US3509595A - Tension control of running thermoplastic filaments - Google Patents

Tension control of running thermoplastic filaments Download PDF

Info

Publication number
US3509595A
US3509595A US723227A US3509595DA US3509595A US 3509595 A US3509595 A US 3509595A US 723227 A US723227 A US 723227A US 3509595D A US3509595D A US 3509595DA US 3509595 A US3509595 A US 3509595A
Authority
US
United States
Prior art keywords
tension
filament
piston
running
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US723227A
Inventor
George E Mader Jr
Thomas J Huddleston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Application granted granted Critical
Publication of US3509595A publication Critical patent/US3509595A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/227Control of the stretching tension; Localisation of the stretching neck; Draw-pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/225Mechanical characteristics of stretching apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • United States Patent U.S. Cl. 18-1 Claims ABSTRACT OF THE DISCLOSURE Device for controlling the tension in a running filament which includes a movable member attached to a piston over which the filament passes.
  • the piston is arranged so that the force of the tension in the filament is balanced by a constant fluid pressure proportional to the desired tension, physical movement of the piston as the tension varies is sensed, and the tension-varying means is controlled in response to the sensed movement.
  • This invention relates to the control of tension in running filaments. In one of its aspects this invention relates to the control of the temperature for heating and drawing thermoplastic filaments.
  • thermoplastic filaments and artificial threads it is sometimes desired to subject a traveling filament to a treatment involving heating the filament under tension.
  • a treatment involving heating the filament under tension.
  • drying processes and the stretching and shrinking of thermoplastic filaments.
  • the tension of the heated filament is dependent to a very large extent on its temperature and slight variations in temperature usually cause marked variations in tension.
  • stretching thermoplastic filaments the tension at which they are stretched determines the physical properties of the stretched filament. The tensile strength, the smoothness, and the elasticity of the stretched filament are very closely related to the tension at which it is stretched.
  • Still another object of this invention is to provide an imit proved apparatus for controlling the draw temperature of a running thermoplastic filament. Still another object is to provide an improved method for the control of the draw temperature of a thermoplastic filament.
  • a running filament under tension is passed over a movable "ice element that is connected to a piston mechanism.
  • the tension of the running filament exerts a force on the movable piston.
  • a second force is applied to the piston to oppose the force exerted by the tension in the filament.
  • the second force is constant and is proportional to the desired tension of the filament.
  • FIGURE 1 is a side view of an apparatus for heating and stretching a monofilament showing the control mechanism for regulating the heat supplied to the heating zone.
  • FIGURE 2 is also a side view of an appatus for heating and stretching a monofilament showing another preferred control mechanism for regulating the heat supplied to the heating zone.
  • thermoplastic filament 1 is passed through heating chamber 2.
  • Filament 1 is supplied by a pair of feed rollers 3 and passes through heating chamber 2, over fixed rollers. 4
  • Gauge 11 can be calibrated to show the filament tension directly.
  • Piston 6 is disposed in cylinder 12 in such a way that air from space 8 seeps past the walls of piston 6 and into the lower space 10. By using this floating piston arrangement practically all friction is eliminated from the system and no piston rings or seals are required.
  • Air bleed hole 13 is located in the base of cylinder 12 to prevent a pressure buildup on the under side of piston 6. As filament 1 is pulled over movable Wheel 5, a force is exerted upward on piston 6 that is proportional to the tension of filament 1. The force exerted upward on wheel 5 in the drawing will be twice the actual tension of filament 1. The opposing downward force on piston 6 is proportional to the desired tension in filament 1 as regulated by air pressure regulator 9.
  • sensing mechanism 14 can be any suitable mechanism known in the art that. will sense a displacement .and. generate a signal proportional to such displacement. An example of such a mechanism that is commercially available is the Sanborn Linear Differential Transducer No.
  • sensing mechanism 14 has an external power source .16.
  • the output signal from sensing mechanism 14 is passed to a simple electricalcircuit wherein it is amplified.
  • An, example of such a circuit is shown in the drawing wherein the output signal of sensing mechanism 14 is passed to aspan adjust resistor 17 which allows the circuitto be adjusted for the particular signal strength from sensing mechanism 14.
  • the base of a NPN transistor 18 is connected to span adjust resistor 17.
  • Transistor 18 can be any suitable transistor such as transistor No. TI-495 manufactured by the Texas Instrument Company.
  • a small power source 19 furnishes the necessary electrical power for the electrical circuit.
  • the emitter of transistor 18 is attached to current adjust resistor 20 that is means for adjusting the output signal of the electrical circuit.
  • Resistor 21 serves as a damping resistor for the electrical circuit.
  • the output signal from the circuit is then passed to temperature controller 22 by means of electrical leads 23.
  • the output signal is a linear function of the movement of piston 6.
