US3508179A - Motor driven operator for high voltage switch - Google Patents

Motor driven operator for high voltage switch Download PDF

Info

Publication number
US3508179A
US3508179A US729565A US3508179DA US3508179A US 3508179 A US3508179 A US 3508179A US 729565 A US729565 A US 729565A US 3508179D A US3508179D A US 3508179DA US 3508179 A US3508179 A US 3508179A
Authority
US
United States
Prior art keywords
switch
shaft
motor
contacts
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US729565A
Other languages
English (en)
Inventor
Joseph Bernatt
David M Evans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S&C Electric Co
Original Assignee
S&C Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S&C Electric Co filed Critical S&C Electric Co
Application granted granted Critical
Publication of US3508179A publication Critical patent/US3508179A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/54Mechanisms for coupling or uncoupling operating parts, driving mechanisms, or contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/227Interlocked hand- and power-operating mechanisms

Definitions

  • MOTOR DRIVEN OPERATOR FOR HIGH VOLTAGE SWITCH Filed May 16, 1968 9 Sheets-Sheet 4 n Q ⁇ R $1 MOTOR DRIVEN OPERATOR FOR HIGH VOLTAGE SWITCH Filed May 16, 1968 April ,1970 J.
  • the clutch can be clutched only when the drive shaft and motor are in the same annular relation as shown by indicators operated individually from the drive shaft and the motor.
  • a limit switch driven by the motor deenergizes it in the switch closed and switch open positions.
  • the motor is stopped by a spring operated brake that is released when the motor is energized, when the manually operable handle is unfolded and when the selector handle unclutches the clutch.
  • Auxiliary trip windings for the switch poles are prevented from being energized by a decoupling switch operated by the selector handle in unclutching the clutch.
  • the motor driven operator herein is an improvement over the motor driven operator disclosed in Evans and Stene Patent No. 3,432,780, issued Mar. 11, 1969.
  • a switch for high voltage electric power transmission lines in a new and improvedmanner To provide for operating a switch for high voltage electric power transmission lines in a new and improvedmanner; to employ a speed reducing train between an electric drive motor and a switch drive shaft that rotates through a partial revolution in opposite directions for operating the switch between open and closed positions with a manually operable handle or crank connected to the speed reducing train at a location where there is substantial speed reduction between the handle or crank and the switch drive shaft; to non-detachably mount the handle or crank on the switch operating mechanism and to arrange for folding it to a non-operating position; to prevent energization of the drive motor and to release a brake arranged to stop the drive motor when the handle or crank is unfolded; to unclutch a clutch interconnecting the switch drive shaft and the speed reducing gear train to permit independent operation of .the motor and parts driven thereby; to reclutch the clutch only when the switch drive shaft and the motor are in the same angular relation; to indicate individually the positions of the switch
  • Each phase switch includes a disconnecting switch blade in series with a circuit interrupter operated by an insulator that is rotated through a partial revolution.
  • the rotatable insulators are mechanically interconnected to be operated by a switch operating member in the form of a vertical pipe that is rotated at a speed of about 32 r.p.m. through about one-half of a revolution for closing or opening the three phase switch through speed reducing means by a motor that rotates at about 4000 rpm.
  • the speed reducing means includes sprockets and gears. Provision is made for bypassing the motor operated mechanism and opening the individual circuit interrupters without moving the rotatable insulators.
  • the motor operated mechanism goes through its operating cycle to open the disconnecting switch blades and reclose the circuit interrupter.
  • a non-detachable manually operable handle is folded onto the housing of the motor operated mechanism.
  • the manually operable handle is arranged for mechanical connection at an intermediate point to the speed reduction mechanism.
  • a manually operable selector mechanism is employed to decouple the switch operating member from the motor operated mechanism.
  • the decoupling operation is effected by a manually operable selector lever which also is arranged to momentarily release the brake mechanism and to open the energizing circuit to the trip windings for the individual circuit interrupters. Provision is made for recoupling the motor operated mechanism and the switch operating member in only one position. This ineludes proper recoupling to a mechanically operated limit switch which is driven by the motor and is employed for deenergizing it at the ends of the switch opening and closing operations.
  • the position of the motor operated mechanism for-either the open or close position of the three phase high voltage switch is shown by an indicator that is operated conjointly with the limit switch.
  • open and close cams are driven by the motor operated mechanism.
  • a limited degree of lost motion is provided in the drive to the open and close cams.
  • FIG. 1 is a perspective view of a three pole or three phase high voltage switch for connection in a power transmission line, only one of the switch poles being showncompletely, the insulators and base for each of the other poles only being shown, the high voltage switch being arranged to be operated by a switch operating mechanism embodying this invention.
