US3511677A - Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof - Google Patents

Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof Download PDF

Info

Publication number
US3511677A
US3511677A US739727A US73972768A US3511677A US 3511677 A US3511677 A US 3511677A US 739727 A US739727 A US 739727A US 73972768 A US73972768 A US 73972768A US 3511677 A US3511677 A US 3511677A
Authority
US
United States
Prior art keywords
yarn
finish
yarns
filaments
twist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US739727A
Other languages
English (en)
Inventor
Alfred J Strohmaier
Robert W Whitman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US739727A priority Critical patent/US3511677A/en
Application granted granted Critical
Publication of US3511677A publication Critical patent/US3511677A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/221Preliminary treatments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • PROCESS FOR PREPARATION OF A SIZED ZERO-TWIST SYNTHETIC FIBER YARN AND PRODUCT THEREOF Filed June 25, 1968 ALFRED J. STROHIAIER ROBERT W. WHITMAN ATTORNEY United States Patent O PROCESS FOR PREPARATION OF A SIZED ZERO- TWIST SYNTHETIC FIBER YARN AND PRODUCT THEREOF Alfred J. Strohmaier and Robert W. Whitman, Seaford,
  • the present invention relates to novel synthetic textile yarns and to a method for their preparation. More particularly, it relates to a coherent, zero-twist synthetic fiber yarn and to a novel and efiicient process for preparing the yarn. While the invention is applicable to any drawable synthetic polymer yarn, it will be particularly described with reference to the preferred polyamide textile yarns.
  • Polyamide textile yarns e.g., those prepared from polyhexamethylene adipamide and polycaproamide, are wellknown articles of commerce, with numerous variations in structure and form being known and sold, and many variations in manufacturing processes being proposed.
  • considerable interest has developed in zero-twist multifilament textile yarns because of their higher degree of opacity in woven fabrics combined with the considerable saving in manufacturing costs achieved by the elimination of twisting operations.
  • the manufacturer is free to use high-speed surface driven package windups, such as that disclosed by Peterson in US. Pat. No. 2,789,774.
  • zerotwist yarns are subject to filament snagging, ballooning at guides, and filament transfer between adjacent yarn bundles.
  • the present invention provides Zero-twist polyamide textile yarns suitable for use, without further treatment, as filling yarns in woven fabrics. Another provision is a zerotwist multifilament polyamide yarn having reduced friction and improved running characteristics.
  • the invention also provides a zero-twist yarn characterized by a coherent yarn bundle structure and an efiicient and economical process for preparing coherent zero-twist multifilament nylon yarns.
  • a process for preparing a coherent zero-twist multifilament polyamide textile yarn comprising supplying to a drawing step a zero-twist multifilament undrawn yarn prepared from a synthetic linear polycarbonamide, applying to the undrawn yarn a liquid finish comprising a major amount of a volatile inert liquid and a minor amount of a thermoplastic filmforming polymeric material which is adherent to polyamide structures, immediately drawing the yarn to the desired degree of orientation before the volatile liquid evaporates, heating the drawn yarn (under tension) to an elevated temperature for a suflicient time to evaporate the residual volatile liquid and dry the finish coating, and then winding the yarn into a package without twisting.
  • Operation of the above process provides a coherent zero-twist multifilament synthetic textile yarn in which the filaments are held together and protected throughout their length by a thin nontacky covering of a size-like nature.
  • the yarn is resistant to snagging, ballooning, and filament transfer between adjacent yarn bundles, and is capable of being wound on a quill and used as a filling yarn in woven fabrics without additional preparation.
  • the yarn exhibits reduced friction and improved luster uniformity which permits the production of fabrics showing a markedly reduced incidence of both flashes and tension-induced fabric nonuniformities. Close examination reveals that the sized yarn bundle has a somewhat flattened cross section but is not spread out to a single-filament-thick band.
  • the process conditions be adjusted to give a yarn bearing at least about 0.01 weight percent to as much as 0.05 to 0.8 weight percent film-forming polymer. Where the amount of the film-forming material is too small, it does not provide suflicient coherence for a useful yarn.
  • the application of more than about 0.8% film-former leads to processing difliculties associated with the formation of deposits on guides and rolls. However, more than 0.8% film-former may be used with specialized guide and roll surfaces, for example, Teflon 1 fluorocarbon resin or silicone-coated surfaces.