  • Temperature controller 22 can be any suitable. temperature controller that will regulate the flow of the current through heating coil 24 inside heating 4 mechanism 30 that detects any change of position of piston 6 and movable wheel 5. It has been discovered that a variable resistor, wherein resistance is varied i by movement of connecting rod 15, gives an accurate inchamber 2.
  • the heating coil 24 operates on an alternating current that is supplied by a main supply 25. through temperature controller 22.
  • An example of a suitableternperature controller 22 is the Capacitol Temperature Controller manufactured by the Wheelco Instrument Division of Barber-Colman Company, Rockford, Ill.
  • a suitableternperature controller 22 is the Capacitol Temperature Controller manufactured by the Wheelco Instrument Division of Barber-Colman Company, Rockford, Ill.
  • FIGURE 2 components 1 through 13, 15, and 24 through 26 are identical to and function the same as described above in FIGURE 1.
  • Connecting rod is equipped with coil springs 27 and adjusting nuts 28.
  • Stationary plate 29 has a hole orientedin such a manner as to allow connecting rod 15 to passthrough it.
  • One end of each of the springs contacts plate 29 in a manner to exert opposing forces on connecting rod 15.
  • Coil springs 27 are adjusted, by useof adjusting nuts 28, to a point where the compression force of each is equal at the set point of piston 6 and movable wheel 5.
  • springs 27 provide additional driving force toward the set point or null point. This feature gives a more smooth and uniform method of controlling the system.
  • Connecting rod 15 is coupled with sensing dication of movement :of the connecting rod.fln some cases, a variable resistor will be preferred over other sensing mechanisms because of its sensitivity and reliability.
  • a variable resistor is the model TP R.2KL.5 Helipot Potentiometer, manufactured by the Helipot Corporation of South Pasadena, California.
  • Sensing mechanism 30 is connected in series with thermistor sensor 31 which isdisposed inside heating chamber 2. Any change of temperature inside heating chamber 2 will cause the electrical resistance of thermistor sensor 31 to change.
  • the electrical circuit containing sensing mechanism 30 and thermistor sensor 31 is coupled with a suitable temperature controller 32 such as the Model .301 Aeromag Controller manufactured by the Aeroi j
  • a suitable temperature controller 32 such as the Model .301 Aeromag Controller manufactured by the Aeroi j
  • the electrical circuits shown inFIGURES I and 2 can be modified easily,
  • the electrical circuit can be a conventional Wheatstone type bridge circuit where the temperature sensing element and variable resistor are located in the proper legs of the circuit. When the bridge is unbalanced by a change of tension in the monofilament, the temperature in the heating zone is raised or lowered until the thermistor resistance rebalances the bridge.
  • thermoplastic filaments examples include polyethylene with a draw temperature of about 208 F. and polypropylene with a draw temperature of about 300 F.
  • the heating chamber will be heated within a range of from about 500 to 900 F. and the tension applied to the filament will be about 1 gram per denier of the drawn filament.
  • the heating zone may be any type heatingrzone known in the art such as a steam chest or a gas-fired heating zone.
  • Various modifications may be made in the electrical amplifying system and in the sensing mechanism to detect movement in the piston mechanism.
  • This invention can be used for controlling various conditions which affect the tension in a running filament. It can be used in drying processes, in stretching processes and in shrinking processes.
  • All 10 of the filaments were then run around a second set of Godet rolls and then to wind-up spools.
  • the two sets of Godet rolls were set for a draw ratio of :1.
  • the tension controller was set to maintain a tension of 400 grams on the filament.
  • the extrusion rate and the surface speed of the Godet rolls were set so as to produce 400 denier filaments at the rate of 300 feet per minute.
  • the tension controller was connected to the radiant heating oven, as illustrated in FIGURE 2, so as to control the temperature of the filament in the heated draw zone to maintain the preset drawing tension.
  • the draw operation proceeded smoothly with excellent control of tension in all 10 filaments.
  • the draw ratio between the first and second set of Godet rolls was then changed from 1011 to 10.511.
  • a device for controlling the tension in a running filament comprising:
  • said ten.- sion-varying means comprises a. heating means which transmits heat to said running filament and said control means comprises a temperature controller which adjusts said heating means in response to said signal so that, as the movement of said piston corresponds to an increase in said tension above the desired level, the amount of heat transmitted to said running filament is increased and, as the movement of said piston corresponds to a decrease in said tension below the desired level, the amount of heat transmitted to said running filament is decreased.
  • sensing means comprises an electrical linear transducer adapted to said piston and connected in an electrical circuit means so that, as said piston moves, a variable electrical output signal is produced by said electrical circuit means, and means for transmitting said electrical signal to said temperature controller.
  • sensing means comprises a variable electrical resistor adapted to said piston and connected in an electrical circuit means so that, as said piston moves, a variable electrical output signal is produced by said electrical circuit means, and means for transmitting said electrical signal to said temperature controller.

