US3504207A - Rotor cooling means for water-cooled turbogenerators - Google Patents
Rotor cooling means for water-cooled turbogenerators Download PDFInfo
- Publication number
- US3504207A US3504207A US831692A US3504207DA US3504207A US 3504207 A US3504207 A US 3504207A US 831692 A US831692 A US 831692A US 3504207D A US3504207D A US 3504207DA US 3504207 A US3504207 A US 3504207A
- Authority
- US
- United States
- Prior art keywords
- rotor
- ring
- sleeve
- water
- tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title description 23
- 239000002826 coolant Substances 0.000 description 23
- 238000007789 sealing Methods 0.000 description 12
- 238000004804 winding Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/22—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of hollow conductors
Definitions
- a rotor cooling system for a water-cooled turbogenerator has a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the winding. These coolant tubes have parts extending radially inward into an annular metallic distribution vessel arranged axially outside the coil ends. Individual electrically insulating intermediate sleeves form a connection between the coolant tubes and the distribution vessel.
- the present invention relates to a rotor cooling system for water-cooled turbogenerators, which system comprises a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the rotor winding, the coolant tubes forming by means of their individual electrically insulating intermediate members a hydraulic connection between the coil ends and an annular distribution vessel of metal arranged axially outside the coil ends.
- a cooling system which, in certain respects, resembles the object of the application is known from German Patent No. 1,014,215. According to that patent glass bodies are melted around the ends of individual cooling tubes at their insertion point into the annular distribution chamber, and thus operate as electrical insulators. The glass melting causes considerable complications in the manufacture and, furthermore, it is questionable whether the risk of cracks occurring in the glass when subjected to temperature variations is impermissibly high.
- a construction according to the invention presupposes the use of so-called selfsealing jointing rings.
- sealings rings in which the required deformation for scaling is efiected by certain parts of the ring surface being subjected to direct contact with the pressure medium.
- centrifugal forces operate perpendicularly to the centre line of the ring, the centrifugal forces operating on the ring in the direction of the component. In a construction according to the invention, this is avoided since the centre line of all the sealing rings is directed radially in relation to the rotor shaft.
- a rotor cooling means is characterised in that said insulating intermediate member consists of a sleeve directed radially in relation to the rotor shaft, one end of which is inserted in the distribution vessel and the other end of which surrounds the end of the coolant tube at a certain distance from the distribution vessel, each end of the sleeve being provided with a number of annular grooves each containing a selfsealing jointing ring of elastic material, said distribution vessel being arranged at an annular end surface of the rotor core and said sleeve being retained between said end surface and a fixing means arranged outside this end surface.
- FIGURE 1 partly in axial section, partly in partial radial view, shows a turborotor provided with a cooling system according to the invention
- FIG- URE 2 shows in axial section a detail of the means shown in FIGURE 1.
- FIGURE 3 shows a partial cross section along the line AA in FIGURE 1.
- FIG. 1 designates the rotor core and 2 the center line of a rotor of radial slot type intended for a turbogenerator.
- the line 3 indicates the bottom of a winding slot.
- the coil ends of the rotor Winding are designated 4, the retaining ring 5 and the end ring 6.
- the rotor winding is directly cooled by means of thinwalled cooling tubes 7a embedded in the conductors and interconnected to communicate with each other in conventional manner.
- the system of communicating cooling tubes is, at the'rotor end shown in the figure, directly connected to a plurality of coolant inlet tubes 7 and at the other end to similar'coolant outlet tubes.
- the coolant inlet tubes 7 are led from the coil ends 4 through axial channels in an annular-support member 8 of insulating material surrounding the rotor body.
- the coolant tubes are bent at right angles and directed radially inwards along the end surface of the rotor core'being electrically insulated from the rotor iron and each other and held by means of an annular support means arranged at the flank surface of the rootr body and having radial slots, said support means containing a metallic pressure .ring 9 which is pressed axially inwards with the help of bolts which are indicated in the drawings by the center lines 21 and 22.