  • FIG. 2 is a front elevational view of the switch operating mechanism, the front door and cover of the housing having been omitted in order to show the interior details of construction.
  • FIG. 3 is a view, in side elevation, looking from left to right of FIG. 2 and showing certain details of the operating mechanism.
  • FIG. 4 is a vertical sectional view taken generally along the line 4-4 of FIG. 2.
  • FIG. 5 is a view, partly in front elevation and partly in section, of the gear box and frame for the operating mechanism shown in FIGS. 2 and 3, the illustration being at an enlarged scale.
  • FIG. 6 is a horizontal sectional view taken generally along the line 6-6 of FIG. 5.
  • FIG. 7 is a side elevational view of FIG. looking from left to right, certain parts being shown in section and others broken away to illustrate more clearly the details of construction.
  • FIG. 8 is a view, in front elevation, of the front cover showing the manually operable mechanism handle or crank in folded position, certain parts being shown in section.
  • FIG. 9 is a view, in rear elevation, of the construction shown in FIG. 8, certain parts being shown in section.
  • FIG. 10 is a sectional view at an enlarged scale taken generally along the line 1010 of FIG. 8'.
  • FIG. 11 is a vertical sectional view taken along the line 1111 of FIG. 10.
  • FIG. 12 is a top plan view of the selector shaft and motor drive clutch, the selector handle being shown in section and rotated through 90 in order to show more clearly the details of construction.
  • FIG. 13 is a view, in side elevation, taken generally along the line 1313 of FIG. 12, certain parts being shown in section.
  • FIG. 14 is a plan view of the linkage between the cam follower shaft and the operator limit switch and auxiliary switch operated in accordance with the position of the motor.
  • FIG. 15 is a vertical sectional view taken generally along the line 1515 of FIG. 12 to show the manner in which the decoupling switch is operated.
  • FIG. 16 is chart showing the positions of the contacts of the operator limit switch which is operated in conjunction with the drive motor to effect its deenergization at the ends of the openings and closing strokes of the high voltage switch.
  • FIG. 17 shows diagrammatically the circuit connections that can be employed for controlling the electric drive motor for operating the high voltage switch between open and closed positions and the associated circuits.
  • FIG. 1 a three pole high voltage switch is indicated, generally, at 10 and is suitable for use in conjunction with high voltage electric power alternating current power transmission lines.
  • the high voltage switch 10 can be constructed as disclosed in Lindell et al. US. Patent 3,116,391, issued Dec. 31, 1963.
  • the individual switch poles are indicated at 11, 12 and 13.
  • Each switch pole includes a base member 14 of suitable channel construction or the like having at its ends stationary insulators 15 and 16 and a rotatable insulator 17 intermediate its ends.
  • the insulator 17 is rotatable through about 100 for the purpose of moving an interrupter operating mechanism 18 at its upper end through its operating cycle.
  • a load current interrupter 19 which is arranged to be opened to interrupt the circuit before a switch blade 20 is swung out of engagement with a switch contact assembly, indicated generally at 21, carried by stationary insulator 15.
  • each is provided with a laterally extending arm 24 that is connected by a link 25 to an arm 26 which extends from an interphase shaft 27 that is suitably journaled on the base members 14 and is driven through a gear box 28 by a vertically extending drive shaft 29 that is arranged to be rotated through about 180.
  • the switch drive shaft 29 is connected by a shaft coupling and bearing assembly, indicated generally at 30, to a switch operating mechanism, indicated generally at 31, which is enclosed in a weather proof housing 32.
  • An access door 33 is provided for the housing 32 which can be locked against unauthorized entry.
  • a front cover 34 which is provided with a window 35 to permit inspection of a portion of the interior of the housing 32 and particularly of portions of the operating mechanism 31 therein.
  • a manually operable mechanism handle or crank is indicated, generally, at 36 and is arranged to be folded over the front cover 34 and to be non-detachably connected to the switch operating mechanism 31 in a manner to be described.
  • the housing 32 includes a side wall 37 on which a selector handle 38 4 is located in a selector handle mount 39 which is secured to the side wall 37.
  • the reference character 42 designates, generally, frame means which includes the weather proof housing 32 and frame plates and angle shape frame parts that are not specifically identified herein.
  • the shaft coupling and bearing assembly 30 is mounted on the top of the housing 32 and has depending therefrom a shaft extension 43 which, it will be understood, is connected directly to the switch drive shaft 29 and rotates conjointly therewith.
  • the lower end of the shaft extension 43 is splined to slidably receive a clutch driven member or spline coupling 44 which forms a part of a motor drive clutch that is indicated, generally, at 45.
  • a transverse slot 46 is provided in the lower end of the clutch driven member or spline coupling 44 as shown more clearly in FIG. 13 for receiving a coupling bar 47, FIG.
  • the transverse slot 46 and the coupling bar 47 are offset from the axis of rotation of the shaft extension 43 and of the shaft 48 in order to prevent clutching of the motor drive clutch except when the shaft extension 43 and shaft 48 are in one angular position.
  • the ends of the shaft 48 are journaled in a gear box 49 and it carries a large diameter spur gear 50 which is keyed thereto.
