US3886636A - Yarn processing - Google Patents

Yarn processing Download PDF

Info

Publication number
US3886636A
US3886636A US363480A US36348073A US3886636A US 3886636 A US3886636 A US 3886636A US 363480 A US363480 A US 363480A US 36348073 A US36348073 A US 36348073A US 3886636 A US3886636 A US 3886636A
Authority
US
United States
Prior art keywords
yarn
tension
temperature
straightened
crimped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US363480A
Inventor
David E Borenstein
Richard C Newton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Priority to US363480A priority Critical patent/US3886636A/en
Priority to JP3842074A priority patent/JPS5414227B2/ja
Priority to GB2206374A priority patent/GB1431137A/en
Priority to GB4381175A priority patent/GB1431138A/en
Priority to IT22965/74A priority patent/IT1012653B/en
Priority to FR7417928A priority patent/FR2230762B1/fr
Priority to DE19742425061 priority patent/DE2425061B2/en
Priority to DE19742462364 priority patent/DE2462364A1/en
Priority to BE144729A priority patent/BE815512A/en
Priority to US05/559,158 priority patent/US3977058A/en
Application granted granted Critical
Publication of US3886636A publication Critical patent/US3886636A/en
Priority to US05/701,455 priority patent/US4122588A/en
Priority to US05/837,233 priority patent/USRE31783E/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/12Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using stuffer boxes