  • Other lubricants and yarn dressing agents in addition to the film-forming polymer may be present in the dried coating, but the total finish solids loading preferably will not exceed about 3% by weight on the yarn.
  • thermoplastic polymeric film-forming material is incorporated in the spin finish normally applied to the undrawn filaments immediately after quenching.
  • molten polymer is extruded through spinneret 1 to form filaments 2 which are quenched and then passed over finish applicator roll 3 where a size-containing finish is applied to the discrete filaments.
  • the filaments are then converged in guide 4 and proceed as a bundle to and around feed roll 5, with its accompanying separator roll 6.
  • the yarn next passes to and around first draw roll 7 and associated separator roll 8, which is moving at a higher peripheral speed than feed roll 5, and then proceeds to and around heated second-stage draw rolls 9, 10 which are rotating at a peripheral speed higher than that of first-stage draw roll 7.
  • Dried, sized, drawn yarn 11 then optionally passes in contact with finish applicator roll 12, where a secondary finish many be applied, and then passes through a traversing guide 13 to windup bobbin 14 driven by drive roll 15.
  • a polyamide is converted, in one continuous operation, from molten polymer into a drawn sized textile yarn suitable for use directly as filling in the weaving of fabrics.
  • the drawing takes place in two stages in zones 16, 17 and the drawn yarn is heated to an elevated temperature under tension as it passes around heated rolls 9, 10 to evaporate the residual volatile liquid and dry the finish coating before winding into package 14.
  • the sized multifilament yarn produced by this preferred process when woven and dyed, yields fabrics having a degree of uniformity higher than has been observed With any prior nylon yarn. The virtual absence of visual defects, spots, flashes, and the like, is readily apparent even to an untrained observer.
  • zero-twist yarn refers to a yarn which has no measurable twist in several yards of length.
  • undrawn yarn refers to yarn which exhibits spinning orientation only. Usually undrawn yarn has a birefringence value less than 0.012. Birefringence is determined according to the method of Heyn, Textile Research Journal, 22, 513 (1952), and is a measure of crystalline orientation.
  • multifilament yarn refers to a textile denier yarn having at least five filaments in the yarn bundle.
  • the yarn may contain as many as 200 filaments or more in the bundle, but most common textile denier yarns contain fewer than 100 filaments.
  • the degree of filament parallelism in a multifilament yarn, or absence of filament entanglement may be measured automatically by the apparatus of Hitt described in U.S. Pat. No. 3,290,932.
  • the apparatus measures the length of yarn, in centimeters, which can be passed through a test point before entangled or intermingled filaments deflect a needle projecting transversely through the moving yarn bundle.
  • This length of yarn usually an average of 10 determinations, is reported as the automatic pin drop count, or APDC number (in centimeters).
  • APDC number in centimeters
  • 1 of the patent is modified by inserting a device for wickin-g a solvent (usually water) onto the yarn between the tension device 14 and needle probe 18.
  • the tension device is set to provide a tension of 10 gms. in the test yarn, and the yarn passed through the apparatus at a speed of 100 inches per minute.
  • the apparatus is adjusted so that a force of 8 gms. is required to trip the needle probe.
  • the multifilament sized yarns of this invention not available heretofore, have average APDC values (measured as described above) higher than the expression (l000-10N) cm., where N is the number of filaments in the range of 5 to about in the yarn bundle, and APDC values above 100 cm. for yarns having about 90 to about 210 filaments.
  • the preferred yarns of this invention giving the best performance in fabrics, usually and APDC values above 100 cm.
  • synthetic linear polycarbonamide is intended to include any linear polymer having recurring units of the formula as integral parts of the main polymer chain, wherein R is hydrogen or a monovalent hydrocarbon radical, the average number of carbon atoms separating the amide groups being at least 2, said polycarbonamide having an intrinsic viscosity of at least about 0.4, as defined in U.S. 2,130,948.
  • Particular polycarbonamides including among those which are useful in this invention are as follows: polyhexamethylene adipamide, polyhexamethylene sebacamide, polymerized 6-aminocaproic acid, polytetramethylene .sebacamide, polytetramethylene adipamide, polymetaxylyleneadipamide, the polyamide from bis(4-aminocyclohexyl)methane and azelaic acid, sebacic acid, decamethylene-1,10'-dicarboxylic acid or dodecane- 1,12-dioic acid, and the polyamide from Z-methylhexamethylene diamine and terephthalic acid.