  • a pinion 51, FIG. 7, is engaged by the gear 50 and is mounted on a shaft 52 which is journaled in the gear box 49.
  • a bevel gear 53 is keyed to the shaft 52 and is positioned in a frame 54 that is mounted on the gear box 49.
  • the bevel gear 53 engages a bevel pinion 55 that is keyed to a horizontal manual drive shaft 56 the ends of which are journaled on the frame 54.
  • manual drive shaft 56 there is non-rotatably positioned thereon a sprocket 57 which is connected by a chain 58 to a smaller sprocket 59 which is located in a gear box 60 that is suitably mounted on the frame means 42 and in which is located a spur gear 61 which is rotatable conjointly with the sprocket 59.
  • the spur gear 61 engages a pinion 62 that is non-rotatably mounted on a shaft 63 which is driven by an electric drive motor 64 that is suitably mounted on frame means 42.
  • the electric drive motor 64 is a reversible alternating or direct current motor having a speed of 4000 r.p.m. It will be understood that other motors can be employed and that these characteristics of the motor 64 are mentioned for illustrative purposes.
  • a brake disc 67 is non-rotatably mounted on the shaft 63 and brake shoes 68 forming a part of a brake assembly, indicated generally at 69 and suitably mounted on the frame means 42, are provided on opposite sides of the disc 67.
  • a brake lever 70 FIG. 4, is arranged to move the shoes 68 into engagement with the brake disc 67.
  • a coil tension spring 71 is connected to the brake lever 70 and normally holds the shoes 68 in engagement with the brake disc 67. The coil tension spring 71 moves the brake lever 70 in the direction indicated by arrow 72 to set the brake and arrest further rotation of the shaft 63 driven by the motor 64.
  • the brake assembly 69 is arranged to be released in response to energization of the drive motor 64 and in response to unfolding of the manually operable mechanism handle or crank 36 and momentarily on operation of the selector handle 38 in manners to be described.
  • a pin 73 makes connection to a pair of links 74 which are connected by a pin 74' to the distal end of an arm 75 which is nonrotatably mounted on a shaft 76 which is journaled in a support 77 that is suitably mounted on the frame means 42.
  • an arm 78 is non-rotatably secured thereto and at its distal end a pin 79 makes connection to a pair of links 80 which are connected by a pin 81 to an armature 82 that is arranged to be attracted by a brake release solenoid 83 on its ener- I gization to move the armature 82 downwardly as indicated by arrow 84 for the purpose of moving the brake lever 70 to the brake released position.
  • the shaft 76 also has an arm '85 non-rotatably secured thereto and connected at its distal end by a pin 86 to a link 87 which is located at the lower end of a brake release rod 88 which is arranged to be moved downwardly in the direction indicated by arrow 89 for'also releasing the brake assembly 69 on unfolding of the handle or crank 36 or momentarily on operation of the selector handle 38.
  • FIGS. 7-11 illustrate the manner in which the handle or crank 36 is unfolded and arranged to rotate the switch drive shaft 29 and the motor 64 by a connection to the speed reducing train interconnecting the drive motor 64 and the shaft extension 43 which is connected directly to the switch drive shaft 29.
  • the handle or crank 36 is connected to a point along this speed reduction train in order to permit it to operate at a corresponding mechanical advantage with respect to the switch drive shaft 29.
  • the right end of the manual drive shaft 56 terminates in a transverse bar 92 which forms a part of a manual clutch, indicated generally at 9-3, and is arranged to enter a slot 94 in a clutch end 95 of a piston that is indicated at 96.
  • the piston 96 has a splined cylindrical hollow shank 97 that is slidable in a splined sleeve portion 98 of a hand crank support which is indicated, generally, at 99 and is pivoted in the front cover 34. Since the slot 94 is likely not to be aligned with the transverse bar end 92 of the manual drive shaft 56, when it is desired to operate the switch operating mechanism 31 by the handle or crank 36, coil compression springs 102 in sockets 103 in the clutch end 95 of the hand crank support 99 are arranged to urge the latter into clutching engagement when the clutch end 95 is rotated to align the slot 94 with the transverse bar end 92. The coil compression springs 102.
  • transverse bar 104 which extends through a slot 105 in the clutch end 95.
  • the transverse bar 104 is secured by a bolt 106 to a push rod 107 that is slidably mounted within the hollow shank 97.
  • the push rod 107 is bifurcated as indicated at 108 and a pin 109 extends through a link 110 located between the furcations.
  • the other end of the link 110 is connected by a pin 111 which extends through collars 112 which are non-rotatably secured to the inner ends of pins 113 which are journaled in an enlarged hollow cylindrical end 114 of the hand crank support 99.
  • the outer ends of the pins 113 are keyed to furcations 117 of a bifurcated end 118 of and extend at right angles to a shank 119 of the handle or crank 36 which, in folded position, overlies the front cover 34.
  • a shaft 120 extends from the other end of the shank 119 and carries a handle tube 121 in overlying relation to the side wall 37 of the housing 32 as shown more clearly in FIG. 1.
  • the tube 121 provides a hand grip to facilitate rotating the handle or crank 36.
  • Loops 122 and 123 on the shank 119 and the front cover 34 are arranged to receive a padlock or other locking device to prevent unauthorized unfolding of the handle or crank 36.
  • the outer end of the hollow cylindrical end 114 of the hand crank support 99 is closed by an end plate 124, FIG. 10, which is secured in place by bolts 125.