Definitions

  • ABSTRACT A continuous synthetic filament yarn is processed by crimping, entangling, and straightening the yarn.
  • the yarn is straightened by heating under tension, resulting in a yarn that can be used in its straightened form and later bulked by a subsequent process such as dyeing, boiling, heating etc.
  • the length of a yarn plug formed by crimping is controlled by controlling the temperature of the yarn.
  • the invention relates to a method and apparatus for processing synthetic filament yarn.
  • a method for producing textured synthetic filament yarn by the process of crimping and entangling drawn synthetic filament yarn, followed by straightening the yarn by heating and tensioning the textured yarn.
  • apparatus comprising a crimping means, an entangling means and a straightening means arranged in that order.
  • the length of the yarn plug formed during crimping of the yarn is controlled by adjusting the temperature of the yarn prior to or during the crimping step.
  • method and apparatus for controlling the length of a yarn plug formed by crimping means by monitoring the position of a yarn plug and controlling the temperature of the yarn in response thereto.
  • FIG. 1 is a schematic flow sheet representing an embodiment of the present invention in which previously drawn yarn is processed.
  • FIG. 2 is a schematic flow sheet representing an embodiment of the present invention and primarily differs from FIG. 1 in that undrawn yarn or partially drawn yarn is processed.
  • continuous filament drawn synthetic yarn 2 is fed from a plurality of packages I through eyelet guides 6 and tensioned by tensioning gates 7 to control the yarn coming from the packages.
  • the yarn is brought together in guide 9 to form yarn 4 of the desired total denier and tensioned by a tensioning gate 8 to provide better control of the yarn.
  • the yarn 4 is fed to a heated feed rool 10.
  • the yarn is then fed to suitable crimping means 16.
  • crimping means 16 includes a lluid jet portion and a chamber containing a plurality of stacked members such as balls 15.
  • a heated fluid enters the jet portion through inlet 17 to heat the yarn and assist in crimping and exists the means at 19 and through the stacked members 15.
  • An adjustable angle idler 18 is used to insert a controllable amount of false twist into the yarn prior to crimping. This is useful in controlling the heat losses from the yarn and, hence. the yarn temperature entering the crimping means 16.
  • the yarn plug 20 formed in crimping means 16 is passed through a tube 22 in which the yarn plug 20 is broken up and cooled by countercurrent air 23 or other suitable fluid.
  • the length of the yarn plug 25 in the crimping means 16 is inversely proportional to the temperature of the yarn in the crimping means. Increasing the temperature of the yarn in the crimper causes the yarn to shrink increasing the denier of the yarn and thus decreasing the yarn plug length. Therefore decreasing the temperature of the yarn increases the yarn plug length.
  • Temperature controller 31 controls the temperature of feed roll 10 which in turn controls the temperature of the yarn entering the crimping means and consequently the length of the yarn plug. Temperature controller 31 is set to maintain the temperature of the roll being controlled at a preset temperature or set point. This temperature controller is of a standard type which senses the resistance of a temperature-sensitive device, such as a thermistor.
  • a bypass circuit is contained in the temperature controller which increases the temperature of the roll being controlled above the set point whenever said bypass is activated. Since a thermistor decreases in resistance with increasing temperature, the bypass circuit merely increases the actual resistance as seen by the temperature controller causing the temperature controller to heat the roll above the set point. Heat is added to the roll until the resistance of the thermistor as modified by the bypass circuit equals the resistance of the thermistor at the set point.
  • Electric eye 27 senses the length of the yarn plug 25 and activates the bypass circuit of the temperature controller 31 if the yarn plug breaks the electric eye beam 27a. This causes the temperature controller 31 to raise the temperature of the roll being controlled above the set point, increasing the temperature of the yarn and decreasing the yarn plug length. When the yarn plug 25 falls below the electric eye beam 27a, the bypass circuit is deactivated and temperature controller 31 maintains the temperature of the roll being controlled as the set point.
  • the controller In setting the set point of temperature controller 31, the controller should have a set point at which the temperature of the roll being controlled is maintained so that the yarn plug length is maintained just above the electric eye beam 27a, that is, where the plug just breaks the beam.
  • the bypass circuit When the electric eye beam 27a is broken by the yarn plug 25 the bypass circuit is activated causing the temperature controller 31 to increase the temperature of the roll being controlled above the set point. This in turn increases the temperature of the yarn and thus lowers the yarn plug height 25 until the electric eye 27 is exposed to light beam 27a indicating the yarn plug is lower than the light beam. Therefore temperature controller 31 tries to maintain the end of the yarn plug jet above the electric eye beam and the electric eye 27 tries to maintain the end of the yarn plugjust below the electric eye beam. This competition approaches an equilibrium which results in excellent control of the yarn plug length and crimp level.
  • bypass circuit causes the temperature controller 31 to increase the temperature of the roll being controlled above the set point by an amount sufficient to insure that the yarn plug falls below the electric eye beam 27a.
  • the control of this invention is applicable to synthetic filament yarns generally and finds particular utility in processing the thermoplastic yarns including those of polyamides, polyesters and polyolefins. ln processing nylon, excellent results can be obtained when the bypass circuits increases the temperature of the roll being controlled approximately 8 C above the set point. However, normally when the bypass circuit is activated the temperature of the roll being controlled has to reach only a few degrees above the set point before the yarn plug falls below the electric eye beam.
  • Temperature controller 31 is commonly known as a standstill temperature offset controller of the proportional type with an on-off bypass circuit. However, other controllers can be used, such as those that sense voltage rather than resistance. Also the controller can be of the on-off or proportional type for either the set point or bypass mode of operation.
  • the crimped yarn 4 is tensioned by tension pins 28 and passed through an entangler 30.
  • the crimped and entangled yarn 4 is passed over guide 34 and on to a withdrawal roll 36.
  • the crimped and entangled yarn 4 is exposed to relatively high tension by a constant tension winder 40 after passing over guide 42. While the yarn is exposed to the relatively high tension, the yarn is heated by a suitable heater 38 with the heating fluid entering and existing the chamber at 39a and 39b respectively.
  • the tension of the yarn in the entangling zone 32 must be relatively low as compared with the tension of the yarn in the heat treatment zone 37. This is because high tension in the entangling zone 32, would defeat the entangling process. Also a low tension in the straightening zone 37, would impede the straightening process, thus the entangling and straightening zones must be isolated by some means, as for example the withdrawal roll 36.