- the ends of the coolant inlet tubes are connected to a distribution chamber 10 formed by an annular, metallic distribution vessel 11, the radially outer wall of which is provided with radially directed recesses for hydraulic connections with the coil ends 4.
- the distribution vessel 11 is attached to an annular end surface 30 of the rotor core by means of stop surfaces 12 and 13 and also with the help of the pressure ring 9 which with its outer edge abuts the end ring 6.
- the radially inner wall of the distribution ring is provided with recesses for a number of feeding tubes 24 which are in communication with a centrally arranged axial inlet channel for cooling liquid 26.
- the rotor body is designed with a removable part 23.
- the end of the rotor not shown in the drawings is constructed in the same way as the end shown in FIGURE 1, with the difference that the part corresponding to the annular distribution vessel 11 is connected to the outlet channel 29 instead of the inlet channel 216.
- a water-tight connection between the coolant tubes 7 and the distribution ring 11 is effected with the help of self-sealing elastic jointing rings 14 and 15.
- the ends of the coolant tubes are not inserted completely into the distribution ring, but instead the cooling liquid is led through an electrically insulating sleeve 16 across a gap between the end 28 of the coolant tube and the distribution ring.
- the sleeve 1'6 is provided with a tightly surrounding hose 17 of very elastic insulating material, which also surrounds an adjacent part of the cooling water tube 7.
- the sleeve 16 is inserted in a radial recess in the distribution vessel recess in the distribution vessel and sealed to the walls of the recess by means of the elastic sealing rings 15 which permit the sleeve 16 to move in radial direction in relation to the rotor shaft.
- the radial freedom of movement is limited, however, since the sleeve 16 and the insulating hose 17 are surrounded by a support sleeve 18 which is porting sleeve which comprises two halves arranged toin two parts, divided by a cut 31 in its longitudinal direction and shaped a stop surface 19 to take up centrifugal forces operating on the sleeve 16.
- the support sleeve 18 is arranged in a radial channel 27 which is symmetrical in relation to the contact surface 20 between the pressure ring 9 and the rotor part 23.
- the support sleeve is securied against centrifugal forces since its end abuts contact surfaces in the channel 27.
- the end of the cooling water tube 7 is inserted into the radially outer end of the sleeve 16 and surrounded by the self-sealing elastic jointing rings 14.
- Rotor cooling system for water-cooled turbogenerators which comprises a plurality of cooling channels arranged in the conductor of the rotor winding and a plurality of metal coolant tubes connected to the coil ends of the rotor winding and including parts extending radially inward, an annular metallic distribution vessel arranged axially outside, the coil ends, individual electrically insulating intermediate members forming a hydraulic connection between the coil ends and the annular distribution vessel, said insulating intermediate members each comprising a sleeve directed radially in relation to the rotor shaft, one end of which is inserted in the distribution yessel and the other end of which surrounds the end of a radial coolant tube part at a distance from the distribution vessel, each end of the sleeve being provided with at least one annular groove, said grooves each containing a self-sealing jointing ring of elastic material, said distribution vessel being arranged at an end'surface of the rotor core and a fixing means arranged outside said end surface, said s
- said fixing means comprises a fixing ring and means to press the fixing ring against the end surface of the rotor core, and in which members forming channels for radial tube parts are arranged substantially so that they are halved by planes through adjacent contact surfaces between the support ring and the rotor core, each channel having a radially outer part which tightly surrounds a radially directed tube part surrounded by insulating material and a wider, radially inner part which also surrounds said sleeve.
- Cooling system in which a flexible, insulating hose surrounds said sleeve and a part of the tube which lies immediately radially outside the sleeve.