Description

United States Patent U.S. Cl. 18-1 Claims ABSTRACT OF THE DISCLOSURE Device for controlling the tension in a running filament which includes a movable member attached to a piston over which the filament passes. The piston is arranged so that the force of the tension in the filament is balanced by a constant fluid pressure proportional to the desired tension, physical movement of the piston as the tension varies is sensed, and the tension-varying means is controlled in response to the sensed movement.
This is a divisional application of patent application filed Dec. 1.2, 1964, Ser. No. 417,981, now Patent No. 3,395,200, granted July 30, 1968.
This invention relates to the control of tension in running filaments. In one of its aspects this invention relates to the control of the temperature for heating and drawing thermoplastic filaments.
In the manufacture of thermoplastic filaments and artificial threads it is sometimes desired to subject a traveling filament to a treatment involving heating the filament under tension. Examples of such treatment are drying processes and the stretching and shrinking of thermoplastic filaments. When carrying out such treatments, the tension of the heated filament is dependent to a very large extent on its temperature and slight variations in temperature usually cause marked variations in tension. In stretching thermoplastic filaments, the tension at which they are stretched determines the physical properties of the stretched filament. The tensile strength, the smoothness, and the elasticity of the stretched filament are very closely related to the tension at which it is stretched. Since increase in tension is a result of low temperature of the filament and a decrease in tension is a result of high temperature of the filament it is highly desirable to maintain a substantially uniform temperature of the filament during the heating and stretching operations. Conventional control methods do not allow uniform control of tension in running filaments. Control systemsnow in use for tension control do not offer a critical control of tension that is necessary for obtaining the uniformity in the output product.
It is an object of this invention to provide an improved apparatus for the control of conditions that affect the tension of a running filament. Another object of this invention is to provide an improved method for the control of conditions that affect the tension of a running filament.
Still another object of this invention is to provide an imit proved apparatus for controlling the draw temperature of a running thermoplastic filament. Still another object is to provide an improved method for the control of the draw temperature of a thermoplastic filament.
Other aspects, objects and advantages of this invention will be apparent to those skilled in the art upon examination of the specification, drawing and claims.
We have invented an apparatus and method for controlling the conditions that affect the tension of a running filament. According to the present invention, a running filament under tension is passed over a movable "ice element that is connected to a piston mechanism. The tension of the running filament exerts a force on the movable piston. A second force is applied to the piston to oppose the force exerted by the tension in the filament. The second force is constant and is proportional to the desired tension of the filament. Thus any difference between the actual tension and the desired tension will cause the piston to move. By sensing the movement of the piston and generating a signal that is proportional to the movement, and passing this signal to a control mechanism, it is possible to very closely control the conditions that affect the tension of the running filament.
Examples of apparatus constructed in accordance with the present invention are illustrated in the accompanying drawings. FIGURE 1 is a side view of an apparatus for heating and stretching a monofilament showing the control mechanism for regulating the heat supplied to the heating zone. FIGURE 2 is also a side view of an appatus for heating and stretching a monofilament showing another preferred control mechanism for regulating the heat supplied to the heating zone. In FIGURE 1, thermoplastic filament 1 is passed through heating chamber 2. Filament 1 is supplied by a pair of feed rollers 3 and passes through heating chamber 2, over fixed rollers. 4
