covering.
- the metal-plated polyarylene polyether articles of this invention can be used as automotive carburetors having the capability of resisting attack by motor fuels and physical distortion at temperatures generated in the use of carburetors.
- the process of this invention for improving the adhesion of metal platings to plastic substrates comprises the steps of treating aromatic polymers such as polyarylene polyethers, polycarbonates, polyhydroxyethers and the like with ,a fluid that promotes microscopic etching or crazing and submicroscopic alteration of the polymer surface which increases the surface area thereby increasing the number of polar sites, and thereafter metal-plating the so-treated polymer in the conventional manner as above described by conditioning (which step produces the microscopic etching or crazing and submicroscopic alteration), sensitizing, activating,
- aromatic polymers such as polyarylene polyethers, polycarbonates, polyhydroxyethers and the like
- a fluid that promotes microscopic etching or crazing and submicroscopic alteration of the polymer surface which increases the surface area thereby increasing the number of polar sites
- the term fluid is intended to include both liquids and vapors.
- the metal-plated plastic substrates or articles of this invention include metal-plated polyarylene polyethers and metal-plated aromatic polymeric substrates exhibiting a minimum peel strength of at least about 5.0 pounds per inch and preferably at least 8.0 pounds per inch.
- the adhesion of metal platings to thermoplastic polyarylene polyether substrates is improved by treating these polymers with vapors of N,N-dimethylformamide (DMF) prior' to metal-plating as described above.
- DMF N,N-dimethylformamide
- the DMF vapors promote microscopic etching or crazing and submicroscopic alteration of the polymer surface and eliminate certain problems encountered in treating with liquid DMF. For instance, polymer specimens do not have to 'be heat annealed before treating with DMF vapor, whereas with liquid DMF the specimens have to be heat annealed to prevent cracking during the treatment. The necessity to rinse specimens after treating with liquid DMF is eliminated.
- Polyarylene polyethers used in the present invention are linear thermoplastic polymers having a basic structure composed of recurring units having the formula:
- E is the residuum of the dihydric phenol and E is the residuum of the benzenoid compound having an inert electron withdrawing group in at least one of the positions ortho and para to the Valence bonds, and where both of said residua are valently bonded to the ether oxygens through aromatic carbon atoms.
- the residua E and E are characterized in this manner since they are conveniently prepared by the reaction of an alkali metal double salt of a dihydric phenol and a dihalobenzenoid compound having an electron withdrawing group as is described more fully herein.
- the residuum E of the dihydric phenol can be, for instance, a mono-nuclear phenylene group as results from hydroquinone and resorcinol, or it may be a dior polynuclear residuum.
- the residuum E can also be substituted with other inert nuclear substituents such as halogen, alkyl, alkoxy and like inert substituents.
- the dihydric phenol be a weakly acidic dinuclear phenol such as, for example, the dihydroxy diphenyl alkanes or the nuclear halogenated derivatives thereof, which are commonly known as bisphenols, such as, for example, the 2,2-bis-(4-hydroxyphenyl)propane, 1,1 bis (4-hydroxyphenyl)-2-phenylethane, bis (4 hydroxyphenyl)methane, or the chlorinated derivatives containing one or two chlorines on each aromatic ring.
- the dihydric phenol be a weakly acidic dinuclear phenol such as, for example, the dihydroxy diphenyl alkanes or the nuclear halogenated derivatives thereof, which are commonly known as bisphenols, such as, for example, the 2,2-bis-(4-hydroxyphenyl)propane, 1,1 bis (4-hydroxyphenyl)-2-phenylethane, bis (4 hydroxyphenyl)methane, or the chlorinated derivatives containing one or two chlorines
- dinuclear dihydric phenols are the bisphenols of a symmetrical or unsu-mmetrical joining group as, for example, ether oxygen (O-), carbonyl (CO), sulfide (S), sulfone (SO or hydrocarbon residue in which the two phenolic nuclei are joined to the same or different carbon atoms of the residue such as, for example, the bisphenol of acetophenone, the bisphenol of benzophenone, the bisphenol of vinyl cyclohexene, the bisphenol of a-pinene, and the like bisphenols where the hydroxyphenyl groups are bound to the same or different carbon atoms of an organic linking group.
- ether oxygen O-
- CO carbonyl
- S sulfide
- SO sulfone
- Ar is an aromatic group and preferably is a phenylene group
- Y and Y can be the same or dilferent inert substituent groups as alkyl groups having from 1 to 4 carbon atoms, halogen atoms, i.e.
- R is representative of a bond between aromatic carbon atoms as in dihydroxydiphenyl, or is a divalent radical, including for example, inorganic radicals as CO, -O-, -S--, SS--, SO and divalent organic hydrocarbon radicals such as alkylene, alkylidene, cycloadiphatic, or the halogen, alkyl, aryl or like substituted alkylene, alkylidene and cycloaliphatic radicals as well as alkalicyclic, alkarylene and aromatic radicals and a ring fused to both Ar groups.
- inorganic radicals as CO, -O-, -S--, SS--, SO and divalent organic hydrocarbon radicals such as alkylene, alkylidene, cycloadiphatic, or the halogen, alkyl, aryl or like substituted alkylene, alkylidene and cycloaliphatic radicals as well as alkalicyclic, alkarylene
- dihydric polynuclear phenols examples include among others: the bis-(hydroxyphenyl)alkanes such 2,2-bis- 4-hydroxyphenyl propane,
- Di(hydroxyphenyl)sulfones such as bis-(4 hydroxypheny1)sulfone, 2,4 dihydroxydiphenyl sulfone, 5- chloro-2,4-dihydroxydiphenyl sulfone, 5'-chloro-4,4-dihydroxydiphenyl sulfone, and the like;
- Di(hydroxyphenyl)ethers such as bis (4 hydroxyphenyl)ether, the 4,3'-, 4,2'-, 2,2'-, 2,3-dihydroxydiphenyl ethers, 4,4'-dihydroxy-2,6-dimethyldiphenyl ether, bis (4 hydroxy 3 isobutylphenybether, bis (4- hydroxy 3 isopropylphenyl)ether, bis (4-hydroxy-3- chlorophenyl) ether, bis- 4hydroxy-3-fluorophenyl ether, bis-(4-hydroxy-3-bromophenyl)ether, bis (4 hydroxynaphthyl)ether, bis-(4 hydroxy-3-chloro-naphthyl)ether, 4,4'-dihydroxy-3,6-dimethoxydiphenyl ether, 4,4 dihydroxy-2,S-diethoxydiphenyl ether, and like materials.