  • FIG. 2 illustrates the process of FIG. 1 in which undrawn yarn or partially drawn yarn is used; the primary difference being that the heated draw roll 12 is added to the process.
  • Temperature controller 31 and the bypass circuit activated by the electric eye 27 control the temperature of the draw roll 12 rather than the feed roll 10 as in FIG. 1. However. it is possible to control the temperature of the feed roll 10 rather than the draw roll 12 even through a drawing step is used in the process.
  • the draw ratio should be the highest ratio consistent with good drawing performance. Except for these distinctions the process of FIG. 2 is identical to that of FIG. 1.
  • timers or time delay relays are incorporated into the electric eye circuit in order that the bypass circuit of temperature controller 31 is not activated or once activated is not deactivated until a pre-set time has lapsed. This provides a dampening effect to the control circuit and prevents a chattering or hunting condition from developing.
  • Yarn plug sensors other than an electric eye can be used, such as mechanical sensing devices or a combination of electrical and mechanical sensing devices as known in the art.
  • temperature controller 31 two temperature controllers could be utilized rather than one if desired.
  • One temperature controller would function similar to temperature controller 31 except that the electric eye would not activate a bypass circuit. In this system the electric eye would switch from one temperature controller to the other with the second temperature controller having a set point higher than temperature controller 31.
  • tube 22 had an inside diameter of about 1 inch and was constructed of a material having smooth walls so that there was minimum resistance exerted on the yarn. A lining of polytetrafluoroethylene or other suitable material may be employed to advantage for this purpose.
  • the tubing section 22a had a length of 12 /2 inches and tubing section 22b had a length of 47 /2 inches.
  • Tube 22 was provided with a bend on a 7 /2 inch radius, but the tube 22 may be straight.
  • the four openings 21 were approximately three-eighth inches wide and 6 inches long located upstream of the bend but they can be located either upstream or downstream from the bend. Air entered the tube 22 at point 23 flowed countercurrent to the direction of movement of the yarn 26 through the tube 22 and exited the tube at openings 21 and 24. The air at ambient temperature and the actual flow rates used as shown in the examples contained herein.
  • the tension of the yarn in the entangler should be set to facilitate good entangling.
  • the tension of the yarn in zone 26 can be somewhat less than the tension of the yarn during entangling, zone 32.
  • Heat, moisture and tension are applied to the yarn prior to packaging in zone 37. These parameters can be varied to control the degree of straightening the yarn experiences. Moisture affects some yarns differently than others. For example nylon is generally influenced by moisture more than polyester or polypropylene. That is, in processing nylon. it has been found that moisture is a more important parameter in the yarn straightening step than for either polyester or polypropylene. A convenient method of heating and moisturizing the nylon yarn is to heat the yarn in a chamber with saturated stream. However, other means for both heat ing and moisturizing the yarn can be used.
  • the tension of the yarn in zone 37 should be sufficient to straighten the yarn but not high enough to draw the yarn. This tension is generally higher than the tension of the yarn during entangling. For processing nylon yarns. excellent results were obtained using a tension in the range of 0.04 to 0. l 2 grams/denier in the straightening zone.
  • the temperature of the yarn during the straightening step should be high enough to facilitate straightening. It should be kept in mind that all of these parameters i.e., heat, moisture and tension, effect the straightening of the yarn and each parameter should be adjusted in relation to the others.
  • the yarn can be completely processed in one continuous operation without allowing the yarn to cool to ambient temperature once the processing has begun. Most yarns have a tendency to degrade to some extent each time they are reheated. If the yarn can be processed in one continuous operation as in the practice of the present invention where the yarn is not completely cooled down and then reheated again, the yarn processed will be subjected to fewer conditions which promote degradation and thus be a higher quality yarn.
  • the process of this invention results in a packaged yarn in which the package itself has a high density, the yarn is straight and easy to use for tufting or other textile processes and the bulk returned by applying heat to the yarn. It is important for the yarn to be wound while still warm and under desired tension. This increases the yarns stability with regard to its straightened condition once tension is relaxed.
  • thermoplastic yarns including those of polyester and polyolefin and more especially polyamides.
  • Excellent results have been obtained using the above process on the synthetic filament yarn polycaprolactam (nylon 6) and poly(hexamethylene) adipamide (nylon 66) as shown by the following examples in which the process of the present invention as shown in FIG. 2 of the attached drawings was used with the exception that the electric eye was not used and the plug length was controlled manually by adjusting the speed of the withdrawal roll and/or the temperature of the draw roll.
  • EXAMPLE I A feed yarn comprising two ends of 4,700 denier 70 filament trilobal polycaprolactam (nylon 6) was used.
  • the heating chamber 38 was a three-sixteenth inch diameter tube two feet long containing three threesixteenth inch heating fluid inlets equally spaced along the length of the tube. Saturated stream at 24 psig was used as the heating media.
  • the textured product was 3,200 denier.
  • Table I The other process conditions are illustrated in Table I.
  • EXAMPLE II Using the process shown in FIG. 2 with the exception previously noted the feed yarn was composed of two ends of 3900 denier filament trilobal polycaprolactam (nylon 6). The steam chamber described in Example I was used. Table II illustrates the process conditions. Tensions not listed are the same as those listed in Table I of Example I.
  • Example II The textured product was 2,600 denier.
  • the primary process changes in Example II from that of Example I were 1) lower jet steam flow and temperature (2) higher draw roll temperature (changes were made to reduce crimp, especially crimp frequency) and (3) lower entangling zone tension due to reduced quench air flow to increase entanglement.
  • EXAMPLE lll Again refering to FIG. 2 with the exception previously noted, the feed yarn was three ends of almost triangular cross section 2,000 denier 30 filament nondelustered poly(hexamethylene) adipamide (nylon 66) undrawn yarn.
  • the fluid jet capillary length was 3.1 inches.
  • the process conditions are depicted in Table III. The same fluid chamber used in Examples 1 and II was used.
  • the textured product was 2,640 denier. Process conditions other than those illustrated in Table III are the same as depicted in Table I of Example I. The yarn produced was comparable to that produced in the two previous examples.
  • a method for processing yarn in one continuous operation without allowing the yarn to cool to ambient temperature comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