" and over movable roller 5. Filament 1 is then passed over stretching rollers 26 which are driven with a peripheral speed greater than that of the feed rollers 3 so as to effect the stretching of filament 1 in heating chamber 2. As filament 1 passes over roller 5 an upward force is exerted on roller 5 that is proportional to the actual tension in filament 1. Movable roller 5 is connected to piston 6 by means of connecting arm 7. The upward force exerted on roller 5 is thus exerted on piston 6. A downward force on piston 6, proportional to the desired tension in filament 1, is exerted by air pressure in space 8 above piston 6. The air pressure in space 8 is maintained at a constant level by means of pressure regulator 9 that regulates air pressure from air supply conduit 9A. Gauge 11 indicates the pressure in space 8 above piston 6. Gauge 11 can be calibrated to show the filament tension directly. Piston 6 is disposed in cylinder 12 in such a way that air from space 8 seeps past the walls of piston 6 and into the lower space 10. By using this floating piston arrangement practically all friction is eliminated from the system and no piston rings or seals are required. Air bleed hole 13 is located in the base of cylinder 12 to prevent a pressure buildup on the under side of piston 6. As filament 1 is pulled over movable Wheel 5, a force is exerted upward on piston 6 that is proportional to the tension of filament 1. The force exerted upward on wheel 5 in the drawing will be twice the actual tension of filament 1. The opposing downward force on piston 6 is proportional to the desired tension in filament 1 as regulated by air pressure regulator 9. The opposing force for an apparatus shown in the drawing will be twice the desired tension of filament 1. If the actual tension in filament 1 is equal to the desired tension, piston 6 will be stationary. If thefilament coming through theheating chamber 2 is not hot enough for the existing draw-down ratio (a constant in any given case) the tension would tend to increase, causing piston 6 to move upward against the constant pressure maintained above it by air in space 8. Conversely, if the filament 1 coming through heating chamber 2 is too hot the tension will tend to decrease, causing piston 6 to move downward. Any movement by piston 6 is immediately detected in sensing mechanism 14 which is connected to piston 6 by means of. connecting rod 15. Sensing mechanism 14 can be any suitable mechanism known in the art that. will sense a displacement .and. generate a signal proportional to such displacement. An example of such a mechanism that is commercially available is the Sanborn Linear Differential Transducer No.
3 7DCDTlO0. Such a tranducer will sense a physical dis placement of its movable core and produce an output signal that is proportional to such displacement. As shown in the drawing, sensing mechanism 14 has an external power source .16. The output signal from sensing mechanism 14 is passed to a simple electricalcircuit wherein it is amplified. An, example of such a circuit is shown in the drawing wherein the output signal of sensing mechanism 14 is passed to aspan adjust resistor 17 which allows the circuitto be adjusted for the particular signal strength from sensing mechanism 14. The base of a NPN transistor 18 is connected to span adjust resistor 17. Transistor 18 can be any suitable transistor such as transistor No. TI-495 manufactured by the Texas Instrument Company. A small power source 19 furnishes the necessary electrical power for the electrical circuit. The emitter of transistor 18 is attached to current adjust resistor 20 that is means for adjusting the output signal of the electrical circuit. Resistor 21 serves as a damping resistor for the electrical circuit. The output signal from the circuit is then passed to temperature controller 22 by means of electrical leads 23. The output signal is a linear function of the movement of piston 6. Temperature controller 22 can be any suitable. temperature controller that will regulate the flow of the current through heating coil 24 inside heating 4 mechanism 30 that detects any change of position of piston 6 and movable wheel 5. It has been discovered that a variable resistor, wherein resistance is varied i by movement of connecting rod 15, gives an accurate inchamber 2. Preferably the heating coil 24 operates on an alternating current that is supplied by a main supply 25. through temperature controller 22. An example of a suitableternperature controller 22 is the Capacitol Temperature Controller manufactured by the Wheelco Instrument Division of Barber-Colman Company, Rockford, Ill. As the filament moves over movable wheel any difference in the actual tensionin filament 1 and the desired tension as regulated by the air pressure above piston 6 causes piston 6 to move either up or down. This movement causes a similar movement by the movable core of transducer core 14 changing the transducer output. This output is passed to the electrical circuit wherein it is amplified and then passed