US3516787A - Recovery of oil and aluminum from oil shale - Google Patents

Recovery of oil and aluminum from oil shale Download PDF

Info

Publication number
US3516787A
US3516787A US571649A US3516787DA US3516787A US 3516787 A US3516787 A US 3516787A US 571649 A US571649 A US 571649A US 3516787D A US3516787D A US 3516787DA US 3516787 A US3516787 A US 3516787A
Authority
US
United States
Prior art keywords
oil
shale
aluminum
leaching
retorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US571649A
Inventor
Robert A Van Nordstrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinclair Research Inc
Original Assignee
Sinclair Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinclair Research Inc filed Critical Sinclair Research Inc
Application granted granted Critical
Publication of US3516787A publication Critical patent/US3516787A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/06Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
    • C01F7/068Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process from carbonate-containing minerals, e.g. dawsonite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal

Definitions

  • the present invention relates to the recovery of oil and aluminum values from oil shales. More particularly, this invention is concerned with the treatment of oil shales containing sodium aluminum carbonates such as dawsonite, and large quantities of silica in order to recover the kerogens and aluminum from the oil shales.
  • oil shale sedimentary rocks
  • This oil may be refined into valuable products such as gasoline, diesel oil, jet fuel, and fuel oil.
  • valuable by-products such as tar acids and waxes are recoverable from the crude shale oil.
  • Extensive deposits of oil shale are found in this country, particularly in the so-called Green River shale formation located in the States of Colorado, Utah, and Wyoming. Important oil shale deposits are likewise found in other parts of the world.
  • oil shales which have substantial amounts of aluminum-com taining minerals such as dawsonite, i.e., sodium aluminum carbonate hydroxide, which, if recoverable, would increase the economical value of the oil shale.
  • This invention is then directed to the combined recovery of the oil, i.e., by retorting, and the aluminum values from such oil shales to increase the economical potential of these oil shales.
  • Oil shales with which this invention is concerned are found in, for example, Rio Blanco County, Colo.
  • the shales contain about 5 to 40%, particularly about to 30%, kerogens, i.e., hydrocarbons which form the recoverable oil, about 5 to 30%, particularly about 10 to dawsonite, and about 10 to 40%, particularly 20 to quartz, or SiO in some form.
  • kerogens i.e., hydrocarbons which form the recoverable oil
  • about 5 to 30% particularly about 10 to dawsonite
  • about 10 to 40% particularly 20 to quartz, or SiO in some form.
  • Nahcolite also is present in pockets and dolomite makes up the essential remainder of the shale and may comprise about 10 to particularly 20 to 30% thereof.
  • the process of this invention for the recovery of oil and aluminum values comprises first retorting the shale to recover the oil and then alkali leaching the hot retorted or spent shale to recover the aluminum as sodium aluminate, ultimately as aluminum hydroxide which can be calcined to alumina, a preferred nited Patent Of 3,516,787 Patented June 23, 1970 raw material for aluminum reduction plants.
  • the oil shales are generally crushed, e.g., to a particle size of about A to mm. diameter, preheated and then transferred to a retorting zone where the particles are pyrolyzed to remove the kerogens as a fog or mist and vapors which are subsequently condensed to form an oil.
  • oil shale is retorted in such a manner as to maintain a stationary zone of combustion near the top of an oil shale layer and at the same time fresh shale is moved upwardly into this zone of combustion and the products of combustion are drawn downward, countercurrently to the upward moving fresh shale, so as to preheat the latter and at the same time to drive off the mineral oils and also to effect cooling and/or condensation of vaporized oil.
  • the shale is passed downwardly countercurrently to hot gases so as to separate the oil from the oil-bearing solid material.
  • the details of the retorting process are well known to those skilled in the art, although it is a part of this invention to remove and recover the oil from the shale.
  • Retorting not only is desirable in this invention to recover the kerogens, but also to convert the shale to a form from which the aluminum values are readily recoverable. Without retorting, the aluminum is difficult to recover from the oil shale since the kerogen makes the aluminum more or less inaccessible, whereas, upon retorting, the shale becomes porous and friable. Furthermore, the decomposition products of dawsonite ar soluble in alkali and recoverable by leaching. Upon heating dawsonite at a temperature of at least about 500 F., for example, the crystalline dawsonite decomposes and becomes amorphous.
  • Retorting temperatures are generally from about 500 to 1200 F., or higher, e.g., 1700 F. preferably about 800 to 1000 F., with the upper temperature being that at which coking or cracking of the recovered oil vapors is a significant problem. Essentially all of the oil is recovered in the range of from about 500 to 1000 F, or 1200 F. With some oil shales, additional heating after retorting may improve aluminum recovery and in all cases retorting is carried out for a sufficient time to convert the dawsonite to a recoverable form. If additional heating is desirable, it may be conducted at temperatures of from about 1000 to 2400 F.