A continuous synthetic filament yarn is processed by crimping, entangling, and straightening the yarn. The yarn is straightened by heating under tension, resulting in a yarn that can be used in its straightened form and later bulked by a subsequent process such as dyeing, boiling, heating etc. The length of a yarn plug formed by crimping is controlled by controlling the temperature of the yarn.

Description

United States Patent 1191 Borenstein et al.
YARN PROCESSING Inventors: David E. Borenstein; Richard C. Newton, both of Greenville, SC.
Assignee: Phillips Petroleum Company, Bartlesville, Okla.
Filed: May 24, 1973 Appl. No.: 363,480
us. c1. 28/72.ll; 28/7212; 28/72.]4 1111.01. D02g 1/20 Field of Search 28/13, 1.4, 1.6, 72.11,
References Cited UNITED STATES PATENTS 8/1964 Scott 27/l.4 X
[ June 3, 1975 3,399,108 8/1968 Olson 28/7211 X 3,461,521 8/1969 Eskridge et al. 28/72.ll 3,671,619 6/1972 Fitzgerald et al. 28/7217 X 3,703,753 11/1972 Binford et a1 28/7212 3,778,872 12/1973 Newton 28/7214 Primary ExaminerLouis K. Rimrod [57] ABSTRACT A continuous synthetic filament yarn is processed by crimping, entangling, and straightening the yarn. The yarn is straightened by heating under tension, resulting in a yarn that can be used in its straightened form and later bulked by a subsequent process such as dyeing, boiling, heating etc. The length of a yarn plug formed by crimping is controlled by controlling the temperature of the yarn.
7 Claims, 2 Drawing Figures PATENTED N 1975 SHEET mral.
YARN PROCESSING BACKGROUND OF THE INVENTION The invention relates to a method and apparatus for processing synthetic filament yarn.
It is frequently desirable to produce a yarn having increased bulk and cover. improved hand. and which can be handled conveniently by textile making processes such as weaving, tufting, knitting etc. It is also desirable to wind packages of yarn as dense as reasonably possible so as to limit the number of package changes during the winding process and during further handling of the yarn. It is also frequently desirable to use yarn that has been textured and then straightened for easier handling but where the texture will return upon subsequently applying heat to the yarn.
In crimping yarns by methods which result in the formation of a plug of crimped yarn, it is necessary to control the length of the plug. This has been accomplished in a number of ways such as by weighted or pressure controlled gates, controlled draw-off speed, etc.
It is an object of the invention to produce a straightened, textured yarn. Another object of the invention is to produce packages of yarn as dense as possible. Still another object of the invention is to produce straightened textured yarn which can be handled conveniently during textile manufacturing operations and will assume its textured form by reheating the product. And yet another object of the invention is to control the plug length of a crimped yarn.
SUMMARY OF THE INVENTION We have discovered a method for producing textured synthetic filament yarn by the process of crimping and entangling drawn synthetic filament yarn, followed by straightening the yarn by heating and tensioning the textured yarn. Further according to our invention there is provided apparatus comprising a crimping means, an entangling means and a straightening means arranged in that order. Further according to our invention the length of the yarn plug formed during crimping of the yarn is controlled by adjusting the temperature of the yarn prior to or during the crimping step. Further according to our invention there is provided method and apparatus for controlling the length of a yarn plug formed by crimping means by monitoring the position of a yarn plug and controlling the temperature of the yarn in response thereto.
DETAILED DESCRIPTION OF THE INVENTION FIG. 1 is a schematic flow sheet representing an embodiment of the present invention in which previously drawn yarn is processed.
FIG. 2 is a schematic flow sheet representing an embodiment of the present invention and primarily differs from FIG. 1 in that undrawn yarn or partially drawn yarn is processed.
In FIG. 1 continuous filament drawn synthetic yarn 2 is fed from a plurality of packages I through eyelet guides 6 and tensioned by tensioning gates 7 to control the yarn coming from the packages. The yarn is brought together in guide 9 to form yarn 4 of the desired total denier and tensioned by a tensioning gate 8 to provide better control of the yarn. The yarn 4 is fed to a heated feed rool 10. The yarn is then fed to suitable crimping means 16. In the embodiment illustrated in FIG. I, crimping means 16 includes a lluid jet portion and a chamber containing a plurality of stacked members such as balls 15. A heated fluid enters the jet portion through inlet 17 to heat the yarn and assist in crimping and exists the means at 19 and through the stacked members 15. An adjustable angle idler 18 is used to insert a controllable amount of false twist into the yarn prior to crimping. This is useful in controlling the heat losses from the yarn and, hence. the yarn temperature entering the crimping means 16. The yarn plug 20 formed in crimping means 16 is passed through a tube 22 in which the yarn plug 20 is broken up and cooled by countercurrent air 23 or other suitable fluid.
The length of the yarn plug 25 in the crimping means 16 is inversely proportional to the temperature of the yarn in the crimping means. Increasing the temperature of the yarn in the crimper causes the yarn to shrink increasing the denier of the yarn and thus decreasing the yarn plug length. Therefore decreasing the temperature of the yarn increases the yarn plug length. Temperature controller 31 controls the temperature of feed roll 10 which in turn controls the temperature of the yarn entering the crimping means and consequently the length of the yarn plug. Temperature controller 31 is set to maintain the temperature of the roll being controlled at a preset temperature or set point. This temperature controller is of a standard type which senses the resistance of a temperature-sensitive device, such as a thermistor. In addition, a bypass circuit is contained in the temperature controller which increases the temperature of the roll being controlled above the set point whenever said bypass is activated. Since a thermistor decreases in resistance with increasing temperature, the bypass circuit merely increases the actual resistance as seen by the temperature controller causing the temperature controller to heat the roll above the set point. Heat is added to the roll until the resistance of the thermistor as modified by the bypass circuit equals the resistance of the thermistor at the set point. Electric eye 27 senses the length of the yarn plug 25 and activates the bypass circuit of the temperature controller 31 if the yarn plug breaks the electric eye beam 27a. This causes the temperature controller 31 to raise the temperature of the roll being controlled above the set point, increasing the temperature of the yarn and decreasing the yarn plug length. When the yarn plug 25 falls below the electric eye beam 27a, the bypass circuit is deactivated and temperature controller 31 maintains the temperature of the roll being controlled as the set point. I