to the temperature con troller 22. If the tension in filament 1 decreases below the desired level, piston 6 moves downward causing transducer 14 to produce a signal that is passed through the amplifier system to temperature controller 22 that calls for less heat to be applied to heating chamber 2. Thus temperature controller 22 decreases the amount of electri cal current passing through heating coils 24. It the ten sion in filament 1 increases above the desired level, movable wheel 5 moves upward and piston 6 moves upward causing the movable core in transducer 14 to move upward. An output signal from transducer 14 is then passed through the amplifying system and then to temperature controller 22 that calls for more heat to be applied to heating zone 2. Thus temperature controller 22 causes more electrical current to flow through heating coil 24 in heating chamber 2. It is obvious to those skilled in the art that this type of control system allows a smooth and uniform method of controlling the temperature in heating zone 2. By using this type of control system, very critical limits can be maintained in the system.
In FIGURE 2, components 1 through 13, 15, and 24 through 26 are identical to and function the same as described above in FIGURE 1. Connecting rod is equipped with coil springs 27 and adjusting nuts 28. Stationary plate 29 has a hole orientedin such a manner as to allow connecting rod 15 to passthrough it. One end of each of the springs contacts plate 29 in a manner to exert opposing forces on connecting rod 15. Coil springs 27 are adjusted, by useof adjusting nuts 28, to a point where the compression force of each is equal at the set point of piston 6 and movable wheel 5. When the tension of filament 1 changes causing the position of connecting rod 15 to change, springs 27 provide additional driving force toward the set point or null point. This feature gives a more smooth and uniform method of controlling the system. Connecting rod 15 is coupled with sensing dication of movement :of the connecting rod.fln some cases, a variable resistor will be preferred over other sensing mechanisms because of its sensitivity and reliability. An example of such a variable resistor is the model TP R.2KL.5 Helipot Potentiometer, manufactured by the Helipot Corporation of South Pasadena, California. Sensing mechanism 30 is connected in series with thermistor sensor 31 which isdisposed inside heating chamber 2. Any change of temperature inside heating chamber 2 will cause the electrical resistance of thermistor sensor 31 to change. The electrical circuit containing sensing mechanism 30 and thermistor sensor 31 is coupled with a suitable temperature controller 32 such as the Model .301 Aeromag Controller manufactured by the Aeroi j Itwill be obvious to those skilled in the art thatthe electrical circuits shown inFIGURES I and 2 can be modified easily, For example, the electrical circuit can be a conventional Wheatstone type bridge circuit where the temperature sensing element and variable resistor are located in the proper legs of the circuit. When the bridge is unbalanced by a change of tension in the monofilament, the temperature in the heating zone is raised or lowered until the thermistor resistance rebalances the bridge.
Examples of some of the thermoplastic filaments that could be stretched using a device such as this include polyethylene with a draw temperature of about 208 F. and polypropylene with a draw temperature of about 300 F. When a polypropylene filament is drawn, the heating chamber will be heated within a range of from about 500 to 900 F. and the tension applied to the filament will be about 1 gram per denier of the drawn filament.
Various modifications and changes in the above described apparatus. maybe made by those skilled in the art. For example, the heating zone may be any type heatingrzone known in the art such as a steam chest or a gas-fired heating zone. Various modifications may be made in the electrical amplifying system and in the sensing mechanism to detect movement in the piston mechanism. This invention can be used for controlling various conditions which affect the tension in a running filament. It can be used in drying processes, in stretching processes and in shrinking processes.
The method of operation in the following example illustrates one preferred embodiment of our invention. The operating conditions of the example should not be interpreted as limiting the scope of the invention.