  • a time after removal of the kergons sufficient to improve aluminum recovery, e.g., up to several hours, preferably about ten minutes to 2 or 4 hours. Whether or not recovery is increased by additional heating may depend upon the particular composition of the shale and each shale may be tested to determine this point.
  • the shale after retorting, and additional heating if desired, is leached with a strong alkali solution, e.g., sodium hydroxide, under mild conditions to dissolve the aluminum compound.
  • the leaching conditions include a pH sufiicient to dissolve the aluminum component of the shale, generally a pH above about 10, preferably above 11, and a temperature and time sufficient to dissolve the aluminum component but low enough to avoid dissolving much SiO
  • leaching temperatures of from about room temperature to about 220 F., preferably about 150 to 212 F., are suitable. The temperature should remain below about 220 F.
  • Short leaching is desirable to reduce the overall time of the process. Times of about or minutes up to several, e.g., about 2 or more hours, preferably about 5 minutes to 1 hour, can be used, if desired, depending upon the temperatures and pH of the leaching solution, and about to 30 minutes has been found to be particularly suitable for leaching.
  • the alkali solution may contain about 1 to 10 weight percent of sodium hydroxide and is used in a suflicient amount, e.g., above about twice the weight of the solid being treated, to give a fiuid slurry So that the solution will thoroughly leach the retorted shale. From about 10 to 25, or 50, milliliters of alkali solution per 5 grams of solid has been found to be a suitable amount of leaching solution when the solution contains from about 2.5 to 10 wt. percent free sodium hydroxide.
  • the alkali solution which contains dissolved aluminum is separated from the undissolved solids, e.g., dolomite, quartz, calcite, etc., by filtration or other means.
  • the solution is then cooled and reduced in alkalinity, either by diluting with water or by adding carbon dioxide, to precipitate a hydrous alumina such as gibbsite or bayerite.
  • This hydrous alumina can then be separated from the alkaline mother liquor, washed, and calcined to alumina according to known pr0c dures.
  • the alkaline mother liquor can be adjusted to proper alkalinity and concentration by treating with unslaked lime to precipitate out the carbonate ions and by distilling off some of the Water, and then used to leach additional hot retorted oil shales.
  • the retort operates with limited access of air, so the pyrolysis of the shale is carried out in the effective absence of oxygen. Pyrolysis of this sample was carried out for 2 hours at 900 F. Each of the 20 portions produced about the same amount of oil, the average being 13.9 cc. for the 80 gm. sample, corresponding to 41.7 gallons of oil per ton of shale. The weight loss of the shale is estimated at The retort was opened while the sample was still hot, about 500 F., and the retorted oil shale was then cooled in air. The retorted oil shale was a black, porous, friable substance.
  • the five gram sample of retorted oil shale produced 0.2283 gram alumina, or a 4.57% recovery. This value when corrected for the 25% weight loss on retorting gives a value of 3.4% alumina based on the raw shale or 68 pounds alumina per ton of raw shale.
  • Table I illustrates the oil and alumina yield obtained from a second group of 20 samples from a second oil shale obtained in the vicinity of the first shale and having essentially the same composition. After retorting at 900 F. for 2 hours, the twenty (3-gram) samples were leached according to the procedure described in Example I using three-fifths of the amount of leaching solution.
  • the alumina yield from samples obtained at depths of 2050 ft. to 2530 ft. average 4.1% alumina based on the retorted shale which is about 3.1% based on raw shale or 62 pounds alumina per ton of raw shale.
  • the alumina yield is clearly related to the dawsonite content, shown in Table I, as measured by X-ray diffraction analysis of the individual oil shale samples.
  • EXAMPLE III Retorting-leaching studies were made on an oil shale core obtained approximately five miles from the first samples and at the interval 2044-2053 ft.
  • the core was very high in nahcolite (NaHCO low in oil and low in dawsonite, i.e., about 10% dawsonite and 15% kerogens together with substantial quantities of quartz and dolomite.
  • the core was retorted at 900 F. for 2 hours. This retorted shale was then pulverized and subdivided for individual tests. Portions were heated an additional hour at selected temperatures to simulate sequences of temperatures in a gas retort wherein the oil is driven off first, then the temperature was raised and in some cases the coke and sulfide were removed by a surface oxidation wave.
  • a process for the separation of oil and aluminum values from oil shale containing the same comprising retorting an oil shale having a composition including about 5 to 40% kerogens, about 5 to 30% sodium aluminum carbonate hydroxide, about 15 to 40% quartz and 10 to 40% dolomite at a temperature of from about 500 to 1200 F. and for a time sufficient to drive off the kerogens and to render the sodium aluminum carbonate hydroxide amorphous, leaching resulting spent the shale with an alkaline solution at a temperature of up to about 220 F. to dissolve the aluminum values from the shale without substantial precipitation of SiO separating, cooling and reducing the alkalinity of the solution containing the aluminum values to precipitate hydrous alumina and recovering the hydrous alumina.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