- E residuum in the polymer structure can actually be the same or different aromatic residua.
- the E term defined as being the residuum of the dihydric phenol refers to the residue of the dihydric phenol after the removal of the two aromatic hydroxyl groups.
- polyarylene polyethers contain recurring groups of the residuum of the dihydric phenol and the residuum of the benzenoid compound bonded through aromatic ether oxygen atoms.
- the residuum E of the benzenoid compound can be from any dihalobenzenoid compound or mixture of dihalobenzenoid compounds which compound or compounds have the two halogens bonded to benzene rings having an electron withdrawing group in at least one of the positions ortho and para to the halogen group.
- the dihalobenzenoid compound can be either mononuclear where the halogens are attached to the same benzenoid ring or polynuclear where they are attached to different benzenoid rings, as long as there is the activating electron withdrawing group in the ortho or para position of that benzenoid nucleus.
- halogens may be the reactive halogen substituents on the benzenoid compounds, fluorine and chlorine substituted benzenoid reactants being preferred.
- any electron withdrawing group can be employed as the activator group in the dihalobenzenoid compounds.
- the ring contain no electron supplying groups on the same benzenoid nucleus as the halogen; however, the presence of other groups on the nucleus or in the residuum of the compound can be tolerated.
- all of the substituents on the benzenoid nucleaus are either hydrogen (zero electron Withdrawing), or other groups having a positive sigma* value as set forth in J. F. Bunnett in Chem. Rev., 49, 273 (1951) and Quart, Rev., 12, 1 1958).
- the electron withdrawing group of the dihalobenzenoid compound can function either through the resonance of the aromatic ring, as indicated by those groups having a high sigma* value, i.e., above about +0.7, or by induction as in perfluoro compounds and like electron sinks.
- the activating group should have a high sigma* value, preferably above 1.0, although suflicient activity is evidenced in those groups having a sigmaf value above 0.7.
- the activating group can be basically either of two types:
- the polymers may be made with mixtures of two or more dihalobenzenoind compounds each of which has this structure, and which may have different electron withdrawing groups.
- the E residuum of the benzenoid compounds in the polymer structure may be the same or diiferent.
- the E' term defined as being the residuum of the benzenoid compound refers to the aromatic or benzenoid residue of the compound after the removal of the halogen atoms of the benzenoid nucleus.
- preferred linear thermoplastic polyarylene polyethers are those wherein E is the residuum of a dinuclear dihydric phenol and E is the residuum of a dinuclear benzenoid compound.
- R represents a member of the group consisting of a bond between aromatic carbon atoms and a divalent connecting radical and R represents a member of the group consisting of sulfone, carbonyl, vinyl, sulfoxide, azo, saturated fluorocarbon, organic phosphine oxide and ethylidene groups and Y and Y each represent inert substituent groups selected from the group consisting of halogen, alkyl groups having from 1 to 4 carbon atoms and alkoxy groups having from 1 to 4 carbon atoms and where r and z are integers having a value from 0 to 4 inclusive.
- Thermoplastic polyarylene polyethers described herein can be prepared as described in Belgian Pat. 650,476 in a substantially equimolar one-step reaction of a double alkali metal salt of a dihydric phenol with a dihalobenzenoid compound in the presence of specific liquid organic sulfoxide or sulfone solvents under substantially anhydrous conditions. Any alkali metal salt of the dihydric phenol can be used as the one reactant.
- Thermoplastic polyarylene polyethers described herein can also be prepared as described in Example 1 hereof and in the aforementioned Belgian patent, in a two-step process in which a dihydric phenol is first converted in situ in a primary reaction solvent to the alkali metal salt by the reaction with the alkali metal, the alkali metal hydride, alkali metal hydroxide, alkali metal alkoxide or the alkali metal alkyl compounds.
- thermoplastic polyarylene polyethers as described herein are characterized by high molecular weights indicated by reduced viscosity in indicated solvents.
- thermoplastic polyarylene polyethers have a reduced viscosity above about 0.35 and most preferably above about 0.4. The manner of determining reduced viscosity is detailed infra.
- useful polyarylene polyethers have a heat distortion temperature at 18.6 kg./cm. of at least about 149 C.
- the aromatic carbonate polymers used in the present invention may be prepared by reacting a dihydric phenol with a carbonate precursor such as phosgene, a haloformate, or a carbonate ester.
- a carbonate precursor such as phosgene, a haloformate, or a carbonate ester.
- B is a divalent aromatic radical of the dihydric phenol employed in the polymer producing reaction.
- the dihydric phenols which may be employed to provide such aromatic carbonate polymers are mononuclear or polynuclear aromatic compounds, containing as functional groups, 2 hydroxy radicals, each of which is attached directly to a carbon atom of an aromatic nucleus.
- Typical dihydric phenols are 2,2-bis-(4-hydroxyphenyl)propane,
- the materials are reacted at temperatures of from 100 C. or higher for times varying from 1 to hours. Under such conditions ester interchange occurs between the carbonate ester and the dihydric phenol used.
- the ester interchange is advantageously consummated at reduced pressures of the order of from about 10 to about 100 mm. of mercury, preferably in an inert atmosphere, such as nitrogen or argon, for example.
- ester exchange catalysts such as, for example, metallic lithium, potassium, calcium and magnesium. Additional catalysts and variations in the eX change methods are discussed in Groggins, Unit Processes in Organic Synthesis (4th edition, McGraw-Hill Book Company, 1952), pages 616 to 620.
- the amount of such catalyst, if used, is usually small, ranging from about 0.001 to about 0.1%, based on the moles of the dihydric phenol employed.
- the carbonate ester useful in this connection may be aliphatic or aromatic in nature, although aromatic esters, such as diphenyl carbonate, are preferred. Additional examples of carbonate esters which may be used are dimethyl carbonate, diethyl carbonate, phenyl methyl carbonate, phenyltolyl carbonate and di(tolyl) carbonate.
- a preferred method for preparing the carbonate polymers suitable for use in this invention involves the use of a carbonyl halide, such as phosgene, as the carbonate precursor.
- This method involves passing phosgene gas into a reaction mixture containing the dihydric phenol and an acid acceptor such as a tertiary amine (e.g., pyridine, dimethylaniline, quinoline, etc.).
- the acid acceptor may be used undiluted or diluted with inert organic solvents as, for example, methylene chloride, chlorobenzene, or 1,2dichloroethane.