  • the invention is also applicable to other polymers and various copoly-mers, either block or random, such as the copolyrner of polyhexamethylene adipamide and polyhexamethylene isophthalamide and the copolyrner of polyhexamethylene adipamide, and polyhexamethylenet-butyl isophthalamide.
  • Other suitable polycarbonamides are disclosed in U.S. Pats. Nos. 2,071,251 and 2,071,253.
  • the liquid finish of this invention comprises a major amount of an inert volatile liquid.
  • major amount is meant at least 60% of the total mixture.
  • the volatile liquid may comprise up to or more of the finish composition.
  • Suitable volatile liquids are those which have boiling points above room temperature but below the temperature of the heating step which follows the yarn drawing step. Removal of the volatile liquid is accomplished by heating the yarn to a temperature above the boiling point of the liquid but below the melting point of the polymer for a short period, generally less than a second in duration.
  • Liquids particularly suitable include water and low molecular weight alcohols such as ethanol.
  • the liquid finish also contains, as an essential component, a minor amount of a thermoplastic film-forming polymeric material which forms a coherent bond with polyamide structures.
  • minor amount is meant concentrations of the order of 0.25 to 5% of the total finish composition.
  • film-forming polymer is meant a polymer capable of being formed into a self-supporting film.
  • the film-forming polymeric material may either be dissolved or dispersed in the volatile carrier liquid.
  • a preferred film-forming polymeric material is polyacrylic acid, because of its excellent adherency to polyamides.
  • film-forming materials which may be used include monomeric and polymeric phenol-formaldehyde resins, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polymethacrylates, poly(methylvinylether/maleic anhydride) interpolymer, polyitaconic acid, and copolymers of vinylidene chloride and acrylic acid. Copolymers and mixtures of polymers may be used.
  • any film-forming material suitable as a sizing agent for nylon yarns is operable in the process of this invention.
  • the liquid finish containing the film-forming polymeric material may also include other yarn dressing agents, if desired.
  • the finish When the film-forming polymeric material is applied to the yarn as a component of spin finish in a coupled spinning and drawing process, it is usually desirable for the finish to contain lubricants, emulsifiers, and wetting agents.
  • lubricants which may be used include mineral, animal, or vegetable oils, esters, synthetic oils such as polyethylene oxide derivatives, silicone oils and similar materials.
  • Suitable emulsifiers include soaps such as the alkali metal salts of oleic or stearic acid, sulfonated petroleum oils, and esters such as sorbitan trioleate and sorbitan monolaurate.
  • Suitable wetting agents include anionic materials such as the dioctyl ester of sodium sulfosuccinate as well as nonionic materials such as condensation products of alkyl phenols with ethylene oxide.
  • Bactericides such as Dowicide A (sodium salt of phenylphenate) may be added if desired.
  • Antistatic agents such as trialkylphosphates may also be present.
  • the liquid finish be applied to the undrawn yarn and then the yarn drawn while the finish is still in the liquid state. Immediately thereafter, the finishcoated yarn must be heated so that a dry coherent film is formed on the yarn before it is wound up.
  • the drawn yarn may be heated to any temperature sufficient to drive off the volatile liquid and provide a dry coherent film. Temperatures between 80 C. and 220 C. are suitable. For high speed operations with relatively short heating times, temperatures in the range 180 210 C. are particularly suitable.
  • the coherent zero-twist yarn of this invention is to be subjected to severe abrasive conditions, it may be desirable to apply to the drawn yarn an additional overlay finish.
  • any conventional polyamide dressing composition may be used.
  • a master finish mixture is prepared by mixing the following ingredients in the indicated proportions:
  • the three test mixtures and the control are used, consecutively, as spinning finishes in the preparation of polyamide yarns as follows.
  • Polyhexamethylene adiparnide is melt spun into a 34-filament yarn having a polymer intrinsic viscosity of 1.1 using the apparatus of Greenwalt, U.S. Pat. No. 2,217,743, and the filaments quenched with cross-flow cooling air according to the method of Brand, U.S. Pat. No. 3,067,459.
  • the quenched undrawn filaments are then contacted with a rotating finish roller (U.S. Pat. No. 3,067,458) which is bathed in the finish mixture supplied (Table I).
  • the yarn is then converged and passed around a feed roll rotating with a surface speed of 834 y.p.m., then through a first draw Zone and around a first draw roll rotating with a surface speed of 1870 y.p.m.