3,516,787 RECOVERY OF OIL AND ALUMINUM FROM OIL SHALE Robert A. Van Nordstrand, Tulsa, Okla., assignor to Sluclair Research, Inc., New York, N.Y., a corporation of Delaware No Drawing. Filed Aug. 10, 1966, Ser. No. 571,649 Int. Cl. C01f 7/06, 7/08, 7/14 US. Cl. 23-143 15 Claims ABSTRACT OF THE DISCLOSURE A process for separating oil and aluminum values from oil shale containing kerogens, sodium aluminum carbonate hydroxide, quartz and dolomite by retorting the shale at about 500 to 1200 F. to separate the oil, leaching the resulting spent shale with an alkaline solution at a temperature of up to about 220 F. to dissolve the aluminum values from the shale without substantial precipitation of SiO and recovering the aluminum values as hydrous alumina from the alkaline solution.
The present invention relates to the recovery of oil and aluminum values from oil shales. More particularly, this invention is concerned with the treatment of oil shales containing sodium aluminum carbonates such as dawsonite, and large quantities of silica in order to recover the kerogens and aluminum from the oil shales.
It is, of course, well known that certain sedimentary rocks, commonly referred to as oil shale, upon heating, yield appreciable quantities of relatively crude oil as well as gaseous hydrocarbons. This oil may be refined into valuable products such as gasoline, diesel oil, jet fuel, and fuel oil. Likewise, valuable by-products such as tar acids and waxes are recoverable from the crude shale oil. Extensive deposits of oil shale are found in this country, particularly in the so-called Green River shale formation located in the States of Colorado, Utah, and Wyoming. Important oil shale deposits are likewise found in other parts of the world. With diminishing world reserves, there has been considerable interest in developing a commercially feasible process, suitable for application on a large scale, for retorting (i.e., destructive distilling) oil shale to recover its potential yield of crude oil; however, to date the retorting of oil shales has not been extensively practiced on a commercial scale.
Recently, however, there have become of interest oil shales which have substantial amounts of aluminum-com taining minerals such as dawsonite, i.e., sodium aluminum carbonate hydroxide, which, if recoverable, would increase the economical value of the oil shale. This invention is then directed to the combined recovery of the oil, i.e., by retorting, and the aluminum values from such oil shales to increase the economical potential of these oil shales. Oil shales with which this invention is concerned are found in, for example, Rio Blanco County, Colo. The shales contain about 5 to 40%, particularly about to 30%, kerogens, i.e., hydrocarbons which form the recoverable oil, about 5 to 30%, particularly about 10 to dawsonite, and about 10 to 40%, particularly 20 to quartz, or SiO in some form. Nahcolite also is present in pockets and dolomite makes up the essential remainder of the shale and may comprise about 10 to particularly 20 to 30% thereof.
In general, the process of this invention for the recovery of oil and aluminum values comprises first retorting the shale to recover the oil and then alkali leaching the hot retorted or spent shale to recover the aluminum as sodium aluminate, ultimately as aluminum hydroxide which can be calcined to alumina, a preferred nited Patent Of 3,516,787 Patented June 23, 1970 raw material for aluminum reduction plants. In the first or retorting step, the oil shales are generally crushed, e.g., to a particle size of about A to mm. diameter, preheated and then transferred to a retorting zone where the particles are pyrolyzed to remove the kerogens as a fog or mist and vapors which are subsequently condensed to form an oil.
In one of the retorting methods presently receiving commercial consideration for the recovery of oil from oil-bearing material, oil shale is retorted in such a manner as to maintain a stationary zone of combustion near the top of an oil shale layer and at the same time fresh shale is moved upwardly into this zone of combustion and the products of combustion are drawn downward, countercurrently to the upward moving fresh shale, so as to preheat the latter and at the same time to drive off the mineral oils and also to effect cooling and/or condensation of vaporized oil. In another retorting method, the shale is passed downwardly countercurrently to hot gases so as to separate the oil from the oil-bearing solid material. The details of the retorting process are well known to those skilled in the art, although it is a part of this invention to remove and recover the oil from the shale.