  • a plunger 126 is slidably mounted in the end plate 124 and its inner end is arranged to enter an opening 127 in one of the collars 112 to prevent rotation of the pins 113 and unfolding of the handle or crank 36.
  • a coil compression spring 128 biases the plunger 126 into locking engagement with the collar 112.
  • a knob 129 at the outer end of the plunger 126 facilitates withdrawing of the plunger 126 against the action of the spring 128.
  • the handle or crank 36' can be rotated bodily about the axis through the pins 113 through 180 to position the handle tube 121 at a location where it can be rotated manually.
  • the link moves the push rod 107 inwardly and carries with it the transverse bar 104 which compresses the springs 102 and moves the clutch end 95 toward the juxtaposed end of the manual drive shaft 56. If the slot 94 is not in alignment with the transverse bar end 92 of the manual drive shaft 56, further movement of the clutch end 95 is prevented while movement of the transverse bar 104 continues. Then, when the handle or crank 36 is manually rotated about the axis of rotation of the hand crank support 99 in the cover 34, the slot 94 is moved into alignment with the transverse bar end 92 and driving engagement is had with the manual drive shaft 56.
  • bolts 130 extend through a bearing 131 in which the clutch end 95 of piston 96 is journaled.
  • the bolts 130 extend into the transverse bar 104.
  • the bearing 131 in turn is journaled in a guide plate 132 that is arranged to be moved translatorily only on movement of the push rod 107.
  • the guide plate 132 is arranged to engage a roller 133 that is carried at the distal end of an operating arm 134 from a hand crank interlock switch 135 which has a pair of normally open contacts 135a and 135b, FIG. 17, that are spring biased to closed position.
  • a lever 136 is pivoted at 137 on a support 138 that extends from the rear side of the front cover 34.
  • Furcations 139 of one bifurcated end 140 are positioned on opposite sides of the guide plate 132 and are pivotally connected thereto at 141.
  • Furcations 142 at the other bifurcated end 143 of the lever 136 have a pin 144 extending therethrough and through a slot 145 in a link 146 that is secured to one end of brake release rod 147 that is slidable through the opposite walls of the frame 54, FIG. 7.
  • FIGS. 3, 7, 12 and 13 the operating linkage between the brake release rod 147 and the brake release rod 88 is shown.
  • a pin 149 interconnects the brake release rod 147 with an arm 150 that is secured to and rotates with a brake release shaft 151 that is suitably rotatably mounted on the frame means 42.
  • a lever 152 is secured to the brake release shaft 151 for rotation therewithand furcations 153 of its bifurcated end 154 are connected by a pin 155 to a link 156.
  • the other end of link 156 is connected by a pin 157 to one arm 158 of a bell crank that is indicated, generally, at 159 and is pivoted at 160 on a support 161 which is carried by the gear box 49.
  • the other arm 162 of the bell crank 159 is connected by a pin 163 to a link 164 that is secured to the upper end of the brake release rod 88.
  • the motor drive clutch 45 is provided.
  • FIGS. 12-13 the arrangement for declutching the motor drive clutch 45 is illustrated.
  • the clutch driven member or spline coupling 44 which is slidable on the lower end of the shaft extension 43, is mounted in a bearing "166 that is connected by pivot pins, one of which is shown at 167, to furcations 168 of a coupler yoke as indicated, generally, at 169.
  • the brake assembly 69 should be momentarily released. If it is not released, the torsion stress left in the switch drive shaft 29 as the result of the last operation by the drive motor 64 may make it difiicult to move the clutch driven member or spline coupling 44 to the released position along the lower end of the shaft extension 43. Accordingly, a detent 170 is arranged to engage a roller 171 that is carried by a pin 172 which extends between the furcations 153.
  • the lever 152 On a slight movement of the detent 170, the lever 152 is pivoted to pivot the brake release shaft 151 and release the brake assembly 69 in the manner previously described. As soon as the detent 170 passes the roller 171, the spring 71, FIG. 4, resets the brake assembly 69 so that the motor drive clutch 45 is declutched with the brake set. For declutching the motor drive clutch 45 by shifting the clutch driven member or spline coupling 44 to the unclutched position, the right side of the coupler yoke 169, FIG.
  • the selector shaft 176 is suitably journaled in the frame means 42 for rotation about an axis parallel to the axis of rotation of the brake release shaft 151 and has the coupler yoke 169 mounted freely thereon.
  • the lost motion provided by the slots 173 and bosses 174 permits rotation of the selector shaft 176 to rotate the detent 170 into engagement with the roller 171 and disengagement therefrom to momentarily release the brake assembly 69 before any movement of the coupler yoke 169 takes place to declutch the motor drive clutch 45.
  • At the right end of the selector shaft 176 there is provided an integral transverse bar 177 that exends into a slot 178 which is formed in a hub of the selector handle 38.
  • a detent 179 is mounted on the selector shaft 176 and is arranged, FIG. 15, to engage a roller 180 on an arm 181 which is arranged to operate a decoupling switch 182 that has normally closed contacts 182a, FIG. 17, which opens the energizing circuit for the auxiliary ings to be referred to hereinafter.
  • the selector handle 38 is held in either of its operative positions by av plunger 183 that is slidably mounted with one end arranged to engage either of two openings, one of which is shown at 184, in the selector handle mount 39, FIG. 12.