  • the yarn is then passed through a second draw zone to and around a pair of combination draw-anneal rolls heated to a temperature of 200 C. and rotating at a surface speed of 3000 y.p.m. In passing over the latter rolls, the yarn is heated to a temperature approaching roll temperature. It is then advanced to a surface driven bobbin windup and wound into a package without being twisted, i.e., into a zero-twist package.
  • All of the yarn samples produced, both control and test have a denier of 701-2, a tenacity of 5.11025 g.p.d. and an elongation of 20.5- 1.5% under a load of 300 gm.
  • the samples bearing the test finishes exhibit a coherent bundle structure capable of passing over guides and through eyelets without snagging or ballooning and without transfer of filaments between adjacent yarn bundles.
  • Measurement of the yarn profile as the yarn in passed over a sharp edge indicates that the yarn bundle is several filaments thick, as if it were a slightly interlaced yarn as described in U.S. Pat. No. 2,985,995.
  • closer examination, and other tests such as the APDC test reveal an extremely low level of filament intermingling.
  • the lightly coated test yarns show no shedding of finish and leave no deposits on guide surfaces.
  • the coeflicient of friction is measured by passing a test yarn at a speed of 250 y.p.m. over a %-inch diameter stationary pin, using a wrap angle of approximately 164, and measuring input and output threadline tensions. Calculations are based on the standard formula where T is input tension, T is output tension, f is the coefficient of friction, and 6 is the wrap angle in radians.
  • Example II For comparison, the general procedure of Example I is repeated using control finish l-D, but with the exception that the drawn yarn passes through an interlacing jet as described in U.S. 2,985,995 before it is wound up.
  • the yarn produced has a moderately coherent bundle structure with measured coefiicients of friction falling between those of the control and test yarns of Example 1.
  • the yarn is quilled and woven as filling into a plain weave fabric. Close examination of the fabric reveals numerous flashes.
  • the fabric is given a quill barr rating of 4.5 in contrast to the ratings of 1.5 achieved with the test yarns of Example I.
  • EXAMPLE III A 70-denier, 34-filament, zero-twist, 66 nylon yarn is prepared according to the general procedure of Example I using as a spin finish a mixture having the following composition:
  • a control yarn is prepared using a spin finish of essentially the same composition but with on polyacrylic acid present.
  • test yarn so produced is a zero-twist, lightly sized yarn having a somewhat flattened coherent bundle structest yarn provides a marked improvement in cover power.
  • Example IV The general yarn preparation procedure of Example I is repeated with the exception that the single rotating finish roller of that example is replaced with a pair of rotating finish rollers operating in tandem so that the quenched, undrawn yarn contacts first one roller and then the other and then proceeds to the feed roller.
  • the first finish roller is bathed in a mixture of film forming agent and volatile solvent (Finish A) having the following composition:
  • the second finish roller is bathed in a spin finish (Finish B) having the following composition:
  • the yarn prepared with this dual-finish-roll system is found to be a coherent, low-friction, zero-twist yarn substantially equivalent in all performance aspects to the test yarns prepared in Example I.
  • the amount of polyitaconic acid coating on the yarn is found to be 0.22% by weight, with Finish B ingredients adding another 0.32%.
  • the coeflicient of hydrodynamic friction f measured on a chrome pin, is 0.44.
  • the dual-finish-roll process of this example is found to be superior to that of Example I in that fewer size deposits are built up on the draw rolls and fewer broken filaments and roll wraps are encountered.
  • a second test yarn prepared as above is woven as filling in a taffeta fabric, scoured, dyed, and finished using the procedure used for those fabrics rated in Table VIIIa.
  • the test fabric is found to have an average air permeability of 25.1 cu. ft./min./ft. compared with a value of 45.0 for a similarly prepared control fabric woven from an unsized filling yarn.
  • the test fabric gives a value of 2.56% transmittance compared with a value of 3.35% for the control fabric.
  • Example V The procedure of Example IV is repeated using in place of Finish A an alternative finish mixture having the composition in Table V. Similar results are obtained.
  • Example VI The general procedure of Example IV is repeated using two alternative finish mixtures. Finish A is replaced With Finish D having the following composition:
  • Finish B is replaced with Finish E having the composition of Table VII.