Retorting not only is desirable in this invention to recover the kerogens, but also to convert the shale to a form from which the aluminum values are readily recoverable. Without retorting, the aluminum is difficult to recover from the oil shale since the kerogen makes the aluminum more or less inaccessible, whereas, upon retorting, the shale becomes porous and friable. Furthermore, the decomposition products of dawsonite ar soluble in alkali and recoverable by leaching. Upon heating dawsonite at a temperature of at least about 500 F., for example, the crystalline dawsonite decomposes and becomes amorphous. If heated at about 900 F., cooled and then exposed to air, sodium carbonate and bayerite crystallize out of the amorphous dawsonite. At temperatures of about 1300 F. the dawsonite is converted to crystalline sodium aluminate. The aluminum is, however, readily recoverable by alkali leaching from these various forms. Additionally, retorting decomposes the dolomite in the shale to produce CO calcite and MgO. The MgO ties up part of the SiO to permit higher recovery of the aluminum values by leaching. Otherwise, this SiO can, during retorting or leaching, react with the aluminum to form sodium aluminum silicate from which aluminum recovery is very difiicult and uneconomical.
Retorting temperatures are generally from about 500 to 1200 F., or higher, e.g., 1700 F. preferably about 800 to 1000 F., with the upper temperature being that at which coking or cracking of the recovered oil vapors is a significant problem. Essentially all of the oil is recovered in the range of from about 500 to 1000 F, or 1200 F. With some oil shales, additional heating after retorting may improve aluminum recovery and in all cases retorting is carried out for a sufficient time to convert the dawsonite to a recoverable form. If additional heating is desirable, it may be conducted at temperatures of from about 1000 to 2400 F. for a time after removal of the kergons sufficient to improve aluminum recovery, e.g., up to several hours, preferably about ten minutes to 2 or 4 hours. Whether or not recovery is increased by additional heating may depend upon the particular composition of the shale and each shale may be tested to determine this point.
The shale, after retorting, and additional heating if desired, is leached with a strong alkali solution, e.g., sodium hydroxide, under mild conditions to dissolve the aluminum compound. The leaching conditions include a pH sufiicient to dissolve the aluminum component of the shale, generally a pH above about 10, preferably above 11, and a temperature and time sufficient to dissolve the aluminum component but low enough to avoid dissolving much SiO In general, leaching temperatures of from about room temperature to about 220 F., preferably about 150 to 212 F., are suitable. The temperature should remain below about 220 F. to avoid substantial reaction with SiO since with higher leaching temperatures more SiO is dissolved by the alkali and the SiO,, will re-precipitate with sodium and aluminum as a sodium aluminum silicate from which recovery of the aluminum is quite difficult. Short leaching is desirable to reduce the overall time of the process. Times of about or minutes up to several, e.g., about 2 or more hours, preferably about 5 minutes to 1 hour, can be used, if desired, depending upon the temperatures and pH of the leaching solution, and about to 30 minutes has been found to be particularly suitable for leaching. The alkali solution may contain about 1 to 10 weight percent of sodium hydroxide and is used in a suflicient amount, e.g., above about twice the weight of the solid being treated, to give a fiuid slurry So that the solution will thoroughly leach the retorted shale. From about 10 to 25, or 50, milliliters of alkali solution per 5 grams of solid has been found to be a suitable amount of leaching solution when the solution contains from about 2.5 to 10 wt. percent free sodium hydroxide.