- Tertiary amines are advantageous since they are good solvents as well as acid acceptors during the reaction.
- the temperature at which the carbonyl halide reaction proceeds may vary from below 0 C. to about 100 C.
- the reaction proceeds satisfactorily at temperatures from room temperature C.) to 50 C. Since the reaction is exothermic, the rate of phosgene addition may be used to control the temperature of the reaction temperature.
- the amount of phosgene required will generally depend upon the amount of dihydric phenol present. Generally speaking, one mole of phosgene will react with one mole of the dihydric phenol used to provide the polymer and two moles of HCl. Two moles of HCl are in turn attached by the acid acceptor present. The foregoing are herein referred to as stoichiometric or theoretical amounts.
- Another method for preparing the carbonate polymer comprises adding phosgene to an alkaline aqueous suspension of the dihydric phenol used. This is preferably done in the presence of inert solvents such as methylene chloride, 1,2-dichloroethane and the like.
- Quaternary ammonium compounds may be employed to catalyze the reaction.
- a third method for preparing such carbonate polymers involves the phosgenation of an agitated suspension of the anhydrous alkali salts of the dihydric phenol used in a non-aqueous medium such as benzene, chlorobenzene and toluene.
- the reaction is illustrated by the addition of phosgene to a slurry of the sodium salt of 2,2-bis-(4-hydroxyphenyl) propane in an inert polymer solvent such as chlorobenzene.
- the organic solvent should preferably be a polymer solvent but need not necessarily be a good solbent for the reactants.
- haloformate such as the bishaloformate of 2,2-bis-(4-hydroxyphenyl) propane may be substituted for phosgene as the carbonate precursor in any of the methods described above.
- the carbonate polymer emerges from the reaction in either a true or pseudo solution whether aqueous base or pyridine is used as an acid acceptor.
- the polymer may be precipitated from the solution by adding a polymer nonsolvent, such as heptane or isopropanol. Alternatively, the polymer solution may be heated to evaporate the solvent.
- a preferred method for preparing the polycarbonates useful in the practice of this invention comprises passing a carbonyl halide, such as phosgene, into a slurry comprising a suspension of solid particles in a single liquid phase, the suspension of solid particles comprising a dihydric phenol and at least two moles, per mole of dihydric phenol, of at least one acid acceptor selected from the group consisting of a hydroxide, a carbonate and a phosphate of an alkali or an alkaline earth metal, and the single liquid phase comprising an inert organic liquid which is a solvent for the carbonate polymer, but a non-solvent for the dihydric phenol and the acid acceptor, to form a reaction mixture having a solid phase and a single liquid phase comprising a solution of the carbonate polymer in the inert organic liquid, and separating the liquid phase from the solid phase.
- a carbonyl halide such as phosgene
- Polyhydroxyethers used in this invention are linear thermoplastic polymers having the general formula wherein D is the residuum of a dihydric phenol, D is a hydroxyl containing residuum of an epoxide, and n represents the degree of polymerization and is at least 30 and is preferably or more. Polyhydroxyethers having a melt flow of less than about 7.0 determined as hereinafter described are preferred.
- the residuum D of the dihydric phenol in the polyhydroxyether formula is the same as the dihydric phenol residuum E in the polyarylene polyether recurring unit formula described above.
- the epoxide contributing the hydroxyl containing residuum D can be a monoepoxide or diepoxide.
- epoxide is meant a compound containing an oxirane group
- a monoepoxide contains one such oxirane group and provides a residuum D containing a single hydroxyl group; a diepoxide contains two such oxirane groups and provides a residuum D containing two hydroxyl groups.
- halogen substituted saturated monoepoxides i.e., the epiahalohydrin and saturated diepoxides which contain solely carbon, hydrogen and oxygen, especially those wherein the vicinal or adjacent carbon atoms form part of an aliphatic hydrocarbon chain.
- the oxygen in such diepoxides can be, in addition to oxirane oxygen,
- monoepoxides include epihalohydrins such as epichlorohydrin, epibromohydrin, 1,2-epoxy- 1-methyl-3-chloropropane, 1,2-epoxy-1-butyl-3-chloropro pane, 1,2-epoxy-2-rnethyl-3-fiuoropropane, and the like.
- Illustrative diepoxides include diethylene glycol bis(3,4-epoxycyclohexane-carboxylate) bis 3 ,4-epoxycyclohexylmethyl) ad ipate,
- butadiene dioxide and 2,3-dimethylbutadiene dioxide.
- the preferred diepoxides are those wherein each of the oxirane groups is connected to an electron donating substituent which is not immediately connected to the carbon atoms of that oxirane group.
- Such diepoxides have the grouping -AO-C-C- wherein A is an electron donating substituent such as o (%-0, or N- BIO: Q where Q is a saturated hydrocarbon radical such as an alkyl, cycloalkyl, aryl or aralkyl radical.
- a single monoepoxide or diepoxide or a mixture of at least two monoepoxides or diepoxides can be employed in preparing thermoplastic polyhydroxyethers and the terms monoepoxide and diepoxide are intended to include a mixture of at least two monoepoxides or diepoxides, respectively.
- melt flow of each of the thermoplastic polyhydroxyethers was determined by weighing in grams the amount of polyhydroxyether which, at a temperature of 220 C. and under a pressure of 44 p.s.i., flowed through an orifice having a diameter of 0.825" and a length of 0.315" over a ten minute period. Four such determinations were made and the average of the four determinations is reported as decigrams per minute under a pressure of 44 psi. and at 220 C.
- Thermoplastic polyhydroxyethers used in the present invention can be further modified by being reacted with a variety of crosslinking agents such as, among others organic isocyanates, e.g., toluene diisocyanates, dianisidine diisocyanates, polyethylene polyisocyanate, toluene diisocyanate terminated polybutylene glycol, and phenol blocked polyisocyanate and the like; methylol containing compounds, e.g., 2,4,6-trimethylolphenol, polymethylolated bisphenol sulfone, dimethylol-p-tert-butylphenol, dimethylol p methylphenol butylphenol-formaldehyde resin, nonylphenol formaldehyde resin, butylated melamine-formaldehyde resin and the like; epoxy compounds e.g., the diglycidyl ether of 2,2,-bis(4-hydroxyphenyl) propane, 2,4-epoxy-G-
- thermoplastic polyhydroxyethers modified without crosslinking by esterification with an acyl group obtained from any one of a variety of acylating agents containing but one secondary hydroxyl reactive group e.g., organic acids, inorganic acids and the acid derivatives such as acid halides and anhydrides having the general formula GZ wherein G is an inorganic or organic acid radical such as acetyl, benzoyl, stearyl, formyl, propionyl, chloroacetyl, o-chlorobenzyl, p-tolenesulfonyl, mercaptoacetyl, diphenylphosphinyl, nitrate and like groups and Z is (a) halogen, i.e., fluorine, chlorine, bromine, and iodine where the acylating agent is an acid halide; (b) a G group, G being a radical as listed above and free of any substituents reactive with secondary hydroxyl groups where
- aromatic polymers include polyphenylene ethers of the type described in US. Pat. 3,134,753 which is incorporated herein by reference.