  • the yarn produced is substantially equivalent to the test yarns produced in Example IV, being a coherent, zero-twist yarn with the low coefficient of friction f of 0.52, measured on a chrome pin. Total finish pickup is 0.14% by weight. The yarn holds together as if it were twisted as much as 3 turns per inch.
  • a second sized test yarn is produced with poly(methylvinylether/maleic anhydride) as the cohesive agent in place of polyacrylic acid in the finish mixture of Example III.
  • the general procedure of Example I is followed and the yarn product examined for filament intermingling. The yarn is found to give an average APDC value of 7624 cm.
  • the test fabric is found to be much superior in uniformity of appearance.
  • the test fabric gives an average value of 19.0 cu. ft./min./ft. compared to a value of 45.0 cu. ft./min./ft. for a control fabric
  • in light transmittance tests the test fabric gives an average value of 2.19% transmittance compared with a value of 3.35% for a control fabric.
  • Example II a series of film-forming agents are applied to 66 nylon yarn in spin finish in the manner described in Example I. Seventy-denier, 34 filament, zero-twist yarns are prepared which are similar to the test yarns of Example I in coherency and reduced friction.
  • the composition of the finish mixtures are presented in Table VIII along with approximate value for the amount of finish solids on the yarn, values for the coefficient of hydrodynamic friction measured on a chrome pin, and values for the average yarn bundle thickness as measured by a profile meter. Bundle thickness is an indication of coherency.
  • a control sample, pre pared in the same manner but with no film-forming agent in the spin finish is included in the table for comparison. The control sample does not possess the coherency attributes of the test samples.
  • Bundle thickness XII XIII (control) (no film former)
  • control no film former
  • a second set of test samples for Examples VII through XII is prepared exactly as described above and tested for filament intermingling in the APDC test. The results, recorded in Table VlIIa, show the extremely low level of filament intermingling in these test yarns.
  • test yarns are also woven, without further treatment, as filling in consecutive sections of a taffeta fabric, using a warp prepared from a commercial 7 O-denier 34-filament nylon twisted to 5 turns per inch Z and slasher sized in a conventional manner.
  • the fabric is caustic secured on a jig, dyed gray with acid dyes, rinsed, dried and heat-set at 380 F. (194 C.) on a Tenter frame.
  • a second fabric is prepared similarly and dyed red with a premetallized dye.
  • the finished gray fabric has 111 ends per inch in the warp and 88 picks per inch in the fill.
  • the red fabric has 106 ends per inch in the warp and 88 ends per inch in the fill.
  • test fabric section is tested for air permeability and for percent light transmittance by methods described below.
  • the results, summarized in Table VIIIa, indicate that the test yarn sections provide a significant improvement in cover power in comparison with a section woven from control yarn prepared in the same way but without the addition of size.
  • EXAMPLE XV This example illustrates the degree of filament intermingling and filament entanglement found in zero-twist yarns sized by prior art processes.
  • a series of 66 nylon yarns of various counts are prepared following the general procedure of Example I with the exceptions that the spin finish is substantially the same as that of Example III without polyacrylic acid and the roll speeds are adjusted to give a feed roll speed of 876 y.p.m., a first draw roll speed of 2212 y.p.m., and a second draw roll speed of 3113 y.p.m. The temperature of the second stage draw rolls is adjusted to 192 C. All of the yarns are wound on a bobbin as zero-twist (unsized) yarns.
  • Each yarn is then sized with polyacrylic acid using a conventional single-end sizing procedure in which yarn is removed from its original package, passed around a 3%-in.-diameter feed roll (4 /2 wraps) running at 169 rpm, then passed over a 4-inch-diameter sizing roll bathed in the finish mixture of Example III, modified by adding about 2% silicone oil, and rotating at 5 rpm, then passed over an 8-inch hot plate maintained at 185 C. to dry the size, then passed around a 3 %1-inch-diameter draw roll (4 wraps) operating at 170 rpm. and finally proceeding to a surface-driven package windup which introduces no twist into the yarn.
  • the process is carried out with great care to prevent, as much as possible, the introduction of filament intermingling by unnecessary handling.
  • Each sized yarn is then examined for filament intermingling using the APDC test described previously, with the results shown in Table X.
  • a second series of yarns of varying yam counts are prepared in the above manner with the exception that the spin finish has the composition of that of Example III plus aproximately 2% of a 100 centistoke silicone oil.
  • the yarns produced are zero-twist, sized yarns.