  • a knob 185 at the outer end facilitates withdrawal of the plunger 183 against the biasing action of a coil compression spring 186.
  • the recoupling can occur only when the transverse slot 46 is aligned with the coupling bar 47.
  • the desired alignment for the motor drive clutch 45 is likely not to occur. Accordingly, it is desirable to provide some means for visually indicating the necessary alignment to permit reclutching of the motor drive clutch 45. For this purpose provision is made for comparing the angular position of the shaft extension 43 and thereby of the switch drive shaft 29 with the position of the coupling bar 47 and thereby of the motor 64. As shown in FIG.
  • a sprocket 188 is mounted on the shaft extension 43 for rotation therewith and it is connected by a chain 189 to a sprocket 190 which is mounted for rotation with an auxiliary shaft 191 that is suitably pivotally mounted on the frame means 42 at its upper end.
  • the auxiliary shaft 191 extends parallel to the axis of rotation of the shaft extension 43 and thereby of the shaft 48 carrying the coupling bar 47.
  • an indicator disc 192 is secured to the auxiliary shaft 191 for rotation therewith.
  • Numerals 193 are provided on the periphery of the indicator disc 192 and separated by vertical lines.
  • the angular position of the indicator disc 192 corresponds to the angular position of the shaft extension 43 and thereby of the switch drive shaft 29.
  • the numerals 198 are separated by vertical lines.
  • the sprocket 196 is pivoted on a bearing 200 and is arranged by means of a lost motion connection indicated, generally, at 201 between it and a plate 202 to drive it and thereby a hollow control shaft 203 to which it is welded for a purpose that will be apparent presently.
  • the hollow control shaft 203 is journaled in the distal ends of arms 204 that extend outwardly from the gear box 49.
  • the lost motion connection 201 includes a lost motion pin 205 that is mounted on and rotates with the trip windsprocket 196 and a clearance opening 206 in the plate 202 into which the upper end of the lost motion pin 205 extends.
  • the reason for providing the lost motion connection 201 is due to the residual torsion stress in the switch drive shaft 29 at the end of the switch opening or closing operation which might be reflected in a slight rotation of the control shaft 203 which would then not correspond in angular position to the angular position of the drive motor 64 as reflected by the position of the shaft 48.
  • This torsion stress is released when the 'brake assembly 69 is operated to move the shoes 68 out of engagement with the brake disc 67.
  • the movement of the hollow control shaft 203 is employed for effecting the deenergization of the drive motor 64 at the ends of the closing and opening strokes of the high voltage switch 10. It is for this purpose that a close cam 207 and an open cam 208 are secured to the control shaft 203 for rotation therewith. Suitable provision is made for adjusting the angular positions of the cams 207 and 208 with respect to the control shaft 203.
  • the cams 207 and 208 are arranged to engage, respectively, a close roller 209 and an open roller 210 which are suitably mounted on a cam follower 211 that is secured to and pivots with a, shaft 211' that is pivotally mounted in the arms 204.
  • the shaft 211' is connected to an arm 212 which is pivotally connected at 213 at its distal end to a link 214 the other end of which is connected to one arm of a bell crank lever 215 which is arranged to operate an operator limit switch 216 having contacts 216a, b, c, d, e, f, g and h, FIGS; 16 and 17, which are employed principally for controlling the energization of the drive motor 64 in one direction or the other.
  • auxiliary switch 219 the contacts of which are not further described herein but which can be employed for various signalling and control purposes that are related to the position of the drive motor 64 as reflected by the position of the shaft 48, FIG. 5.
  • FIGS. 2 and 5 corresponds to the position of the drive motor 64 in the manner just referred to advantage is taken of this to provide an indicator 220 which is movable with the shaft 211'.
  • the indicator 220 is movable relative to a slot 221 in a stationary shield 222 with the indicator being suitably marked to indicate the motor position.
  • the word CLOSED appears in the slot 221 when the close cam 207 engages the close roller 209 as shown in FIG. 2.
  • the word OPEN appears in the slot 221 in the shield 222 when the open cam 208 engages the oven roller 210.
  • auxiliary shaft 191 is journaled at its lower end within the hollow control shaft 203 and extends below it.
  • a plate 223 is secured to the lower end of the auxiliary shaft 191 and it is arranged to be adjustably connected by bolts 224 to an underlying plate 225 which is pivotally connected at 226 to an arm 227 thatis arranged to operate an auxiliary switch 228.
  • the contacts of the auxiliary switch 228 are controlled in accordance with the angular position of the switch drive shaft 29 and use can be made of this fact for various signalling and control purposes as may be desired.
  • a control switch For manually initiating the energization of the drivernotor 64 for opening or closing the high voltage switch 10, a control switch, indicated generally at 229 in FIG. 2, is provided. It is suitably mounted on the frame means 42. In addition, green and red indicating lamps 230 and 231 are provided, the green lamp 230, when lighted, in
  • FIG. 17 The circuit connections for controlling the operation of the high voltage switch 10 are illustrated in FIG. 17.
  • conductors 234 and 235 are indicated as being connected to a suitable control voltage such as a or 230 volt alternating or direct curren source.