EXAMPLE Polypropylene having a density of 0.91 gram/cc. and a melt flow of approximately 3 (as determined by ASTM D1238-57T) was extruded by a Hartig screw extruder having a 1% inch diameter barrel and a length/ diameter ratio of 20/1. The polypropylene was extruded through a filament die having 10 holes, each 42 mils in diameter, into a water bath. From the water bath the filaments were run around a standard set of Godet rolls and then through a 9 foot long radiant heating oven having electrical heating elements disposed therein. One of the monofilaments was then passed through the tension control device illustrated and described above as FIGURE 2. All 10 of the filaments were then run around a second set of Godet rolls and then to wind-up spools. The two sets of Godet rolls were set for a draw ratio of :1. The tension controller was set to maintain a tension of 400 grams on the filament. The extrusion rate and the surface speed of the Godet rolls were set so as to produce 400 denier filaments at the rate of 300 feet per minute. The tension controller was connected to the radiant heating oven, as illustrated in FIGURE 2, so as to control the temperature of the filament in the heated draw zone to maintain the preset drawing tension. The draw operation proceeded smoothly with excellent control of tension in all 10 filaments. The draw ratio between the first and second set of Godet rolls was then changed from 1011 to 10.511. The tension increased rapidly causing the tension controller to increase the temperature of the filaments in the heated draw zone. As the temperature in the heated draw zone increased, the filament tension decreased until it again reached the original set point value of 400 grams. The readjustment of tension took about one minute. The draw operation then proceeded smoothly with excellent tension control of the 10 filaments.
Since many apparently widely different embodiments of this invention may be made without departing from the spirit and scope thereof, it is understood that it is not to be unduly limited by the foregoing specific embodiment.
We claim:
1. A device for controlling the tension in a running filament comprising:
(a) a movable member adapted to be subjected to the force of the tension in the running filament, said movable member being connected to a movable piston;
(b) means for maintaining a constant fluid pressure force proportional to the desired tension in said running filament on said piston to oppose said tension;
(c) means for varying said tension;
(d) means for sensing the physical movement of said piston as said tension varies and generating a signal representative thereof;
(e) means for controlling said tension-varying means;
and
(f) means for adjusting said control means in response to said signal so that, as said piston moves upon variations in said tension, said tension-varying means is adjusted to obtain the desired tension.
2. The device according to claim 2 wherein said ten.- sion-varying means comprises a. heating means which transmits heat to said running filament and said control means comprises a temperature controller which adjusts said heating means in response to said signal so that, as the movement of said piston corresponds to an increase in said tension above the desired level, the amount of heat transmitted to said running filament is increased and, as the movement of said piston corresponds to a decrease in said tension below the desired level, the amount of heat transmitted to said running filament is decreased.
3. The device according to claim 2 wherein said sensing means comprises an electrical linear transducer adapted to said piston and connected in an electrical circuit means so that, as said piston moves, a variable electrical output signal is produced by said electrical circuit means, and means for transmitting said electrical signal to said temperature controller.
4. The device according to claim 2 wherein said sensing means comprises a variable electrical resistor adapted to said piston and connected in an electrical circuit means so that, as said piston moves, a variable electrical output signal is produced by said electrical circuit means, and means for transmitting said electrical signal to said temperature controller.
5. The device according to claim 3 wherein said piston includes a connecting rod means which is connected to a movable core of said transducer.
References Cited UNITED STATES PATENTS 1,348,943 8/ 1920 Hallock. 1,962,028 6/1934 Murphy et al. 2,393,015 1/1946 Bendz. 2,581,922 1/1952 Spencer. 3,323,165 6/1967 Mottern et a1. 3,395,200 7/1968 Mader et al.
FOREIGN PATENTS 1,437,794 3/ 1966 France.
WILLIAM J. STEPHENSON, Primary Examiner US. Cl. X.R. 182
US723227A 1964-12-14 1968-04-22 Tension control of running thermoplastic filaments Expired - Lifetime US3509595A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US417981A US3395200A (en) 1964-12-14 1964-12-14 Tension control of running thermoplastic filaments
US72322768A 1968-04-22 1968-04-22