  • Each of these yarns is then examined for filament intermingling with the APDC test and the results are recorded in Table X (test yarns). The data clearly show the much lower level of filament intermingling found in yarns prepared in accordance with the present invention.
  • Air permeability of textile fabrics is determined according to the general procedure of ASTM method D737-46 using an Air Permeability Measuring Instrument supplied by the Sherman W. Frazer C0,, Washington, DC. Using a calibrated orifice, air flow through the fabric sample is measured under a differential pressure of 0.5 inch of water and reported in cubic feet per minute per square foot of fabric area. Test samples are preconditioned for testing by exposing the sample to moving air at 130-* -l0 F. (54i-5.5 C.) for 2 hours and then holding the sample at 70 F. (21 C.) and 65% relative humidity for 16 hours.
  • Light transmittance of textile fabrics is measured by illuminating one side of a masked rectangular area of fabric with diffused white light and measuring the light transmitted through the fabric by means of a calibrated photoelectric cell. The sample is held flat for the test by being placed between two glass plates. Samples are preconditioned in the same manner as described above for the air permeability test. Results are reported as percent light transmitted and are the average of at least five determinations.
  • the coherent zero-twist yarn of this invention is designed to be used directly as a filling in fabrics, it is not so limited. If desired, the yarn may be interlaced or twisted and sized according to conventional procedures and used as warp yarns. Or, if sizing conditions and ingredients are properly chosen, direct slashing of the zerotwist yarn may be carried out. For most direct slashing procedures the cohesive agent in the finish and the cohesive agent in the slasher size should be mutually insoluble, and preferably both should be removable under normal scouring conditions.
  • a preferred product prepared by the method of this invention is a coherent zero-twist yarn having a loading of film-forming agent in the range 0.01 to 0.40 percent by weight.
  • Such yarns are exceptionally useful as feed yarns in the preparation of yarns having functional torque and twist without bulk by the method of Seem and Stoddard, US. Pat. No. 3,009,312.
  • a size finish mixture consisting essentially of a major percentage of a volatile inert liquid and a thermoplastic film-forming polymeric material to the undrawn filaments as they advance to said feed roll
  • said polymeric material being selected from the group consisting of polymeric phenolformaldehyde resin, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polymethacrylates, polyacrylic acid, and copolymers of vinylidene chloride and acrylic acid and poly(methylvinylether and maleic anhydride)
  • said liquid being selected from the group consisting of water, low molecular weight alcohols, esters, ethers, ketones and hydrocarbons, drawing said filaments before the evaporation of said liquid; and heating the drawn filaments under tension before said wind
  • a sized coherent zero-twist yarn comprising: a plurality of continuous drawn synthetic linear polycarbonamide filaments, said filaments bearing a coating of from 0.010.8% by weight of a thermoplastic film-forming polymeric material said filaments being substantiall arallel as characterized by an average APDC value of said yarn greater than 2000 cm, said filaments being held to gether by said coating.
  • said polymeric material 7 being selected from the group consisting of polymeric phenolformaldehyde resins, polyvinyl alcohol, polyvinyl acetate, polyacrylates, polymethacrylates, polyacrylic acid, and copolymers of vinylidene chloride andacrylic acid, and poly(methylvinylether and maleic anhydride).
  • a sized coherent zero-twist yarn comprising: a pin rality of continuous drawn synthetic linear polycarbonamide filaments, said filaments bearing a coating of from (Mil-8% by weight of polyacrylic acid said filaments being substantially parallel as characterized by an average APDC value of said yarn greater than 2000. cm, said filaments being held together by said coating.
  • a size finish mixture consisting essentially of a major percentage of a volatile inert liquid and a thermoplastic film-forming polymeric material to the undrawn filaments as they advance to the feed roll, said polymeric material being selected from the group consisting of polymeric phenolformaldehyde resin, polyvinylalcohoi, polyvinyl acetate, polyacrylates, polymethacrylates, polyacrylic acid, and copolymers of vinylidene chloride and acrylic acid and poly(methylvinylether and maleic anhydride); drawing said filaments while wet with said mixture and heating the drawn fi aments before said Winding step, said liquid being selected from the group consisting of water, low molecular weight alcohols, esters, ethers, ketones and hydrocarbons, the time-temperature relationship