Following leaching, the alkali solution which contains dissolved aluminum is separated from the undissolved solids, e.g., dolomite, quartz, calcite, etc., by filtration or other means. The solution is then cooled and reduced in alkalinity, either by diluting with water or by adding carbon dioxide, to precipitate a hydrous alumina such as gibbsite or bayerite. This hydrous alumina can then be separated from the alkaline mother liquor, washed, and calcined to alumina according to known pr0c dures. The alkaline mother liquor can be adjusted to proper alkalinity and concentration by treating with unslaked lime to precipitate out the carbonate ions and by distilling off some of the Water, and then used to leach additional hot retorted oil shales.
The following examples serve to illustrate the invention.
EXAMPLE I An oil shale from Section 21, Township 1S.98W., Rio Blanco County, Colo., taken over the depth interval 2186' to 2189' was crushed to a A; to inch size. In addition to about 30% kerogens, this shale contains about dawsonite [NaAlCO (OI-I) with the remainder being primarily quartz (SiO and dolomite (CaMg(CO Twenty samples of 80 gm. each were separated. Each sample was placed in an oil shale assay retort constructed so that both the oil and water produced from each sample is recovered and measured. The retort operates with limited access of air, so the pyrolysis of the shale is carried out in the effective absence of oxygen. Pyrolysis of this sample was carried out for 2 hours at 900 F. Each of the 20 portions produced about the same amount of oil, the average being 13.9 cc. for the 80 gm. sample, corresponding to 41.7 gallons of oil per ton of shale. The weight loss of the shale is estimated at The retort was opened while the sample was still hot, about 500 F., and the retorted oil shale was then cooled in air. The retorted oil shale was a black, porous, friable substance. A small portion of this retorted sample was crushed and analyzed by X-ray diffraction. The dawsonite was no longer present in its original crystal form and there was no crystalline compound which could be identified by X-ray diffraction as the product of the dawsonite decomposition. The quartz appears to be pr sent in unchanged amount. The dolomite was partially lost. The expected amount of calcite was observed in the retorted shale. The dawsonite was apparently decomposed to a sodium aluminate (NaAIO A portion of the retorted sample was thentreated by a leaching operation to obtain alumina. The leaching solution consisted of sodium hydroxide and distilled water,
specifically, 50 grams of NaOH per liter of solution. A portion of the retorted shale described above was pulverized, and 5 grams were placed in a 250 ml. Pyrex beaker. Thirty-nine ml. of the leaching solution was added. The mixture was heated to about 180 F. and maintained at this temperature for 15 minutes, with frequent stirring. The mixture was diluted with water and filtered. The filtrate was acidified with hydrochloric acid and heated (driving off carbon dioxide and hydrogen sulfide). The solution was then made slightly alkaline with ammonium hydroxide to precipitate aluminum hydroxide. The latter was filtered off, ignited to A1 0 and weighed. The five gram sample of retorted oil shale produced 0.2283 gram alumina, or a 4.57% recovery. This value when corrected for the 25% weight loss on retorting gives a value of 3.4% alumina based on the raw shale or 68 pounds alumina per ton of raw shale.
EXAMPLE II Table I illustrates the oil and alumina yield obtained from a second group of 20 samples from a second oil shale obtained in the vicinity of the first shale and having essentially the same composition. After retorting at 900 F. for 2 hours, the twenty (3-gram) samples were leached according to the procedure described in Example I using three-fifths of the amount of leaching solution. The alumina yield from samples obtained at depths of 2050 ft. to 2530 ft. average 4.1% alumina based on the retorted shale which is about 3.1% based on raw shale or 62 pounds alumina per ton of raw shale. The alumina yield is clearly related to the dawsonite content, shown in Table I, as measured by X-ray diffraction analysis of the individual oil shale samples.
TABLE I Alumina Dawsouite produced Oil yield content (rel- (percent on (previous ative by X Sample (foot Oil p1'0 retorted assay) (galray diffracdepth) duced shale) lens/ton) tion Yes 0. 11 14 0.00 Yes 0. 17 9 0.00 Yes 0. 59 10 0.00 Yes 0.06 28 0.00 Yes 0. 03 26 0. 00 Yes 0. 00 13 0. 00 Yes 0. 00 31 0. 00 Yes 2. 07 11 0. 27 Yes 0.23 11 0.03 Yes 4. 94 17 0. 61 Yes 2.05 24 0. 47 Yes 2. 41 11 0.25 Yes 5. 50 41 1.00 Yes 5. 22 25 0. 49 Yes 6.62 55 0.80 Yes 3. 38 33 0. Yes 3. 4O 48 0. 63 2,530 Yes 3. 62 33 0. 2,588 Yes 0. 15 9 0. 00 2,650 Yes 0. 03 45 0. 00