- fluids useful in the present invention for improving the adhesion of metal platings to aromatic polymers promote a microscopic etching or crazing and submicroscopic alterations of the polymer 1 1 substrates. This etching manifests itself by a generally hazy appearance to the naked eye rather than a cracked or spider-webbed appearance.
- Suitable fluids that will promote the microscopic etching and submicroscopic alteration of aromatic polymer substrates include N,N-dimethylformamide (HCON(CH pyridines having the formula wherein R is hydrogen or an inert substituent such as methyl, halo (F, Cl, Br or I), methoxy, aryl aryloxy, or wherein two Rs form a fused aromatic ring which may contain hetero nitrogen atoms, and alkylene glycols which are liquid at elevated temperatures, e.g.
- solubility parameter Plastics, 26, 290 (1961)
- a solubility parameter such as dipropylene glycol and ethylene glycols having an average molecular weight of up to about 6000 which can be represented by the formula HO(CH CH O), H wherein n is an integer having a value of at least 1.
- Fluids useful in the present invention can also be described as water miscible, oxidation resistant Lewis bases that are believed to promote a breakdown in molecular weight and the formation of carboxyl groups in those instances where aliphatic groups are present in the polymer chain at the surface of the aromatic polymer substrate in the presence of a strong acid such as sulfuric acid and a strong oxidizing agent such as chromic acid or chrorninum trioxide. It is believed when carboxyl groups are formed, their presence plays some role in improving the adhesion of metal platings to aromatic polymer substrates.
- Aromatic polymer substrates can be treated with the aforementioned adhesion promoting fluids by immersion, dipping, spraying, and like techniques.
- the temperature of the fluid during treatment is not narrowly critical. Generally room temperatures (about 23 C.) are employed with N,N-dimethylformamide and the pyridines but temperatures just above the freezing point up to the boiling point of the particular fluid can be used if desired. DMF vapors are generated at about 83-86 C. With the alkylene glycols, elevated temperatures within about 50 C. or above the heat distortion point (ASTM D-6137-59T) of the aromatic polymer are preferred.
- the duration of the liquid treatment is not narrowly critical and should be suflicient to produce peel strengths of at least about 5 lb./in.
- Polymer substrates for metal plating can be prepared in the form of self-supporting sheets by extrusion, injection, compression molding and like techniques, or can be fabricated into any desired shape by injection, compression, or blow molding, or by thermoforming and like techniques. Once the substrate is formed and treated with an adhesion promoting fluid as described above, conventional methods are employed to plate metal layers thereon.
- the substrate is cleaned, treated as described above, immersed in a conditioner (strong oxidizing solution) which may be a bath of fuming sulfuric acid (oleum); fuming sulfuric acid/chromium trioxide; sulfuric acid/ phosphoric acid/chromic trioxide; or sulfuric acid/chromium trioxide with agitation to microscopically etch and submicroscopically alterate the substrate as described above to provide for good adhesion of the metal plated layers, rinsed in water (not when using DMF vapor), immersed in a bath containing stannous chloride or other stannous salt, rinsed in water, immersed in a bath to provide catalytic nucleating centers of a salt of a metal catalytic to the deposition of the desired electroplated metal deposit such as silver nitrate or the chloride of gold, palladium, or platinum, the ions of these metals being reduced to catalytic metal nucleating centers by the stannous ions adsorbed on the substrate and/or by reducing agents contained
- Cleaning the polymer substrate can be accomplished by conventional cleaning methods such as mechanical cleaning, scrubbing, organic cleaners, alkaline or acid cleaners, wetting agents and pickling baths.
- Particles of metals catalyze the electroless chemical reduction deposition of a desired metal on a polyarylene polyether substrate.
- the following metals are catalytic to the deposition of nickel and cobalt: copper, beryllium, aluminum, carbon, tungsten, tellurium, nickel, gold, germanium, silicon, molybdenum, selenium, iron, tin, and palladium.
- These metals are also catalytic to the deposition of copper, lead, platinum, rhodium, ruthenium, osmium, iridium, iron, cobalt, carbon, silver, nickel, aluminum, gold, palladium, and magnesium.
- Cobalt, nickel, and iron can be used to catalyze the deposition of chromium.
- One suitable process includes cleaning a polymer substrate, treating with an adhesion promoting fluid, microscopically etching and submicroscopically altering as described above.
- the substrate is then sensitized with stannous chloride which is adsorbed on the surface.
- stannous chloride which is adsorbed on the surface.
- electroless metal deposition is accomplished by immersion in an electroless copper bath containing a copper salt, complexing agents to keep copper in solution and a reducing agent. This is followed by conventional electroplating to deposit adherent layers of copper, nickel and chromium.
- Reduced viscosity was determined by dissolving a 0.2 gram sample of thermoplastic polyarylene polylether in chloroform contained in a ml. volumetric flask so that the resultant solution measured exactly 100 ml. at 25 C. in a constant temperature bath. The viscosity of 3 ml. of the solution which had been filtered through a sintered glass funnel was determined in an Ostwald or similar type viscometer at 25 C. Reduced viscosity values were obtained from the equation:
- c is the concentration of the polymer solution expressed in terms of grams of polymer per 100 ml. of solution
- a flask equipped with a stirrer, thermometer, a water cooled condenser and a Dean-Stark moisture trap filled with benzene there were placed 11.42 grams of 2,2 bis (4-hydroxyphenyl)propane (0.05 mole), 13.1 grams of a 42.8% potassium hydroxide solution (0.1 mole KOH), 50 ml. of dimethylsulfoxide and 6 ml. benzene and the system purged with nitrogen to maintain an inert atmosphere over the reaction mixture.
- the mixture was refluxed for 3 to 4 hours, continously removing the water contained in the reaction mixture as an azeotrope with benzene and distilling off enough of the latter to give a refluxing mixture at 130-135 C. consisting of the dipotassium salt of the 2,2-bis-(4-hydroxyphenyl)propane and dimethylsulfoxide essentially free of water.