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
US739727A 1963-02-28 1968-06-25 Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof Expired - Lifetime US3511677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US739727A US3511677A (en) 1963-02-28 1968-06-25 Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26185263A 1963-02-28 1963-02-28
US739727A US3511677A (en) 1963-02-28 1968-06-25 Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof

Publications (1)

Publication Number Publication Date
US3511677A true US3511677A (en) 1970-05-12

Family

ID=22995158

Family Applications (1)

Application Number Title Priority Date Filing Date
US739727A Expired - Lifetime US3511677A (en) 1963-02-28 1968-06-25 Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof

Country Status (6)

Country Link
US (1) US3511677A (fr)
BE (1) BE644325A (fr)
DE (1) DE1297279B (fr)
FR (1) FR1383542A (fr)
GB (1) GB1035895A (fr)
LU (1) LU45535A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846532A (en) * 1969-01-29 1974-11-05 Bayer Ag Continuous spinning and stretching process of the production of polyamide-6 filaments
US3885277A (en) * 1971-12-01 1975-05-27 Richard Adrien Schutz Apparatus for sizing textile fibres
US4042662A (en) * 1970-05-13 1977-08-16 Akzona Incorporated Continuous melt spinning and drawing of nylon 6 yarn, while reducing the liveliness of the yarn
US4070432A (en) * 1975-02-13 1978-01-24 Allied Chemical Corporation Production of low shrink polyester fiber
US5560558A (en) * 1995-04-12 1996-10-01 E. I. Du Pont De Nemours And Company Spandex supply package
US5785997A (en) * 1993-10-22 1998-07-28 Bayer Aktiengesellschaft Continuous process for melt-spinning monofilaments
US20150107215A1 (en) * 2013-10-17 2015-04-23 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (ptfe)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2137235A (en) * 1937-02-15 1938-11-22 Du Pont Shaped articles from polymeric materials
US2253146A (en) * 1938-10-29 1941-08-19 Du Pont Method of sizing synthetic linear polymer yarns
US2509741A (en) * 1942-11-03 1950-05-30 Du Pont Production of filamentous structures
US2743194A (en) * 1949-10-21 1956-04-24 Deering Milliken Res Corp Sizing of textile yarn
US2859206A (en) * 1956-07-11 1958-11-04 American Cyanamid Co Thiourea and urea-formaldehyde mixed resins
US2899341A (en) * 1959-08-11 Textile finishing process
US2985995A (en) * 1960-11-08 1961-05-30 Du Pont Compact interlaced yarn
US3000758A (en) * 1954-07-01 1961-09-19 American Enka Corp Process for conferring antistatic properties and the resulting products
US3113369A (en) * 1960-05-02 1963-12-10 Monsanto Chemicals Yarn manufacture and products obtained thereby
US3160511A (en) * 1960-06-09 1964-12-08 Monsanto Co Treatment of polyamide filaments
US3221088A (en) * 1964-11-02 1965-11-30 Eastman Kodak Co Process and apparatus for orienting yarn
US3236685A (en) * 1962-06-20 1966-02-22 Eastman Kodak Co Process for treating textile fibers and other shaped products with coatings
US3259681A (en) * 1962-04-27 1966-07-05 Ici Ltd Polyester filaments

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE963550C (de) * 1951-03-17 1957-05-09 Phrix Werke Ag Verfahren zur Verarbeitung von Faeden aus Polycaprolactam