In setting the set point of temperature controller 31, the controller should have a set point at which the temperature of the roll being controlled is maintained so that the yarn plug length is maintained just above the electric eye beam 27a, that is, where the plug just breaks the beam. When the electric eye beam 27a is broken by the yarn plug 25 the bypass circuit is activated causing the temperature controller 31 to increase the temperature of the roll being controlled above the set point. This in turn increases the temperature of the yarn and thus lowers the yarn plug height 25 until the electric eye 27 is exposed to light beam 27a indicating the yarn plug is lower than the light beam. Therefore temperature controller 31 tries to maintain the end of the yarn plug jet above the electric eye beam and the electric eye 27 tries to maintain the end of the yarn plugjust below the electric eye beam. This competition approaches an equilibrium which results in excellent control of the yarn plug length and crimp level.
In practice the bypass circuit causes the temperature controller 31 to increase the temperature of the roll being controlled above the set point by an amount sufficient to insure that the yarn plug falls below the electric eye beam 27a. The control of this invention is applicable to synthetic filament yarns generally and finds particular utility in processing the thermoplastic yarns including those of polyamides, polyesters and polyolefins. ln processing nylon, excellent results can be obtained when the bypass circuits increases the temperature of the roll being controlled approximately 8 C above the set point. However, normally when the bypass circuit is activated the temperature of the roll being controlled has to reach only a few degrees above the set point before the yarn plug falls below the electric eye beam.
Temperature controller 31 is commonly known as a standstill temperature offset controller of the proportional type with an on-off bypass circuit. However, other controllers can be used, such as those that sense voltage rather than resistance. Also the controller can be of the on-off or proportional type for either the set point or bypass mode of operation.
Further in accordance with FIG. 1 the crimped yarn 4 is tensioned by tension pins 28 and passed through an entangler 30. The crimped and entangled yarn 4 is passed over guide 34 and on to a withdrawal roll 36. The crimped and entangled yarn 4 is exposed to relatively high tension by a constant tension winder 40 after passing over guide 42. While the yarn is exposed to the relatively high tension, the yarn is heated by a suitable heater 38 with the heating fluid entering and existing the chamber at 39a and 39b respectively.
The tension of the yarn in the entangling zone 32 must be relatively low as compared with the tension of the yarn in the heat treatment zone 37. This is because high tension in the entangling zone 32, would defeat the entangling process. Also a low tension in the straightening zone 37, would impede the straightening process, thus the entangling and straightening zones must be isolated by some means, as for example the withdrawal roll 36.
FIG. 2 illustrates the process of FIG. 1 in which undrawn yarn or partially drawn yarn is used; the primary difference being that the heated draw roll 12 is added to the process. Temperature controller 31 and the bypass circuit activated by the electric eye 27 control the temperature of the draw roll 12 rather than the feed roll 10 as in FIG. 1. However. it is possible to control the temperature of the feed roll 10 rather than the draw roll 12 even through a drawing step is used in the process. The draw ratio should be the highest ratio consistent with good drawing performance. Except for these distinctions the process of FIG. 2 is identical to that of FIG. 1.
When the yarn plus length is controlled by controlling the speed of the withdrawal roll. a problem can arise due to variation of the denier of the yarn. In accordanee with the present invention. where the temperature of the yarn entering the crimping zone is adjusted to control the yarn plug length 25 the withdrawal roll 36 can be maintained at a constant speed. Controlling the yarn plug length in this way gives the unexpected result of producing a yarn having a denier within a more narrow range than can be obtained by controlling the yarn plug length by varying the speed of the withdrawal roll. Upstream variables other than the temperature of the feed or draw rolls can be adjusted to control the yarn temperature such as for example the temperature or flow rate of the fluid used in the fluid jet.
It should also be noted that in practice, timers or time delay relays are incorporated into the electric eye circuit in order that the bypass circuit of temperature controller 31 is not activated or once activated is not deactivated until a pre-set time has lapsed. This provides a dampening effect to the control circuit and prevents a chattering or hunting condition from developing.
Yarn plug sensors other than an electric eye can be used, such as mechanical sensing devices or a combination of electrical and mechanical sensing devices as known in the art.
Also two temperature controllers could be utilized rather than one if desired. One temperature controller would function similar to temperature controller 31 except that the electric eye would not activate a bypass circuit. In this system the electric eye would switch from one temperature controller to the other with the second temperature controller having a set point higher than temperature controller 31.
In a specific example. tube 22 had an inside diameter of about 1 inch and was constructed of a material having smooth walls so that there was minimum resistance exerted on the yarn. A lining of polytetrafluoroethylene or other suitable material may be employed to advantage for this purpose. The tubing section 22a had a length of 12 /2 inches and tubing section 22b had a length of 47 /2 inches. Tube 22 was provided with a bend on a 7 /2 inch radius, but the tube 22 may be straight. The four openings 21 were approximately three-eighth inches wide and 6 inches long located upstream of the bend but they can be located either upstream or downstream from the bend. Air entered the tube 22 at point 23 flowed countercurrent to the direction of movement of the yarn 26 through the tube 22 and exited the tube at openings 21 and 24. The air at ambient temperature and the actual flow rates used as shown in the examples contained herein.
The tension of the yarn in the entangler should be set to facilitate good entangling. The tension of the yarn in zone 26 can be somewhat less than the tension of the yarn during entangling, zone 32.