  • a suitable control voltage such as a or 230 volt alternating or direct curren source.
  • These conductors are connected by manually operable switches 236 and 237 through contacts and 135b of the hand crank interlock switch 135 to energize conductors 238 and 239.
  • the control system as shown in FIG. 17 assumes that the high voltage switch 10 is open. Accordingly, as indicated in FIG. 16, contacts 216c, d, f, g and h are closed and contacts 216a, b and :2, all of the operator limit switch 216, are open.
  • a closing coil 240 and an opening coil 241 are employed.
  • Contacts 240 a, b and d are open and contacts 240:: are closed when the closing coil 240 is deenergized.
  • contacts 241a, b and d are open and 2410 are closed when the opening coil 241 is deenergized.
  • a stepping relay coil 242 is arranged to be energized on closure of a push button switch 243 or by the closure of relay contacts connected in parallel therewith that may be responsive to overcurrent flow in the high voltage power transmission system in which the high voltage switch 10 is connected.
  • the stepping relay coil 242 is arranged to be repeatedly energized and deenergized by operation of stepping contacts one of which is indicated at 244 and is arranged, as is conventional, once energization of the stepping relay coil 242 is initiated to continue to energize it in a stepwise fashion through a predetermined operating cycle.
  • the stepping relay coil 242 is arranged to operate contacts 242a and b which are normally closed and contacts 2420, d, e, g and h that normally are open but which are closed in the sequence to be described.
  • the stepping relay coil 242 is provided for controlling the energization of parallel connected auxiliary trip windings 245, 246 and 247 which, as described in the patent above referred to, are arranged to effect the tripping of the interrupter operating mechanism 18 of the individual poles 11, 12 and 13 of the high voltage switch 10 for effecting operation of the respective load current interrupter 19 in advance of the normal operation thereof.
  • the timer 248 is provided which has normally open contacts 248a. As will appear hereinafter these contacts are closed to effect energization of the opening coil 241 and subsequent energization of the drive motor 64 to operate the high voltage switch 10 to the open position.
  • control switch 229 is operated to the close position.
  • contacts 229a are closed to complete a circuit from conductor 238 through normally closed contacts 216i, closing coil 240 and normally closed contacts 2410, 216c and 242b to conductor 239.
  • Closing coil 240 is energized and contacts 2400 are opened to open a possible energizing circuit to opening coil 241 and contacts 240a and 2401) are closed to complete an obvious energizing circuit for the drive motor '64.
  • brake release solenoid 83 is energized in parallel with the drive motor 64 for the purpose of releasing the brake assembly 69.
  • Contacts 240d are closed to provide a holding circuit around contacts 229a for the closing coil 240.
  • the contacts 229a of the control switch 229 can be opened.
  • the drive motor 64 then operates through the speed reduction train to rotate the switch drive shaft 29 in a direction to close the high voltage switch 10.
  • the operation proceeds through positions 1 through 9 as indicated in FIG. 16 for operation of the operator limit switch 216.
  • contacts 216k are closed and the green indicating lamp 230 is lighted.
  • Contacts 216a are open and the red indicating lamp is not lighted.
  • contacts 216b are closed to prepare an energizing circuit for opening coil 241.
  • Contacts 216a and d remain closed.
  • Contacts 216 and g are opened and contacts 216k are opened to deenergize the green lamp 230.
  • the operation continues through the remaining positions.
  • contacts 216a are closed to prepare an energizing circuit which subsequently can be completed on closure of the push button switch 243 or the relay contacts connected in parallel therewith.
  • contacts 216d are opened.
  • contacts 216a are closed to energize red indicating lamp 231 and contacts 21'6c are opened to open the energizing circuit for the closing coil 240.
  • contacts 216a remain closed along with contacts 216!) and 216e.
  • contacts 240a and 24% are opened to deenergize the drive motor 64 and brake release solenoid 83.
  • Contacts 240d are opened to open the holding circuit around contacts 229a.
  • Contacts 2400 are closed to prepare the energizing circuit for the opening coil 241.
  • the control switch 229 For opening the high voltage switch 10 the control switch 229 is operated to the open position thereby closing contacts 2291) and completing an energizing circuit for the opening coil 241 from conductor 238 through contacts 229b opening coil 241, normally closed contacts 240e, contacts 216b which now are closed, to conductor 239.
  • opening coil 241 contacts 241a and 241b are closed to effect the energization of drive motor 64.
  • the brake release solenoid 83 is energized to release the brake assembly 69. Contacts 241d are closed to provide a holding circuit for contacts 22% and contacts 2410 are opened to prevent inadvertent energization of the closing coil 240.
  • the high voltage switch 10 then is operated to the open position and the operator limit switch 216 moves from position 9 back to position 1 with its contacts being closed and opened as indicated by the sequence chart in FIG. 16.
  • contacts 242e, f, g and h are closed.
  • the closure of contacts 242e and 242 effects the energization of the drive motor 64 and energization of the brake release solenoid 83.
  • the drive motor 64 then operates to rotate the switch drive shaft 29 in the opening direction to operate the interrupter operating mechanisms 18 and complete the opening cycle for each of the poles 11, 12 and 13 of the high voltage switch 10.