EXAMPLE III Retorting-leaching studies were made on an oil shale core obtained approximately five miles from the first samples and at the interval 2044-2053 ft. The core was very high in nahcolite (NaHCO low in oil and low in dawsonite, i.e., about 10% dawsonite and 15% kerogens together with substantial quantities of quartz and dolomite. The core was retorted at 900 F. for 2 hours. This retorted shale was then pulverized and subdivided for individual tests. Portions were heated an additional hour at selected temperatures to simulate sequences of temperatures in a gas retort wherein the oil is driven off first, then the temperature was raised and in some cases the coke and sulfide were removed by a surface oxidation wave.
A second temperature study was made on another core taken at the same location over the depth interval 2252 54 ft. This sample had about 30% kerogens, about 20% clawsonite and little or no nahcolite with the remainder being essentially dolomite and quartz.
TABLE II Alumina pro- Sample (It. duced (pourgis/ on Retort temp. depth) Oil produced (1 hr. exposure) (gallons/ton) 1,700 F 1,900 F. 2 hrs.) 1 F EXAMPLE IV TABLE III Percent A1203 recovery 15 min.
NaOH (wt. percent) 30 min.
TABLE IV A120; recovery (wt. percent) 23 ml. soln/ gm.
soli
12 ml. soln/B gm. solid N aOH (wt. percent) TABLE V A1203 recovery (wt. percent) 180 F. 140 F. 100 F.
It is claimed:
1. A process for the separation of oil and aluminum values from oil shale containing the same comprising retorting an oil shale having a composition including about 5 to 40% kerogens, about 5 to 30% sodium aluminum carbonate hydroxide, about 15 to 40% quartz and 10 to 40% dolomite at a temperature of from about 500 to 1200 F. and for a time sufficient to drive off the kerogens and to render the sodium aluminum carbonate hydroxide amorphous, leaching resulting spent the shale with an alkaline solution at a temperature of up to about 220 F. to dissolve the aluminum values from the shale without substantial precipitation of SiO separating, cooling and reducing the alkalinity of the solution containing the aluminum values to precipitate hydrous alumina and recovering the hydrous alumina.
2. The process of claim 1 wherein the spent retorted shale resulting from the retorting step is heated after removal of the kerogens and prior to leaching at a temperature and for a time sufiicient to improve the recovery of said aluminum values, said temperature being from about 1000 to 2400 F.
3. The process of claim 2 wherein the last-mentioned time is up to about four hours.
4. The process of claim 1 wherein the pH of the leaching solution is above 10.
5. The process of claim 1 wherein the pH of the leaching solution is above 11.
6. The process of claim 5 wherein the leaching temperature is about 150 to 212 F.
7. The process of claim 6 wherein the leaching time is between about 5 minutes and 2 hours.
8. The process of claim 7 wherein the alkaline leaching solution contacts the retorted shale while the shale is still hot as a result of said retorting.
9. The process of claim 8 wherein the retorted shale is at a temperature of about 212 F. when contacted by said alkaline solution.
10. The process of claim 7 wherein the leaching time is less than 1 hour.
11. The process of claim 7 wherein said reduction of alkalinity comprises treating the alkaline solution with carbon dioxide.
12. The process of claim 7 wherein said reduction of alkalinity comprises diluting the alkaline solution with water.
13. The process of claim 12 wherein the alkaline solution is cooled to a temperature below about 100 F.
14. The process of claim 11 in which the alkaline solution is cooled to a temperature of below about 100 F. before the addition of carbon dioxide.
15. The process of claim 11 in which the alkaline solution is cooled to a temperature of below about 100 F. after the addition of carbon dioxide.
References Cited UNITED STATES PATENTS 1,891,609 12/1932 Scheidt 2352 2,141,132 12/1938 Folger 2352 2,468,654 4/1949 Brundell et al. 21 2,592,468 4/1952 Rex et al. 106-100 2,904,445 9/1959 Sellers et al. 106-100 2,947,606 8/1960 Holderreed et al. 23143 2,973,244 2/1961 Spence 2352 3,135,618 6/1964 Friese 208-11 PATRICK P. GAtRVIN, Primary Examiner P. E. KONOPKA, Assistant Examiner US. Cl. X.R.
US571649A 1966-08-10 1966-08-10 Recovery of oil and aluminum from oil shale Expired - Lifetime US3516787A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57164966A 1966-08-10 1966-08-10