Heat, moisture and tension are applied to the yarn prior to packaging in zone 37. These parameters can be varied to control the degree of straightening the yarn experiences. Moisture affects some yarns differently than others. For example nylon is generally influenced by moisture more than polyester or polypropylene. That is, in processing nylon. it has been found that moisture is a more important parameter in the yarn straightening step than for either polyester or polypropylene. A convenient method of heating and moisturizing the nylon yarn is to heat the yarn in a chamber with saturated stream. However, other means for both heat ing and moisturizing the yarn can be used.
The tension of the yarn in zone 37 should be sufficient to straighten the yarn but not high enough to draw the yarn. This tension is generally higher than the tension of the yarn during entangling. For processing nylon yarns. excellent results were obtained using a tension in the range of 0.04 to 0. l 2 grams/denier in the straightening zone.
The temperature of the yarn during the straightening step should be high enough to facilitate straightening. It should be kept in mind that all of these parameters i.e., heat, moisture and tension, effect the straightening of the yarn and each parameter should be adjusted in relation to the others.
In addition by practicing the present invention the yarn can be completely processed in one continuous operation without allowing the yarn to cool to ambient temperature once the processing has begun. Most yarns have a tendency to degrade to some extent each time they are reheated. If the yarn can be processed in one continuous operation as in the practice of the present invention where the yarn is not completely cooled down and then reheated again, the yarn processed will be subjected to fewer conditions which promote degradation and thus be a higher quality yarn.
The process of this invention results in a packaged yarn in which the package itself has a high density, the yarn is straight and easy to use for tufting or other textile processes and the bulk returned by applying heat to the yarn. It is important for the yarn to be wound while still warm and under desired tension. This increases the yarns stability with regard to its straightened condition once tension is relaxed.
While the above process is applicable generally to synthetic filament yarns capable of being crimped, entangled, straightened, and subsequently bulked by heating, it is particularly useful in processing the thermoplastic yarns including those of polyester and polyolefin and more especially polyamides. Excellent results have been obtained using the above process on the synthetic filament yarn polycaprolactam (nylon 6) and poly(hexamethylene) adipamide (nylon 66) as shown by the following examples in which the process of the present invention as shown in FIG. 2 of the attached drawings was used with the exception that the electric eye was not used and the plug length was controlled manually by adjusting the speed of the withdrawal roll and/or the temperature of the draw roll.
EXAMPLE I A feed yarn comprising two ends of 4,700 denier 70 filament trilobal polycaprolactam (nylon 6) was used. The heating chamber 38 was a three-sixteenth inch diameter tube two feet long containing three threesixteenth inch heating fluid inlets equally spaced along the length of the tube. Saturated stream at 24 psig was used as the heating media. The textured product was 3,200 denier. The other process conditions are illustrated in Table I.
TABLE I Item Process Conditions Tensions, grams Creel, single end 50 Entering feed roll 150 Entering texturing jet I25 Leaving quench tube 50 Entangling zone 70 Post-treatment and winding 200 Temperatures, F
Feed roll (9 wraps) I Draw roll (7 wraps) 338 Jet steam 540 Jet Steam Flow, lb/hr 21 Pressure, psig 84 TABLE I-Continued Item Process Conditions .Air Flows, scfm Tube 12 Eritangler I9 Draw Ratio 3.75
Speeds, m/min Draw roll I I00 Winder feed roll (9 wraps) 800 Doff cycle, minutes 14 Package weight, net lbs. 9.5 Package diameter, inches 9% The process produced a straightened textured yarn wound in a relatively dense package. The yarn had very high stability with respect to its straightened form under zero tension and proved to be excellent carpet yarn having very good carpet pattern definition and tufting qualities.
EXAMPLE II Using the process shown in FIG. 2 with the exception previously noted the feed yarn was composed of two ends of 3900 denier filament trilobal polycaprolactam (nylon 6). The steam chamber described in Example I was used. Table II illustrates the process conditions. Tensions not listed are the same as those listed in Table I of Example I.
winding The textured product was 2,600 denier. The primary process changes in Example II from that of Example I were 1) lower jet steam flow and temperature (2) higher draw roll temperature (changes were made to reduce crimp, especially crimp frequency) and (3) lower entangling zone tension due to reduced quench air flow to increase entanglement.
The qualities of the yarn produced were comparable to those of the yarn produced in Example I.
EXAMPLE lll Again refering to FIG. 2 with the exception previously noted, the feed yarn was three ends of almost triangular cross section 2,000 denier 30 filament nondelustered poly(hexamethylene) adipamide (nylon 66) undrawn yarn. The fluid jet capillary length was 3.1 inches. The process conditions are depicted in Table III. The same fluid chamber used in Examples 1 and II was used.
The textured product was 2,640 denier. Process conditions other than those illustrated in Table III are the same as depicted in Table I of Example I. The yarn produced was comparable to that produced in the two previous examples.
The invention above described finds significant utility in processing nylon yarns for manufacturing carpets and other similar products as evidenced by the above specific examples, but the invention may also be equally applicable to polyester and other synthetic filament yarns. Reasonable modification in the present invention may be possible with respect to the particular apparatus used in each step.
What is claimed is:
l. A method for processing yarn in one continuous operation without allowing the yarn to cool to ambient temperature comprising:
crimping a heated yarn;
entangling the crimped yarn while under low tension;
and
heating the entangled yarn under a higher tension and thereafter packaging the entangled yarn while still warm and under tension thereby producing a straightened yarn which after cooling in the straightened form will assume a crimped form upon subsequent heating in a relaxed state.
2. The method of claim 1 wherein the feed yarn is drawn and immediately passed to crimping.
3. The method of claim 1 wherein the yarn processed is polyester.
4. The method of claim 1 wherein the yarn processed is nylon.
5. The method of claim 4 wherein said nylon yarn is crimped by using a fluid jet and the resulting crimped and entangled yarn is straightened by contacting said yarn with saturated steam under tension sufficient to straighten the yarn but not sufficient to draw the yarn.
6. The method of claim 5 wherein the tension used to straighten the yarn is in the range of 0.04 to 0.12 grams/denier.
7. The method of claim 5 wherein the feed yarn is drawn and passed to crimping without intermediate winding.