  • Contacts 242g are closed to complete an obvious energizing circuit for the opening coil 241 and its contacts are closed and opened in the manner above described and function as there indicated.
  • Contacts 242k are closed to insure that the stepping relay coil 242 continues to be energized until it is returned to the initial position in which only contacts 242a and 242b are closed.
  • contacts 242a are opened to open the previously traced energizing circuit for stepping relay coil 242.
  • the timer 248 is energized after the expiration of a. predetermined interval, for example 15 cycles of 60 Hz., after the contacts of the push button switch 243 are closed.
  • a. predetermined interval for example 15 cycles of 60 Hz.
  • the timer 248 has been energized for this interval, its contacts 24811 are closed to complete an obvious energizing circuit for the opening coil 241. It initiates the opening sequence of operations for the high voltage switch 10 previously described.
  • the decoupling switch 182 is operated when the selector handle 38 is shifted to the position for unclutching the motor drive clutch 45. Operation of the decoupling switch 182 opens contacts 182a and prevents subsequent energization of the auxiliary trip windings 245, 246 and 247 even if the contacts of push button switch 243 are closed or the relay contacts in parallel therewith are closed. The reason for this is that it is undesirable to have the auxiliary trip windings 245, 246 and 247 energized without this action being followed up by energization of the drive motor 64 to complete the opening operations for the high voltage switch 10.
  • Mechanism for operating a high voltage switch between open and closed positions comprising frame means,
  • a switch drive shaft for connection to said switch and rotatable on said frame means in opposite directions to effect opening or closing thereof
  • Switch operating mechanism according to claim 2 wherein said auxiliary and control shafts are coaxial and 13 said switch position and motor position indicator means are in juxtaposed overlying relation.
  • Switch operating mechanism according to claim 3 wherein said drive means to said auxiliary shaft and to said control shaft include chain and sprocket means.
  • Switch operating mechanism according to claim l wherein there is a lost motion connection between said drive means and said control shaft whereby limited rota tion of said switch drive shaft incident to dissipation of torsion stress therein is not reflected in pivoting of said control shaft.
  • a cam follower shaft is pivoted by said cams to alternate positions corresponding to the open and close positions of said high voltage switch
  • said drive motor is connectable to an electric current source
  • limit switch means operated by said cam follower shaft controls the deenergization Of said drive motor at the ends of the opening and closing strokes of said high voltage switch.
  • a hand crank interlock switch operated on unfolding of said manually operable mechanism handle disconnects said drive motor from said electric current source.
  • brake means is connected to said drive motor for stopping it on deenergization thereof
  • Mechanism for operating a high voltage switch between open and closed positions comprising frame means,
  • a manually operable mechanism handle foldable on said frame means and connected to said manual drive shaft for rotating it
  • a hand crank interlock switch operated by unfolding of said manually operable mechanism handle for disconnecting said drive motor from said electric current source.
  • Mechanism for operating a high voltage switch between open and closed positions comprising:
  • a manually operable mechanism handle foldable on said frame means and connected to said manual drive shaft for rotating it
  • said mechanism handle including an arm having a hand grip at one end overlying said frame in the folded position of said mechanism handle and having the other end bifurcated,
  • a handcrank support pivotally mounted on said frame between the furcations of said handle
  • a push rod slidable in said piston, eccentrically connected at one end to said pin means, and connected through spring means at the other end to said piston.
  • a hand crank interlock switch operated by said push rod on unfolding of said manually operable mechanism handle disconnects said drive motor from said elec tric current source.
  • Mechanism for operating a high voltage switch between open and closed positions comprising:
  • a manually operable mechanism handle foldable on said frame means and connected to said manual drive shaft for rotating it
  • said speed reducing driving connection including a motor drive clutch for connecting said drive motor to and disconnecting it from said drive shaft to said switch,
  • a manually operable selector handle is connected to said motor drive clutch for operating it
  • brake means connected to said drive motor for stopping it on deenergization thereof
  • Switch operating mechanism according to claim 16 wherein a selector shaft is pivotally mounted on said frame and interconnects said selector handle and said motor drive clutch, and
  • a decoupling switch is operated by said selector shaft to disconnect auxiliary tripping means for said high voltage switch.
  • Switch operating mechanism according to claim 18 wherein means interconnect said manually operable mechanism handle and said brake release shaft to release said brake means.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
US729565A 1968-05-16 1968-05-16 Motor driven operator for high voltage switch Expired - Lifetime US3508179A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US72956568A 1968-05-16 1968-05-16