- the mixture was cooled and 14.35 grams (0.05 mole) of 4,4-dichlorodiphenylsulfone was added followed by 40 ml. of anhydrous dimethylsulfoxide, all under nitrogen pressure.
- the mixture was heated to 130 and held at 130 -140 with good stirring for 4-5 hours.
- the viscous, orange solution was poured into 300 ml.
- thermoplastic polyhydroxyether was prepared by the reaction of equimolar amounts of 2,2-bis(4-hydroxyphenyl)propane and epichlorohydrin together with sodium hydroxide.
- Equipment used was provided with a sealed stirrer, thermometer, and reflux condenser. There was placed therein:
- reaction mixture was cut with 200 parts of the 7:3 toluenezbutanol mixture.
- One hundred parts of water was added and agitated with the contents to dissolve salts present in the reaction mixture.
- the vessel contents were allowed to settle for ten minutes during which time a lower brine phase formed. This phase was separated by decantation.
- the upper polymer containing solution phase was washed successively with two 160 part portions of water containing 4.5% butanol.
- the upper polymer solution phase was again separated by decantation and water washed with four successive 200 part portions of water containing 4.5% butanol.
- thermoplastic polyhydroxyether of 2,2- bis(4-hydroxyphenol)propane and epichlorohydrin having a melt flow of 7.0 decigrams per minute.
- EXAMPLE 3 Preparation of aromatic polycarbonate polymer A slurry is prepared by stirring the following materials in a reaction vessel; 114 parts 2,2-bis-(4-hydroxyphenyl) propane, 129.6 parts calcium hydroxide, and 760 parts methylene chloride.
- the slurry is heated to about 40 C. at which time heating is discontinued.
- Phosgene is added to the stirred slurry at a rate of about 0.82 part per minute for about 55 minutes and thereafter at 0.08 part per minute for an additional minutes.
- the heat generated by the reaction maintains the slurry at a temperature of 38-40 C., Le. the reflux temperature of the methylene chloride.
- air is blown through the reaction mixture to cool it and free it of any excess phosgene.
- the cool slurry is diluted with methylene chloride, centrifuged, and the solid phase removed.
- the single liquid phase consisting of a solution of the carbonate polymer in the methylene chloride, is filtered, and the carbonate polymer precipitated by adding heptane to the solution.
- the polymer is separated from the mixture by filtration and drying at C.
- the intrinsic viscosity (ASTM D-1601-6l) measured in dioxane at 30 C. of the polymer is 0.54, which corresponds to a molecular weight of about 35,000 (Weight average).
- EXAMPLE 4 A 4" x 3" x injection molded polyarylene polyether plaque (0.50 RV) was electroplated with a 2 mil coating of copper following steps 1 and 6-21 of the general procedure. Etching time was ,10 minutes with 20% oleum. Adhesion of the copper to the plaque was determined by rneasuring the peel strength of a one-inch strip of metal plate pulled from the substrate at an angle of 90. Peel strength was 7.3 lbs/in.
- Example 4 was duplicated except 20% oleum containing 1% Cr was used as the etchant. Peel strength was 7.5 lbs./in.
- Example 4 was duplicated except etching time was 30 mins. Peel strength was 5.9 lbs./ in.
- EXAMPLE 7 Two inch x A1" round injection molded polyarylene polyether discs (RV-52) were electroplated using steps 1-21 of the general procedure. The discs were etched for 10 minutes in 20% oleum. Peel strength was 5.5 lbs./in.
- Example 7 was duplicated except the disc was etched 30 minutes in 30% oleum. Peel strength was 7.6-10.8 lbs/in. I
- EXAMPLE 9 Thermoplastic polyarylene polyether having the foris prepared from 4,4'-dihydroxydiphenyl sulfone and 4,4- dichlorodiphenyl sulfone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 4. Feel strength is in excess of lbs./in.
- EXAMPLE 10 Theromplastic polyarylene polyether having the formula is prepared from the bisphenol of benzophenone and 4,4- dichlorod-iphenylsulfone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 7. Peel strength is in excess of 5 lbs/in.
- EXAMPLE 1 1 Thermoplastic polyarylene polyether having the formula is prepared from the bisphenol of acetophenone and 4,4- dichlorodiphenylsulfone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 7. Peel strength is in excess of 5 lbs./in.
- EXAMPLE 12 Thermoplastic polyarylene polyether having the formula EXAMPLE l3 Thermoplastic polyarylene polyether having the formula is prepared from 2,2-bis-(4-hydroxyphenyl)propane and 4,4-difluorobenzophenone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 7. Peel strength is in excess of 5 lbs/in.
- EXAMPLE 14 A 2" round x Ma injection molded disc of polyarylene polyether prepared as described in Example 1 was annealed by placing it in a 165 C. oven for four hours. Upon removal the sample was allowed to cool to room temperature. It was then immersed in a solution consistingof 93 cc. N,N-dimethylformamide and 7 cc. distilled water for 2 minutes, after rinsing in water for 1 minute it was immersed for 5 minutes in the acid etching bath designated Enthone 470 (Enthone, Inc., New Haven, Conn.) which was heated to 70 C. The sample was rinsed in water and then treated in the following solutions:
- the electroplating bath consisted of 2832 02/ gal. CuSO 6-8 oz. (wt.)/ gal. H 50 0.20.6%/vol. UBAC #1 (Udylite Corporation, Detroit).
- the sample was electroplated with 2 mils of copper in 30 minutes using a current density of 75 amps/sq/ft. Peel strength was 16 lbs./ in.
- EXAMPLE 15 The same procedure as described in Example 14 was followed except that the organic solution consisted of 92 cc. pyridine and 8 cc. water and etching time was 15 minutes. Peel strength was 11 lbs/in.
- Example 14 Control The same procedure as described in Example 14 was followed except that the organic solution consisted of 93 cc. dimethylacetamide and 7 cc. water immersion time in this solution was two minutes; etching time was 3 minutes. Peel strength was less than 1 1b./in.
- EXAMPLE 16 A 2" x Vs" annealed (4 hrs. at 165 C.) disc of polyarylene polyether prepared as described in Example 1 was immersed for 4 minutes in hot (182 C.) polyethylene glycol having an average molecular weight of 400. After removal the sample was rinsed in water and immersed for 10 minutes in a hot (80 C.) solution of:
- Example 16 was followed except the sample was treated for 1 hour in hot (160 C.) dipropylene glycol. Peel strength was 14 lbs/in.