Claims (7)

1. A method for processing yarn in one continuous operation without allowing the yarn to cool to ambient temperature comprising: crimping a heated yarn; entangling the crimped yarn while under low tension; and heating the entangled yarn under a higher tension and thereafter packaging the entangled yarn while still warm and under tension thereby producing a straightened yarn which after cooling in the straightened form will assume a crimped form upon subsequent heating in a relaxed state.
1. A method for processing yarn in one continuous operation without allowing the yarn to cool to ambient temperature comprising: crimping a heated yarn; entangling the crimped yarn while under low tension; and heating the entangled yarn under a higher tension and thereafter packaging the entangled yarn while still warm and under tension thereby producing a straightened yarn which after cooling in the straightened form will assume a crimped form upon subsequent heating in a relaxed state.
2. The method of claim 1 wherein the feed yarn is drawn and immediately passed to crimping.
3. The method of claim 1 wherein the yarn processed is polyester.
4. The method of claim 1 wherein the yarn processed is nylon.
5. The method of claim 4 wherein said nylon yarn is crimped by using a fluid jet and the resulting crimped and entangled yarn is straightened by contacting said yarn with saturated steam under tension sufficient to straighten the yarn but not sufficient to draw the yarn.
6. The method of claim 5 wherein the tension used to straighten the yarn is in the range of 0.04 to 0.12 grams/denier.
US363480A 1973-05-24 1973-05-24 Yarn processing Expired - Lifetime US3886636A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US363480A US3886636A (en) 1973-05-24 1973-05-24 Yarn processing
JP3842074A JPS5414227B2 (en) 1973-05-24 1974-04-04
GB2206374A GB1431137A (en) 1973-05-24 1974-05-17 Method and apparatus for processing synthetic yarns
GB4381175A GB1431138A (en) 1973-05-24 1974-05-17 Method and apparatus for crimping synthetic yarns
IT22965/74A IT1012653B (en) 1973-05-24 1974-05-20 YARN PROCESSING
FR7417928A FR2230762B1 (en) 1973-05-24 1974-05-22
DE19742425061 DE2425061B2 (en) 1973-05-24 1974-05-24 DEVICE FOR ROLLING YARN
DE19742462364 DE2462364A1 (en) 1973-05-24 1974-05-24 METHOD OF MANUFACTURING DRAFT TEXTURED DENSE YARN
BE144729A BE815512A (en) 1973-05-24 1974-05-24 APPARATUS AND METHOD FOR THREAD TREATMENT
US05/559,158 US3977058A (en) 1973-05-24 1975-03-17 Method and apparatus for controlling yarn plug length
US05/701,455 US4122588A (en) 1973-05-24 1976-06-30 Yarn processing apparatus
US05/837,233 USRE31783E (en) 1973-05-24 1977-09-27 Method and apparatus for controlling yarn plug length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US363480A US3886636A (en) 1973-05-24 1973-05-24 Yarn processing

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US05/559,158 Division US3977058A (en) 1973-05-24 1975-03-17 Method and apparatus for controlling yarn plug length
US05/837,233 Division USRE31783E (en) 1973-05-24 1977-09-27 Method and apparatus for controlling yarn plug length

Publications (1)

Publication Number Publication Date
US3886636A true US3886636A (en) 1975-06-03

Family

ID=23430400

Family Applications (1)

Application Number Title Priority Date Filing Date
US363480A Expired - Lifetime US3886636A (en) 1973-05-24 1973-05-24 Yarn processing

Country Status (7)

Country Link
US (1) US3886636A (en)
JP (1) JPS5414227B2 (en)
BE (1) BE815512A (en)
DE (2) DE2462364A1 (en)
FR (1) FR2230762B1 (en)
GB (2) GB1431137A (en)
IT (1) IT1012653B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012816A (en) * 1973-10-11 1977-03-22 Phillips Petroleum Company Method and apparatus for processing thermoplastic yarn
US4059873A (en) * 1975-08-29 1977-11-29 E. I. Du Pont De Nemours And Company Fluid process for making continuous filament heather yarn
US4135511A (en) * 1976-06-04 1979-01-23 Phillips Petroleum Company Method for start up of a yarn crimping process
DE2903508A1 (en) * 1978-05-16 1979-11-22 Teijin Ltd METHOD AND DEVICE FOR PULLING A THREAD OF YARN
US4188691A (en) * 1976-10-05 1980-02-19 Teijin Limited Process and apparatus for crimping filament yarn
US4235000A (en) * 1976-06-04 1980-11-25 Phillips Petroleum Company Method for straightening textured yarn
US20060201129A1 (en) * 2005-03-09 2006-09-14 Keith Bumgardner Continuous constant tension air covering