- Cooling system in which a supgether. and divided symmetrically to a plane perpendicular to the rotor shaft surrounds said insulating base.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE08143/68A SE332223B (is") | 1968-06-17 | 1968-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3504207A true US3504207A (en) | 1970-03-31 |
Family
ID=20273253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US831692A Expired - Lifetime US3504207A (en) | 1968-06-17 | 1969-06-09 | Rotor cooling means for water-cooled turbogenerators |
Country Status (4)
Country | Link |
---|---|
US (1) | US3504207A (is") |
CH (1) | CH493956A (is") |
DE (1) | DE1930508B2 (is") |
SE (1) | SE332223B (is") |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3569752A (en) * | 1968-08-21 | 1971-03-09 | English Electric Co Ltd | Liquid-cooled dynamoelectric machine rotor |
US3814959A (en) * | 1971-06-23 | 1974-06-04 | Alsthom Cgee | Cooling arrangement for rotary electric machines |
US3868520A (en) * | 1974-01-18 | 1975-02-25 | Westinghouse Electric Corp | Turbine-generator water-cooled rotor shaft liner restraint |
US3878413A (en) * | 1973-02-23 | 1975-04-15 | Asea Ab | Turbo-generator, the rotor of which has a direct liquid-cooled winding |
US3962594A (en) * | 1973-12-28 | 1976-06-08 | Boris Leonidovich Konovalov | Rotor winding of electric machines |
US4149100A (en) * | 1974-02-01 | 1979-04-10 | Siemens Aktiengesellschaft | Excitation winding arrangement for a synchronous electric machine having a rotor with salient poles |
US4350908A (en) * | 1980-12-04 | 1982-09-21 | Westinghouse Electric Corp. | Cooling system for rotor of a dynamoelectric machine |
EP0035071B1 (de) * | 1980-03-03 | 1985-02-06 | BBC Aktiengesellschaft Brown, Boveri & Cie. | Flexible, elektrisch isolierende Rohrverbindung |
US5859482A (en) * | 1997-02-14 | 1999-01-12 | General Electric Company | Liquid cooled electric motor frame |
US20080197724A1 (en) * | 2007-02-16 | 2008-08-21 | Rolls-Royce Plc | Cooling arrangement of an electrical machine |
US11876418B2 (en) | 2018-09-27 | 2024-01-16 | Siemens Energy Global GmbH & Co. KG | Blocking element for rotor winding heads on turbogenerators with rotor cap with radial ventilation bores |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950403A (en) * | 1956-09-04 | 1960-08-23 | Vickers Electrical Co Ltd | Electrical turbo generators |
US3034003A (en) * | 1958-10-11 | 1962-05-08 | Seidner Mihaly | Liquid cooled rotors for turbo-alternators |
US3131321A (en) * | 1962-04-23 | 1964-04-28 | Gen Electric | Liquid-cooled rotor for a dynamoelectric machine |
US3296470A (en) * | 1964-02-03 | 1967-01-03 | Vsesouzny Nii Elecktromekhanik | Liquid cooling of generator rotor windings |
US3340412A (en) * | 1964-08-28 | 1967-09-05 | Bbc Brown Boveri & Cie | Arrangement for the direct liquid cooling of a turbogenerator provided with end turnretaining rings |
-
1968
- 1968-06-17 SE SE08143/68A patent/SE332223B/xx unknown
-
1969
- 1969-06-09 US US831692A patent/US3504207A/en not_active Expired - Lifetime
- 1969-06-14 CH CH919869A patent/CH493956A/de not_active IP Right Cessation
- 1969-06-16 DE DE19691930508 patent/DE1930508B2/de active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950403A (en) * | 1956-09-04 | 1960-08-23 | Vickers Electrical Co Ltd | Electrical turbo generators |
US3034003A (en) * | 1958-10-11 | 1962-05-08 | Seidner Mihaly | Liquid cooled rotors for turbo-alternators |
US3131321A (en) * | 1962-04-23 | 1964-04-28 | Gen Electric | Liquid-cooled rotor for a dynamoelectric machine |
US3296470A (en) * | 1964-02-03 | 1967-01-03 | Vsesouzny Nii Elecktromekhanik | Liquid cooling of generator rotor windings |