- EXAMPLE 18 A 2 x /s" unannealed disc of bisphenol A polycarbonate prepared as described in Example 3 was immersed for /2 minute in a solution consisting of 93 cc. N,N- dimethylformamide and 7 cc. distilled water. After removal the disc was rinsed in isopropanol for 1 /2 minutes and allowed to air dry for 4 minutes. The disc was immersed for 10 minutes in the acid etching bath Enthone 470. Following rinsing in water it was treated in solutions 35 of Example 14 and electroplated as in Example 14. Peel strength was 13 lbs./in.
- EXAMPLE 19 The same procedure as described in Example 18 was followed except that the polymer disc was bisphenol A polyhydroxyether prepared as described in Example 2 and the adhesion promoting liquid treatment consisted of immersion for 2 minutes in a solution consisting of 75 cc. N,N-dimethylformamide and 25 cc. distilled water. Peel strength was 12 lbs/in.
- EXAMPLE 20 The same procedure as described in Example 16 is followed except that the polymer disc is bisphenol A polycarbonate prepared as described in Example 3 and the polyethylene glycol bath is at a temperature of 135 C. Peel strength is in excess of 5 lbs./in.
- EXAMPLE 21 The same procedure as described in Example 16 is followed except that the polymer .disc is bisphenol A polyhydroxyether prepared as described in Example .2 and the polyethylene glycol bath is at a temperature of 90 C. Peel strength is in excess of 5 lbs/in.
- Example 14 is prepared from 4,4'-dihydroxydiphenyl sulfone and 4,4- dichlorodiphenyl sulfone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 14. Peel strength is in excess of lbs/in.
- Thermoplastic polyarylene polyether having the formula 0 is prepared from the bisphenol of benzophenone and 4,4- dichlorodiphenylsulfone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 14. Peel strength is in excess of 5 lbs./in.
- EXAMPLE 24 Thermoplastic polyarylene polyether having the formula is prepared from the bisphenol of acetophenone and 4,4- dichlorodiphenylsulfone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 16. Peel strength is in excess of 8 lbs/in.
- Thermoplastic polyarylene polyether having the formula C zHs L y l O g/ @KQJ was prepared from the bisphenol of vinyl cyclohexene (prepared by an acid catalyzed condensation of 2 moles of phenol with one mole of vinyl cyclohexene) and 4,4- dichlorodiphenylsulfone according to the procedure in Example 1. This polymer is molded into a plaque and electroplated as in Example 15. Peel strength is in excess of 5 lbs./in.
- EXAMPLE 26 Thermoplastic polyarylene polyether having the formula of 8 lbs/in.
- EXAMPLE 27 A 12" diameter x 13" high stainless steel pot was fitted with copper cooling coils that sat on top of the open end of the pot. About a /2 inch layer of DMF was charged to the pot and heated to 8386 C. at which temperature vapors were clearly evident.
- Four inch injection molded polyarylene polyether discs prepared as described in Example 1 (unannealed) were suspended in the vapors for various periods of time and then immersed in an acid conditioner for various periods of time. The discs were then plated according to the procedure described below.
- the acid conditioner was composed of the following Percent H 50 (96%) 55.9 H PO (85-87%) 10.4 CI'O3 3.0
- the plating procedure was as follows:
- EXAMPLE 28 A 12" diameter x 17" high stainless steel pot was fitted with a stainless steel lid and a thermometer which extended from the bottom of the pot out through a hole in the lid. About a /2 inch layer of N,N-dimethylform amide was charged to the pot and heated to 50 C. A 4 x unannealed injection molded disc of polyarylene polyether as in Example 27 was suspended in the vapors (with the lid on) for three minutes. It was then immersed in the acid conditioner described in Example 27 for two minutes following which it was rinsed in 68 C. tap water.
- the sample was rendered conductive by immersion in:
- Sensitizer 432 1 part 432, 1 part conc. HCl, 14
- the sample was then electroplated with 2 mils of semi-bright nickel. Peel strength was 13 lbs/in. one hr. after electroplating with 24 lbs./in. after 16 hrs.
- thermoplastic aromatic polymeric substrates which comprises treating an aromatic polymeric substrate selected from the group of polyarylene polyethers, polycarbonates and polyhydroxyethers with a fluid selected from the group of N,N-dimethylformamide, compounds having the formula 20 an ethylene glycol having an average molecular weight of up to about 6000.
- said polyarylene polyether is composed of recurring units having the formula wherein E is the residuum of a dihydric phenol and E is the residuum of a benzenoid compound having an inert electron withdrawingg roup in at least one of the positions ortho and para to the valence bonds, and where both of said residua are valently bonded to the ether oxygens through aromatic carbon atoms.
- said polyhydroxyether has the general formula wherein D is the residuum of a dihydric phenol, D is a hydroxyl containing residuum of an epoxide, and n is at least 30.
- said treated substrate is conditioned by immersing said substrate in an oxidizing solution selected from the group consisting of aqueous solutions of chromic acid in inorganic acids and aqueous solutions of chromic acid, said solutions being at least about percent saturated with respect to chromic acid at the use temperature of the oxidizing solution.
- an oxidizing solution selected from the group consisting of aqueous solutions of chromic acid in inorganic acids and aqueous solutions of chromic acid, said solutions being at least about percent saturated with respect to chromic acid at the use temperature of the oxidizing solution.
- Process for increasing the adresion of metal platings to aromatic polymeric substrates which comprises treating a thermoplastic aromatic polymeric substrate selected from the group of polyarylene polyethers, polycarbonates and polyhydroxyethers with a fluid selected from the group of N,N-dimethylformamide, compounds having the formula wherein R is hydrogen or an inert substituent, and alkylene glycols having a solubility parameter (Plastics, 26, (1961)) of from about 8.7 to 10.7, conditioning the treated substrate within a strong oxidizing solution, immersing the conditioned substrate in a solution of reducing agent to sensitize said substrate, immersing the sensitized substrate in a solution of a noble metal salt to activate said substrate, immersing said activated substrate in an electroless metal plating solution to deposit a conductive metal film thereon, and thereafter electroplating said polymer.