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147760U (en) * 1976-05-01 1977-11-09

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143784A (en) * 1962-07-05 1964-08-11 Du Pont Process of drawing for bulky yarn
US3399108A (en) * 1965-06-18 1968-08-27 Du Pont Crimpable, composite nylon filament and fabric knitted therefrom
US3461521A (en) * 1967-11-24 1969-08-19 American Enka Corp Process for manufacture of yarns
US3671619A (en) * 1967-03-08 1972-06-20 Monsanto Co Crimp reservation process
US3703753A (en) * 1971-05-05 1972-11-28 Fiber Industries Inc Method for producing a bulked yarn and apparatus therefor
US3778872A (en) * 1971-04-12 1973-12-18 Phillips Petroleum Co Method and apparatus for texturing yarn

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6400489A (en) * 1964-01-23 1965-07-26
US3417447A (en) * 1965-10-21 1968-12-24 Bancroft & Sons Co J Method and apparatus for treating crimped yarn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3143784A (en) * 1962-07-05 1964-08-11 Du Pont Process of drawing for bulky yarn
US3399108A (en) * 1965-06-18 1968-08-27 Du Pont Crimpable, composite nylon filament and fabric knitted therefrom
US3671619A (en) * 1967-03-08 1972-06-20 Monsanto Co Crimp reservation process
US3461521A (en) * 1967-11-24 1969-08-19 American Enka Corp Process for manufacture of yarns
US3778872A (en) * 1971-04-12 1973-12-18 Phillips Petroleum Co Method and apparatus for texturing yarn
US3703753A (en) * 1971-05-05 1972-11-28 Fiber Industries Inc Method for producing a bulked yarn and apparatus therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4012816A (en) * 1973-10-11 1977-03-22 Phillips Petroleum Company Method and apparatus for processing thermoplastic yarn
US4059873A (en) * 1975-08-29 1977-11-29 E. I. Du Pont De Nemours And Company Fluid process for making continuous filament heather yarn
US4135511A (en) * 1976-06-04 1979-01-23 Phillips Petroleum Company Method for start up of a yarn crimping process
US4235000A (en) * 1976-06-04 1980-11-25 Phillips Petroleum Company Method for straightening textured yarn
US4188691A (en) * 1976-10-05 1980-02-19 Teijin Limited Process and apparatus for crimping filament yarn
DE2903508A1 (en) * 1978-05-16 1979-11-22 Teijin Ltd METHOD AND DEVICE FOR PULLING A THREAD OF YARN
US20060201129A1 (en) * 2005-03-09 2006-09-14 Keith Bumgardner Continuous constant tension air covering

Also Published As

Publication number Publication date
JPS506853A (en) 1975-01-24
FR2230762B1 (en) 1976-12-24
FR2230762A1 (en) 1974-12-20
DE2425061B2 (en) 1977-01-13
IT1012653B (en) 1977-03-10
DE2425061A1 (en) 1974-12-12
BE815512A (en) 1974-11-25
GB1431138A (en) 1976-04-07
GB1431137A (en) 1976-04-07
JPS5414227B2 (en) 1979-06-05
DE2462364A1 (en) 1977-01-13

Similar Documents

Publication Publication Date Title
US3069836A (en) Yarn relaxation process using fluid jets
US4571793A (en) Air jet texturing system for the production of uniform textured yarn
US3404525A (en) Low-torque multifilament compact yarn
US3142147A (en) Voluminous yarn from synthetic continuous thermoplastic filaments
US4567720A (en) Air jet texturing system
US3977058A (en) Method and apparatus for controlling yarn plug length
US3886636A (en) Yarn processing
US3365874A (en) Treatment of synthetic filaments
US3703753A (en) Method for producing a bulked yarn and apparatus therefor
US3832759A (en) Process and apparatus for texturizing yarn
US4338776A (en) Process for the production of a crimped continuous multifilament yarn
US3083523A (en) Twistless, heat relaxed interlaced yarn
US4135511A (en) Method for start up of a yarn crimping process
CA1253327A (en) Air jet texturing system
US4122588A (en) Yarn processing apparatus
US4369555A (en) Yarn processing apparatus
US3785135A (en) Producing torque controlled voluminous set yarns
US4010523A (en) Process for the production of a novelty yarn
US3523345A (en) Yarn texturing method
USRE31783E (en) Method and apparatus for controlling yarn plug length
JPS5947738B2 (en) Manufacturing method of bulky yarn
US3478401A (en) Method and apparatus for treating textile yarn
US3341913A (en) Drawing and bulking of synthetic polymer yarns
WO1995002721A1 (en) Method of manufacturing a composite yarn having a spandex core and a texturized thermoplastic covering
US3241212A (en) Apparatus for crimping thermoplastic yarn