US3340412A (en) * | 1964-08-28 | 1967-09-05 | Bbc Brown Boveri & Cie | Arrangement for the direct liquid cooling of a turbogenerator provided with end turnretaining rings |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3569752A (en) * | 1968-08-21 | 1971-03-09 | English Electric Co Ltd | Liquid-cooled dynamoelectric machine rotor |
US3814959A (en) * | 1971-06-23 | 1974-06-04 | Alsthom Cgee | Cooling arrangement for rotary electric machines |
US3878413A (en) * | 1973-02-23 | 1975-04-15 | Asea Ab | Turbo-generator, the rotor of which has a direct liquid-cooled winding |
US3962594A (en) * | 1973-12-28 | 1976-06-08 | Boris Leonidovich Konovalov | Rotor winding of electric machines |
US3868520A (en) * | 1974-01-18 | 1975-02-25 | Westinghouse Electric Corp | Turbine-generator water-cooled rotor shaft liner restraint |
US4149100A (en) * | 1974-02-01 | 1979-04-10 | Siemens Aktiengesellschaft | Excitation winding arrangement for a synchronous electric machine having a rotor with salient poles |
EP0035071B1 (de) * | 1980-03-03 | 1985-02-06 | BBC Aktiengesellschaft Brown, Boveri & Cie. | Flexible, elektrisch isolierende Rohrverbindung |
US4350908A (en) * | 1980-12-04 | 1982-09-21 | Westinghouse Electric Corp. | Cooling system for rotor of a dynamoelectric machine |
US5859482A (en) * | 1997-02-14 | 1999-01-12 | General Electric Company | Liquid cooled electric motor frame |
US20080197724A1 (en) * | 2007-02-16 | 2008-08-21 | Rolls-Royce Plc | Cooling arrangement of an electrical machine |
US8487500B2 (en) * | 2007-02-16 | 2013-07-16 | Rolls-Royce Plc | Cooling arrangement of an electrical machine |
US11876418B2 (en) | 2018-09-27 | 2024-01-16 | Siemens Energy Global GmbH & Co. KG | Blocking element for rotor winding heads on turbogenerators with rotor cap with radial ventilation bores |
Also Published As
Publication number | Publication date |
---|---|
SE332223B (is") | 1971-02-01 |
DE1930508A1 (de) | 1970-08-27 |
DE1930508B2 (de) | 1971-12-02 |
CH493956A (de) | 1970-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3504207A (en) | Rotor cooling means for water-cooled turbogenerators | |
US3733502A (en) | Liquid cooled rotor for dynamoelectric machines | |
US3447002A (en) | Rotating electrical machine with liquid-cooled laminated stator core | |
US5331238A (en) | Apparatus for containment and cooling of a core within a housing | |
US3131321A (en) | Liquid-cooled rotor for a dynamoelectric machine | |
US3229130A (en) | Motors having an air-gap jacket in particular for central heating accelerators and other like applications | |
US5777408A (en) | Exciter current line in the rotor of an electric machine | |
US3497737A (en) | Connecting means for dynamoelectric machine cooling system | |
US2950403A (en) | Electrical turbo generators | |
JPS62501048A (ja) | 整流器組立体 | |
US3916230A (en) | Liquid-cooled rotor for dynamoelectric machines | |
US3524090A (en) | Shaft couplings for mechanically and electrically connecting the rotor shaft of a turbogenerator with a separate shaft | |
US3621315A (en) | Damping winding for rotating pole system | |
US3497736A (en) | Turbogenerator with directly liquid-cooling rotor winding | |
US3363122A (en) | High current transmitting shaft coupling | |
US2706260A (en) | Liquid cooled dynamo-electric machine | |
US3894253A (en) | Very high current field winding for dynamoelectric machine rotor | |
KR20010109155A (ko) | 냉각재 유동식 중공 고정자 계자권선을 가지는 회전기계 | |
US3740595A (en) | Water cooled rotor for dynamoelectric machines | |
US3353043A (en) | Conductor cooling system for dynamoelectric machine rotor | |
US3469126A (en) | Liquid-cooled turbo-generator | |
EP0470844A2 (en) | Circuit ring/bus bar assembly | |
US3878413A (en) | Turbo-generator, the rotor of which has a direct liquid-cooled winding | |
JP2016111768A (ja) | 回転電機の回転子 | |
US3218490A (en) | Liquid cooled motor |