Publications (1)

Publication Number Publication Date
US3516787A true US3516787A (en) 1970-06-23

Family

ID=24284533

Family Applications (1)

Application Number Title Priority Date Filing Date
US571649A Expired - Lifetime US3516787A (en) 1966-08-10 1966-08-10 Recovery of oil and aluminum from oil shale

Country Status (1)

Country Link
US (1) US3516787A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642433A (en) * 1968-08-05 1972-02-15 Us Interior Process for extracting aluminum compounds from dawsonite and dawsonitic oil shale
US3973734A (en) * 1971-10-18 1976-08-10 Industrial Resources, Inc. Froth flotation process
US4039427A (en) * 1975-12-29 1977-08-02 Mcdowell-Wellman Engineering Company Process for retorting oil shale
US4069132A (en) * 1975-11-12 1978-01-17 Union Oil Company Of California Oil shale retorting process with desulfurization of flue gas
US4171146A (en) * 1978-01-23 1979-10-16 Occidental Research Corporation Recovery of shale oil and magnesia from oil shale
US4490238A (en) * 1984-04-16 1984-12-25 Exxon Research And Engineering Co. Process for beneficiating oil-shale
US4491514A (en) * 1984-04-16 1985-01-01 Exxon Research & Engineering Co. Process for beneficiating oil-shale
US4491513A (en) * 1984-04-16 1985-01-01 Exxon Research & Engineering Co. Process for beneficiating oil-shale
US4566965A (en) * 1982-12-27 1986-01-28 Exxon Research & Engineering Company Removal of nitrogen and sulfur from oil-shale
US4576707A (en) * 1984-04-16 1986-03-18 Exxon Research And Engineering Co. Process for beneficiating coal
US4584088A (en) * 1984-07-12 1986-04-22 Standard Oil Company (Indiana) Method for treating shale
US4668380A (en) * 1983-10-13 1987-05-26 Standard Oil Company (Indiana) Method for treating shale
WO2004026993A1 (en) * 2000-01-24 2004-04-01 Rendall John S Supercritical hydro extraction of kerogen and aqueous extraction of alumina and soda ash with a residue for portland cement production
US8641150B2 (en) * 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891609A (en) * 1929-12-26 1932-12-20 Electric Smelting & Aluminum C Process of producing alumina from waste coal products
US2141132A (en) * 1936-06-11 1938-12-20 Cowles Detergent Company Process of treating siliceous materials
US2468654A (en) * 1943-06-29 1949-04-26 Brundell Per Gunnar Process of obtaining metals, oxides, and salts, from bituminous shale
US2592468A (en) * 1947-12-06 1952-04-08 Standard Oil Dev Co Manufacture of cement
US2904445A (en) * 1956-05-04 1959-09-15 Texaco Development Corp Portland cement manufacture from oil shale
US2947606A (en) * 1957-05-21 1960-08-02 Anaconda Co Production of silica-free alumina
US2973244A (en) * 1957-10-07 1961-02-28 Monolith Portland Midwest Comp Process of sintering aluminum containing minerals
US3135618A (en) * 1960-03-10 1964-06-02 Metallgesellschaft Ag Process for producing cement using pretreated oil shale