Publications (1)

Publication Number Publication Date
US3509595A true US3509595A (en) 1970-05-05

Family

ID=27023935

Family Applications (2)

Application Number Title Priority Date Filing Date
US417981A Expired - Lifetime US3395200A (en) 1964-12-14 1964-12-14 Tension control of running thermoplastic filaments
US723227A Expired - Lifetime US3509595A (en) 1964-12-14 1968-04-22 Tension control of running thermoplastic filaments

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US417981A Expired - Lifetime US3395200A (en) 1964-12-14 1964-12-14 Tension control of running thermoplastic filaments

Country Status (1)

Country Link
US (2) US3395200A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683160A (en) * 1970-03-24 1972-08-08 Du Pont A method and apparatus for monitoring and predicting the level of dyeability of yarn during its processing
US3825386A (en) * 1972-05-25 1974-07-23 Philips Corp Pressing control device
US3859778A (en) * 1974-01-04 1975-01-14 Pavel Petrovich Nesterov Device for stretching round twisted products in rope making machines
US3960475A (en) * 1975-07-08 1976-06-01 Westvaco Corporation Angular indexing mechanism
US4235000A (en) * 1976-06-04 1980-11-25 Phillips Petroleum Company Method for straightening textured yarn
US4404718A (en) * 1977-10-17 1983-09-20 Teijin Limited Apparatus for manufacturing a bulky textured yarn
US4608736A (en) * 1978-03-07 1986-09-02 Teijin Limited Apparatus for manufacturing a bulky textured yarn
US5664307A (en) * 1993-04-30 1997-09-09 Barmag Ag Draw process
US6152396A (en) * 1998-04-17 2000-11-28 T-Drill Oy Variable-force discharge mechanism for materials loaded on a reel
US20040172873A1 (en) * 2003-03-07 2004-09-09 Yoshimune Takahashi Fishing line straightening device and fishing line straightening method
US20090019762A1 (en) * 2006-02-01 2009-01-22 Yoshimune Takahashi Monofilament Line Straightening Device, and Monofilament Line Straightening Method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3395200A (en) * 1964-12-14 1968-07-30 Phillips Petroleum Co Tension control of running thermoplastic filaments
GB1167871A (en) * 1966-09-13 1969-10-22 Ici Ltd High Modulus Polyamide Tyre Cord.
US3862557A (en) * 1972-02-07 1975-01-28 Alexander Zeitlin Apparatus and method for hydrostatic extrusion
US3863481A (en) * 1973-01-02 1975-02-04 Microwire Corp Augmented hydrostatic extrusion of fine wire
IT1033844B (en) * 1975-08-21 1979-08-10 Attucci E MACHINE FOR PROCESSING PLASTIC MATERIAL TO TUBULAR FILM AND SIMILAR
US4609336A (en) * 1984-10-17 1986-09-02 Gencorp Inc. Apparatus and method for extrusion
US4684359A (en) * 1985-10-18 1987-08-04 Mobil Oil Corporation Movable clamp orienter for draw tape
DE4004696C2 (en) * 1990-02-15 1994-04-21 Dornier Gmbh Lindauer Stretch roll protection device
CN110230134A (en) * 2019-05-29 2019-09-13 义乌市润朵服装有限公司 A kind of drafting system of weaving loom

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1348943A (en) * 1916-10-14 1920-08-10 Westinghouse Electric & Mfg Co Electrical system
US1962028A (en) * 1932-06-21 1934-06-05 Dunlop Rubber Co Extensible thread testing device
US2393015A (en) * 1942-03-07 1946-01-15 Westinghouse Electric Corp Electronic differential timer
US2581922A (en) * 1947-02-05 1952-01-08 Firestone Tire & Rubber Co Apparatus for and method of forming filaments
FR1437794A (en) * 1964-05-13 1966-05-06 Barmag Barmer Maschf Device for advancing or drawing endless synthetic threads
US3323165A (en) * 1963-10-14 1967-06-06 Monsanto Co Variable denier yarn apparatus
US3395200A (en) * 1964-12-14 1968-07-30 Phillips Petroleum Co Tension control of running thermoplastic filaments