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899341A (en) * 1959-08-11 Textile finishing process
US2137235A (en) * 1937-02-15 1938-11-22 Du Pont Shaped articles from polymeric materials
US2253146A (en) * 1938-10-29 1941-08-19 Du Pont Method of sizing synthetic linear polymer yarns
US2509741A (en) * 1942-11-03 1950-05-30 Du Pont Production of filamentous structures
US2743194A (en) * 1949-10-21 1956-04-24 Deering Milliken Res Corp Sizing of textile yarn
US3000758A (en) * 1954-07-01 1961-09-19 American Enka Corp Process for conferring antistatic properties and the resulting products
US2859206A (en) * 1956-07-11 1958-11-04 American Cyanamid Co Thiourea and urea-formaldehyde mixed resins
US3113369A (en) * 1960-05-02 1963-12-10 Monsanto Chemicals Yarn manufacture and products obtained thereby
US3160511A (en) * 1960-06-09 1964-12-08 Monsanto Co Treatment of polyamide filaments
US2985995A (en) * 1960-11-08 1961-05-30 Du Pont Compact interlaced yarn
US3259681A (en) * 1962-04-27 1966-07-05 Ici Ltd Polyester filaments
US3236685A (en) * 1962-06-20 1966-02-22 Eastman Kodak Co Process for treating textile fibers and other shaped products with coatings
US3221088A (en) * 1964-11-02 1965-11-30 Eastman Kodak Co Process and apparatus for orienting yarn

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846532A (en) * 1969-01-29 1974-11-05 Bayer Ag Continuous spinning and stretching process of the production of polyamide-6 filaments
US4042662A (en) * 1970-05-13 1977-08-16 Akzona Incorporated Continuous melt spinning and drawing of nylon 6 yarn, while reducing the liveliness of the yarn
US3885277A (en) * 1971-12-01 1975-05-27 Richard Adrien Schutz Apparatus for sizing textile fibres
US4070432A (en) * 1975-02-13 1978-01-24 Allied Chemical Corporation Production of low shrink polyester fiber
US5785997A (en) * 1993-10-22 1998-07-28 Bayer Aktiengesellschaft Continuous process for melt-spinning monofilaments
US5560558A (en) * 1995-04-12 1996-10-01 E. I. Du Pont De Nemours And Company Spandex supply package
US20150107215A1 (en) * 2013-10-17 2015-04-23 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (ptfe)
US9828701B2 (en) * 2013-10-17 2017-11-28 Richard F. Rudinger Post-extruded polymeric man-made synthetic fiber with polytetrafluoroethylene (PTFE)

Also Published As

Publication number Publication date
DE1297279B (de) 1969-06-12
LU45535A1 (fr) 1964-08-26
GB1035895A (en) 1966-07-13
BE644325A (fr) 1964-08-25
FR1383542A (fr) 1964-12-24

Similar Documents

Publication Publication Date Title
US3338830A (en) Textile product
US3259681A (en) Polyester filaments
US3772872A (en) Polyester yarn for draw-texturing process
US4153660A (en) Process for producing a mixed-shrinkage heat-bulkable polyester yarn
US2353270A (en) Process for forming synthetic fibers
US2604689A (en) Melt spinning process and fiber
US2931068A (en) Process for elongating a synthetic resin structure
US3117906A (en) Composite filament
US3433008A (en) Bulked yarn
US3423809A (en) Process for forming differential shrinkage bulked yarn
US3117173A (en) Process of preparing substantially oriented filaments having circumferential ridges on the surface
US3225534A (en) Differential shrinkage yarn
US4455341A (en) Sized multifilament yarn of an aromatic polyamide, a yarn package, a woven fabric and a process for making said yarn
US2918346A (en) Process of orienting a dense tow of polymeric ester filaments by two step hot aqueous bath treatments
US3977175A (en) Draw-texturing polyester yarns
US3998042A (en) Mixed shrinkage yarn
US3511677A (en) Process for preparation of a sized zero-twist synthetic fiber yarn and product thereof
US2942325A (en) Process of treating undrawn polyester yarns and filaments
US3264390A (en) Process for preparing multifilament yarns
US3271943A (en) Process for stabilizing bulked yarns and product thereof
US3625735A (en) Yarn sizing process
US3134833A (en) Production of asymmetrically birefringent, crystallizable, thermoplastic polymer filaments
US3553305A (en) Melt-spinning process
US3184369A (en) Polyester filaments having improved frictional characteristics
US4929698A (en) New polyester yarns having pleasing aesthetics