- a thermoplastic aromatic polymeric substrate selected from the group of polyarylene polyethers, polycarbonates and polyhydroxyethers
- a fluid selected from the group of N,
- R represents a member of the group consisting of a bond between aromatic carbon atoms and a divalent connecting radical and R represents a member of the group consisting of sulfone, carbonyl, vinyl, sulfoxide, azo, saturated fluorocarbon, organic phosphine oxide and ethylidene groups and Y and Y each represent inert substituent groups selected from the group consisting of halogen, alkyl groups having from 1 to 4 carbon atoms and alkoxy groups having from 1 to 4 carbon atoms and where r and z are integers having a value of from to 4 inclusive.
- E is the residuum of a dihydric phenol and E is the residuum of a benzenoid compound having an inert electron withdrawing group in at least one of the positions ortho and para to the valence bonds, and where both of said residua are valently bonded to the ether oxygens through aromatic carbon atoms and said metal plating is applied to a reflecting surface of said reflector and is comprised of an electroless metallic deposit and a second metallic deposit applied thereto by electroplating.
- E is the residuum of a dihydric phenol and E is the residuum of a benzenoid compound having an inert electron withdrawing group in at least one of the positions ortho and para to the valence bonds, and Where both of said residua are valently bonded to the ether oxygens through aromatic carbon atoms and said metal plating is in the form of a printed electrical circuit comprised of an electroless metallic deposit and a second metallic deposit applied thereto by electroplating.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Polyesters Or Polycarbonates (AREA)
- Chemically Coating (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48140265A | 1965-08-20 | 1965-08-20 | |
US52860866A | 1966-02-18 | 1966-02-18 | |
US56510966A | 1966-07-14 | 1966-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3518067A true US3518067A (en) | 1970-06-30 |
Family
ID=27413568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3518067D Expired - Lifetime US3518067A (en) | 1965-08-20 | 1966-07-14 | Method of plating polyarylene polyethers,polycarbonate or polyhydroxyethers and the resulting articles |
Country Status (7)
Country | Link |
---|---|
US (1) | US3518067A (enrdf_load_html_response) |
BE (1) | BE685679A (enrdf_load_html_response) |
CH (1) | CH473231A (enrdf_load_html_response) |
DE (1) | DE1521077A1 (enrdf_load_html_response) |
GB (1) | GB1164845A (enrdf_load_html_response) |
NL (1) | NL6611726A (enrdf_load_html_response) |
SE (1) | SE338697B (enrdf_load_html_response) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3770571A (en) * | 1969-04-02 | 1973-11-06 | Richardson Co | Fabrication of printed circuit boards |
US3905877A (en) * | 1974-02-19 | 1975-09-16 | Du Pont | Process for electroplating polyoxymethylene |
USRE29039E (en) * | 1969-11-26 | 1976-11-16 | Imperial Chemical Industries Limited | Metal deposition process |
US4241105A (en) * | 1979-12-17 | 1980-12-23 | Western Electric Company, Inc. | Method of plating the surface of a substrate |
US4325992A (en) * | 1981-01-05 | 1982-04-20 | Crown City Plating Co. | Electroless plating of polycarbonates |
EP0052968A3 (en) * | 1980-11-20 | 1982-12-22 | Crosfield Electronics Limited | Coating of polymerical substrates |
EP0111327A1 (en) * | 1982-12-09 | 1984-06-20 | Amoco Corporation | A composition useful for making circuit board substrates |
US4464435A (en) * | 1978-10-25 | 1984-08-07 | Asahi Kasei Kogyo Kabushiki Kaisha | Polyacetal resin composition excellent in heat stability and surface processability and process for surface treating same |
EP0216513A3 (en) * | 1985-08-22 | 1987-10-21 | Amoco Corporation | Treatment of drilled copper-clad thermoplastic laminates |
EP0380767A3 (de) * | 1989-01-30 | 1991-07-31 | Schering Aktiengesellschaft | Verfahren zur haftfesten Metallisierung von hochtemperaturstabilen Kunststoffen |
US5198096A (en) * | 1990-11-28 | 1993-03-30 | General Electric Company | Method of preparing polycarbonate surfaces for subsequent plating thereon and improved metal-plated plastic articles made therefrom |
EP0500759B1 (en) * | 1989-11-03 | 1995-06-07 | Raychem Corporation | Coating metal on poly(aryl ether ketone) surfaces |
EP1978051A1 (en) * | 2007-04-03 | 2008-10-08 | Rohm and Haas Electronic Materials, L.L.C. | Metal plating compositions and methods |
US20080318071A1 (en) * | 2007-06-21 | 2008-12-25 | Moen Incorporated | Metallic coating on substrate |
US8956523B2 (en) | 2011-09-06 | 2015-02-17 | Rohm And Haas Electronic Materials Llc | Metal plating compositions and methods |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3698940A (en) * | 1970-01-26 | 1972-10-17 | Macdermid Inc | Method of making additive printed circuit boards and product thereof |
CH580132A5 (enrdf_load_html_response) * | 1970-03-16 | 1976-09-30 | Kollmorgen Corp | |
CA1245418A (en) * | 1984-03-26 | 1988-11-29 | Stephen B. Rimsa | Method of restoring the surface of a thermoplastic substrate |
US4588623A (en) * | 1984-09-28 | 1986-05-13 | Union Carbide Corporation | Metal plated poly(aryl ether) containing articles |
EP3430184A1 (en) | 2016-03-17 | 2019-01-23 | Solvay Specialty Polymers USA, LLC. | Multilayer compositions |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3067482A (en) * | 1958-07-03 | 1962-12-11 | Du Pont | Sheet material and process of making same |
US3235426A (en) * | 1961-08-01 | 1966-02-15 | Du Pont | Method of rendering thermoplastic resins receptive to coatings |
US3252844A (en) * | 1961-02-16 | 1966-05-24 | Bayer Ag | Method of obtaining a matte surface on polycarbonate |
US3264536A (en) * | 1964-07-20 | 1966-08-02 | Union Carbide Corp | Capacitor with a polyarylene polyether dielectric |
US3400187A (en) * | 1964-02-25 | 1968-09-03 | Fiber Industries Inc | Method of treating polyester structures with polyalkylene glycol and a metal hyderoxide |
-
1966
- 1966-07-14 US US3518067D patent/US3518067A/en not_active Expired - Lifetime