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2930102A (en) * 1954-01-22 1960-03-29 British Celanese Tension control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1348943A (en) * 1916-10-14 1920-08-10 Westinghouse Electric & Mfg Co Electrical system
US1962028A (en) * 1932-06-21 1934-06-05 Dunlop Rubber Co Extensible thread testing device
US2393015A (en) * 1942-03-07 1946-01-15 Westinghouse Electric Corp Electronic differential timer
US2581922A (en) * 1947-02-05 1952-01-08 Firestone Tire & Rubber Co Apparatus for and method of forming filaments
US3323165A (en) * 1963-10-14 1967-06-06 Monsanto Co Variable denier yarn apparatus
FR1437794A (en) * 1964-05-13 1966-05-06 Barmag Barmer Maschf Device for advancing or drawing endless synthetic threads
US3395200A (en) * 1964-12-14 1968-07-30 Phillips Petroleum Co Tension control of running thermoplastic filaments

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683160A (en) * 1970-03-24 1972-08-08 Du Pont A method and apparatus for monitoring and predicting the level of dyeability of yarn during its processing
US3825386A (en) * 1972-05-25 1974-07-23 Philips Corp Pressing control device
US3859778A (en) * 1974-01-04 1975-01-14 Pavel Petrovich Nesterov Device for stretching round twisted products in rope making machines
US3960475A (en) * 1975-07-08 1976-06-01 Westvaco Corporation Angular indexing mechanism
US4235000A (en) * 1976-06-04 1980-11-25 Phillips Petroleum Company Method for straightening textured yarn
US4404718A (en) * 1977-10-17 1983-09-20 Teijin Limited Apparatus for manufacturing a bulky textured yarn
US4608736A (en) * 1978-03-07 1986-09-02 Teijin Limited Apparatus for manufacturing a bulky textured yarn
US5664307A (en) * 1993-04-30 1997-09-09 Barmag Ag Draw process
US6152396A (en) * 1998-04-17 2000-11-28 T-Drill Oy Variable-force discharge mechanism for materials loaded on a reel
US20040172873A1 (en) * 2003-03-07 2004-09-09 Yoshimune Takahashi Fishing line straightening device and fishing line straightening method
US20090019762A1 (en) * 2006-02-01 2009-01-22 Yoshimune Takahashi Monofilament Line Straightening Device, and Monofilament Line Straightening Method

Also Published As

Publication number Publication date
US3395200A (en) 1968-07-30

Similar Documents

Publication Publication Date Title
US3509595A (en) Tension control of running thermoplastic filaments
US3920365A (en) Apparatus for making polymeric film
US3819775A (en) Method of making polymeric film
US3544667A (en) Process for biaxially stretching thermoplastic tubular film
US3182587A (en) Apparatus for calendering or sheeting deformable material
EP0619261B1 (en) Method and device for monitoring and maintaining correct regulation of the tension of a yarn fed to a textile machine
US2921358A (en) Apparatus for producing elasticized thermoplastic yarns
US5146739A (en) Yarn false twist texturing process and apparatus
US3209589A (en) Yarn friction measuring instrument
US4393701A (en) Yarn tester system
US2448433A (en) Making wrinkle-free film
US5844494A (en) Method of diagnosing errors in the production process of a synthetic filament yarn
US4904425A (en) Method of reducing tension in webs of thermoplastic material
US2328125A (en) Method for making filaments
KR960012828B1 (en) Drawing process
RU2006142096A (en) METHOD AND DEVICE FOR CONTINUOUS QUALITY CONTROL OF WIRE FROM ALLOY WITH FORM MEMORY
US4656756A (en) Method for heat-treating textile material and tenter for carrying out method
GB1372074A (en) Method and device for regulating the wall thickness of products manufactured from synthetic materials
US3886636A (en) Yarn processing
US4369555A (en) Yarn processing apparatus
US3524221A (en) Apparatus for monitoring polymer viscosity in a spinning unit
US3411352A (en) Method and apparatus for determining yarn bulk
US4408377A (en) Stuffing chamber texturizing process
US5870808A (en) Draw point control arrangement
US3660550A (en) Drawing of thermoplastic synthetic linear polymeric thread and localizing the neck portion of the thread