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1891609A (en) * 1929-12-26 1932-12-20 Electric Smelting & Aluminum C Process of producing alumina from waste coal products
US2141132A (en) * 1936-06-11 1938-12-20 Cowles Detergent Company Process of treating siliceous materials
US2468654A (en) * 1943-06-29 1949-04-26 Brundell Per Gunnar Process of obtaining metals, oxides, and salts, from bituminous shale
US2592468A (en) * 1947-12-06 1952-04-08 Standard Oil Dev Co Manufacture of cement
US2904445A (en) * 1956-05-04 1959-09-15 Texaco Development Corp Portland cement manufacture from oil shale
US2947606A (en) * 1957-05-21 1960-08-02 Anaconda Co Production of silica-free alumina
US2973244A (en) * 1957-10-07 1961-02-28 Monolith Portland Midwest Comp Process of sintering aluminum containing minerals
US3135618A (en) * 1960-03-10 1964-06-02 Metallgesellschaft Ag Process for producing cement using pretreated oil shale

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642433A (en) * 1968-08-05 1972-02-15 Us Interior Process for extracting aluminum compounds from dawsonite and dawsonitic oil shale
US3973734A (en) * 1971-10-18 1976-08-10 Industrial Resources, Inc. Froth flotation process
US4069132A (en) * 1975-11-12 1978-01-17 Union Oil Company Of California Oil shale retorting process with desulfurization of flue gas
US4039427A (en) * 1975-12-29 1977-08-02 Mcdowell-Wellman Engineering Company Process for retorting oil shale
US4171146A (en) * 1978-01-23 1979-10-16 Occidental Research Corporation Recovery of shale oil and magnesia from oil shale
US4566965A (en) * 1982-12-27 1986-01-28 Exxon Research & Engineering Company Removal of nitrogen and sulfur from oil-shale
US4668380A (en) * 1983-10-13 1987-05-26 Standard Oil Company (Indiana) Method for treating shale
US4491514A (en) * 1984-04-16 1985-01-01 Exxon Research & Engineering Co. Process for beneficiating oil-shale
US4491513A (en) * 1984-04-16 1985-01-01 Exxon Research & Engineering Co. Process for beneficiating oil-shale
US4576707A (en) * 1984-04-16 1986-03-18 Exxon Research And Engineering Co. Process for beneficiating coal
US4587004A (en) * 1984-04-16 1986-05-06 Exxon Research And Engineering Co. Process for beneficiating oil-shale
US4490238A (en) * 1984-04-16 1984-12-25 Exxon Research And Engineering Co. Process for beneficiating oil-shale
US4584088A (en) * 1984-07-12 1986-04-22 Standard Oil Company (Indiana) Method for treating shale
WO2004026993A1 (en) * 2000-01-24 2004-04-01 Rendall John S Supercritical hydro extraction of kerogen and aqueous extraction of alumina and soda ash with a residue for portland cement production
US8641150B2 (en) * 2006-04-21 2014-02-04 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery

Similar Documents

Publication Publication Date Title
US3389975A (en) Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide
US3516787A (en) Recovery of oil and aluminum from oil shale
US4045537A (en) Process for recovering soda and alumina values from red mud
RU2312126C2 (en) Hydraulic extraction method of kerogen in super-critical conditions (variants) and apparatus for performing the same
US4551237A (en) Arsenic removal from shale oils
US4058587A (en) Process for removing impurities from acidic fluid solutions
US4587004A (en) Process for beneficiating oil-shale
US1868499A (en) Process of recovering alumina from silicious materials containing it
US3821353A (en) Shale oil and mineral recovery process
US3074877A (en) Method for recovering oil from oil-bearing minerals
US4588566A (en) Extraction of lithium from lithium-containing materials
US4420464A (en) Recovery of vanadium from carbonaceous materials
US1422004A (en) Process of obtaining alumina
US4491514A (en) Process for beneficiating oil-shale
US3459502A (en) Production of alumina from dawsonite
EP0029695B1 (en) Removal of phenols from phenol-containing streams
US4454027A (en) Arsenic removal method
Meher et al. Extraction of alumina from red mud by divalent alkaline earth metal soda ash sinter process
US3859413A (en) Alumina recovery from oil shale residue
RU2324655C2 (en) Method for coal conversion
US4668380A (en) Method for treating shale
US4584088A (en) Method for treating shale
US3721730A (en) Alumina recovery from retorted oil shale residue
US4557910A (en) Production of soda ash from nahcolite
US2383972A (en) Recovery of vanadim and nickel from petroleum