- 1966-08-17 GB GB3684866A patent/GB1164845A/en not_active Expired
- 1966-08-18 BE BE685679D patent/BE685679A/xx unknown
- 1966-08-19 DE DE19661521077 patent/DE1521077A1/de active Pending
- 1966-08-19 SE SE1123666A patent/SE338697B/xx unknown
- 1966-08-19 NL NL6611726A patent/NL6611726A/xx unknown
- 1966-08-19 CH CH1198266A patent/CH473231A/fr unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3067482A (en) * | 1958-07-03 | 1962-12-11 | Du Pont | Sheet material and process of making same |
US3252844A (en) * | 1961-02-16 | 1966-05-24 | Bayer Ag | Method of obtaining a matte surface on polycarbonate |
US3235426A (en) * | 1961-08-01 | 1966-02-15 | Du Pont | Method of rendering thermoplastic resins receptive to coatings |
US3400187A (en) * | 1964-02-25 | 1968-09-03 | Fiber Industries Inc | Method of treating polyester structures with polyalkylene glycol and a metal hyderoxide |
US3264536A (en) * | 1964-07-20 | 1966-08-02 | Union Carbide Corp | Capacitor with a polyarylene polyether dielectric |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3770571A (en) * | 1969-04-02 | 1973-11-06 | Richardson Co | Fabrication of printed circuit boards |
USRE29039E (en) * | 1969-11-26 | 1976-11-16 | Imperial Chemical Industries Limited | Metal deposition process |
US3905877A (en) * | 1974-02-19 | 1975-09-16 | Du Pont | Process for electroplating polyoxymethylene |
US4464435A (en) * | 1978-10-25 | 1984-08-07 | Asahi Kasei Kogyo Kabushiki Kaisha | Polyacetal resin composition excellent in heat stability and surface processability and process for surface treating same |
US4241105A (en) * | 1979-12-17 | 1980-12-23 | Western Electric Company, Inc. | Method of plating the surface of a substrate |
EP0052968A3 (en) * | 1980-11-20 | 1982-12-22 | Crosfield Electronics Limited | Coating of polymerical substrates |
US4325992A (en) * | 1981-01-05 | 1982-04-20 | Crown City Plating Co. | Electroless plating of polycarbonates |
EP0111327A1 (en) * | 1982-12-09 | 1984-06-20 | Amoco Corporation | A composition useful for making circuit board substrates |
EP0216513A3 (en) * | 1985-08-22 | 1987-10-21 | Amoco Corporation | Treatment of drilled copper-clad thermoplastic laminates |
EP0380767A3 (de) * | 1989-01-30 | 1991-07-31 | Schering Aktiengesellschaft | Verfahren zur haftfesten Metallisierung von hochtemperaturstabilen Kunststoffen |
EP0500759B1 (en) * | 1989-11-03 | 1995-06-07 | Raychem Corporation | Coating metal on poly(aryl ether ketone) surfaces |
US5198096A (en) * | 1990-11-28 | 1993-03-30 | General Electric Company | Method of preparing polycarbonate surfaces for subsequent plating thereon and improved metal-plated plastic articles made therefrom |
EP1978051A1 (en) * | 2007-04-03 | 2008-10-08 | Rohm and Haas Electronic Materials, L.L.C. | Metal plating compositions and methods |
US20080268138A1 (en) * | 2007-04-03 | 2008-10-30 | Rohm And Haas Electronic Materials Llc | Metal plating compositions and methods |
US8012334B2 (en) | 2007-04-03 | 2011-09-06 | Rohm And Haas Electronic Materials Llc | Metal plating compositions and methods |
US8329018B2 (en) | 2007-04-03 | 2012-12-11 | Rohm And Haas Electronic Materials Llc | Metal plating compositions and methods |
US20080318071A1 (en) * | 2007-06-21 | 2008-12-25 | Moen Incorporated | Metallic coating on substrate |
US8956523B2 (en) | 2011-09-06 | 2015-02-17 | Rohm And Haas Electronic Materials Llc | Metal plating compositions and methods |
Also Published As
Publication number | Publication date |
---|---|
NL6611726A (enrdf_load_html_response) | 1967-02-21 |
CH473231A (fr) | 1969-05-31 |
DE1521077A1 (de) | 1969-11-06 |
SE338697B (enrdf_load_html_response) | 1971-09-13 |
GB1164845A (en) | 1969-09-24 |
BE685679A (enrdf_load_html_response) | 1967-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3518067A (en) | Method of plating polyarylene polyethers,polycarbonate or polyhydroxyethers and the resulting articles | |
US3370107A (en) | Mixtures of polyacrylates and polyarylene polyethers | |
US4772496A (en) | Molded product having printed circuit board | |
US4664983A (en) | Polyester composition, the moldings of the composition and the process for manufacturing of the moldings | |
KR940001719B1 (ko) | 인쇄 회로판 제조에 유용한 경화성 폴리페닐렌 에테르-폴리에폭사이드 조성물 | |
US3539657A (en) | Two-phase siloxane-polyarylene polyether block copolymers | |
US4125649A (en) | Pre-etch conditioning of polysulfone and other polymers for electroless plating | |
US4550140A (en) | Circuit board substrates prepared from poly(aryl ethers)s | |
US3884990A (en) | Aromatic co-polyester composition containing polyethylene oxybenzoate and aromatic phenolic polyester | |
KR940004863B1 (ko) | 경화가능한 절연성 폴리페닐렌 에테르-폴리에폭시드 조성물 | |
EP1416007B1 (en) | Epoxy resin composition | |
EP0391201B1 (en) | Method for treating polyetherimide substrates and articles obtained therefrom | |
US3955024A (en) | Printed circuit board | |
US3536657A (en) | Mixtures of polyarylene polyethers and siloxane-polyarylene polyether copolymers | |
US4221895A (en) | Thermally resistant thermosetting aromatic polymers containing pendant 1-alkynyl substituents | |
US5185185A (en) | Process of pretreatment of metal-plating resin molded articles | |
US3455736A (en) | Cured polyarylene oxides and process therefor | |
JP2667625B2 (ja) | 絶縁積層板用のポリフェニレンエーテル/ポリエポキシド樹脂組成物 | |
US4814419A (en) | Polyarylether sulfones useful for molding into a circuit board substrate | |
US4937309A (en) | Polymer useful for molding into a circuit board subtrate | |
US4816505A (en) | New polyarylethersulfone circuit board substrates | |
US3794619A (en) | Process for the preparation of bis(2,3-epoxy-2-methylpropyl)ether type epoxy resin | |
EP0206179B1 (en) | Molded product having printed circuit board | |
US3434914A (en) | Glass fiber reinforced thermoplastic polyarylene polyether resin article and process for making same | |
EP0216513A2 (en) | Treatment of drilled copper-clad thermoplastic laminates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMOCO CORPORATION, A CORP. OF INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE CORPORATION;REEL/FRAME:004634/0001 Effective date: 19860620 |