Publications (1)

Publication Number Publication Date
US3508179A true US3508179A (en) 1970-04-21

Family

ID=24931615

Family Applications (1)

Application Number Title Priority Date Filing Date
US729565A Expired - Lifetime US3508179A (en) 1968-05-16 1968-05-16 Motor driven operator for high voltage switch

Country Status (2)

Country Link
US (1) US3508179A (enrdf_load_stackoverflow)
GB (1) GB1251243A (enrdf_load_stackoverflow)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093834A (en) * 1976-06-30 1978-06-06 S&C Electric Company Protective cover arrangement
US4107486A (en) * 1976-06-30 1978-08-15 S & C Electric Company Switch operating mechanisms for high voltage switches
US4357505A (en) * 1979-09-10 1982-11-02 Bridges Ronald P Power driven group operated circuit disconnect apparatus for overhead electric power line
US4669589A (en) * 1985-08-30 1987-06-02 S&C Electric Company Decoupling arrangement between drive source and power train
US4677262A (en) * 1985-04-25 1987-06-30 S&C Electric Company Operator for interrupters and disconnect mechanisms
US5034584A (en) * 1989-09-22 1991-07-23 S&C Electric Company Switch operator for switchgear
US5856642A (en) * 1996-09-20 1999-01-05 Inertia Engineering And Machine Works, Inc. Clutch coupled switch operator
US7026558B1 (en) * 2004-01-07 2006-04-11 Cleaveland/Price Inc. Motor operator, with inherent decoupling characteristics, for electrical power switches
US20120293920A1 (en) * 2009-10-20 2012-11-22 Abb Technology Ltd System having electrical equipment integrated on a structure and a method for isolation of electrical equipment thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731705C1 (de) * 1997-07-23 1998-08-06 Reinhausen Maschf Scheubeck Lastgetriebe für einen Motorantrieb
DE19731706C2 (de) * 1997-07-23 2001-06-07 Reinhausen Maschf Scheubeck Getriebekombination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1941214A (en) * 1930-04-23 1933-12-26 Simmons Co Hospital bed adjusting mechanism
US1972778A (en) * 1933-04-13 1934-09-04 Margaret Christian Phillippa B Clothes wringer and the like
US3321998A (en) * 1964-05-21 1967-05-30 Pullman Inc Crank for semi-trailer landing gear
US3432780A (en) * 1967-07-06 1969-03-11 S & C Electric Co Motor-driven operator for high voltage switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1941214A (en) * 1930-04-23 1933-12-26 Simmons Co Hospital bed adjusting mechanism
US1972778A (en) * 1933-04-13 1934-09-04 Margaret Christian Phillippa B Clothes wringer and the like
US3321998A (en) * 1964-05-21 1967-05-30 Pullman Inc Crank for semi-trailer landing gear
US3432780A (en) * 1967-07-06 1969-03-11 S & C Electric Co Motor-driven operator for high voltage switch

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093834A (en) * 1976-06-30 1978-06-06 S&C Electric Company Protective cover arrangement
US4107486A (en) * 1976-06-30 1978-08-15 S & C Electric Company Switch operating mechanisms for high voltage switches
US4357505A (en) * 1979-09-10 1982-11-02 Bridges Ronald P Power driven group operated circuit disconnect apparatus for overhead electric power line
US4677262A (en) * 1985-04-25 1987-06-30 S&C Electric Company Operator for interrupters and disconnect mechanisms
US4669589A (en) * 1985-08-30 1987-06-02 S&C Electric Company Decoupling arrangement between drive source and power train
US5034584A (en) * 1989-09-22 1991-07-23 S&C Electric Company Switch operator for switchgear
US5856642A (en) * 1996-09-20 1999-01-05 Inertia Engineering And Machine Works, Inc. Clutch coupled switch operator
US7026558B1 (en) * 2004-01-07 2006-04-11 Cleaveland/Price Inc. Motor operator, with inherent decoupling characteristics, for electrical power switches
US20120293920A1 (en) * 2009-10-20 2012-11-22 Abb Technology Ltd System having electrical equipment integrated on a structure and a method for isolation of electrical equipment thereof
US8896988B2 (en) * 2009-10-20 2014-11-25 Abb Technology Ag System having electrical equipment integrated on a structure and a method for isolation of electrical equipment thereof

Also Published As

Publication number Publication date
GB1251243A (enrdf_load_stackoverflow) 1971-10-27

Similar Documents

Publication Publication Date Title
US3508179A (en) Motor driven operator for high voltage switch
CZ298125B6 (cs) Vypínací zarízení zahrnující mechanický ukazatel trí poloh
CN106935450A (zh) 一种断路器脱扣机构、分合闸操作装置及其一种断路器
US4020432A (en) Motorized shunt trip switch operator
US4625189A (en) Circuit recloser with actuator for trip, close and lock out operation
US3432780A (en) Motor-driven operator for high voltage switch
FI97832C (fi) Moninapaisen korkeajännitekytkimen käyttömekanismi
US4885444A (en) Switchgear operating mechanism
DE69512449T2 (de) Schutzschaltgerät
US2034146A (en) Circuit breaker operating and control means
US3522401A (en) Manual motor actuated operating mechanism for electrical switches
US3508178A (en) High voltage switch having auxiliary latch operating means for the current interrupter
US2669622A (en) Switch operating mechanism
US2366048A (en) Door operating mechanism
US2034145A (en) Operating mechanism
JPH0534639U (ja) 開閉装置
US3359464A (en) Switch actuating mechanism
US2891122A (en) Switch operating means
US3519970A (en) Current limiting fuse oil switch cut-out assembly
US2192046A (en) Circuit breaker
US1799985A (en) Circuit interrupter
US1836838A (en) Control of electric switches
CN107452525A (zh) 指示电气故障的机构和包括其的电气保护装置
US2054117A (en) Motor mechanism
US1979824A (en) Switch